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Abstract: Chronic wounds represent a major health and financial burden. Although incred-

ible advancements in wound management have been made in the last decade, the incidences of 

chronic wounds continue to increase due to a rise in biofilm-associated infections. The presence 

of biofilm causes chronic inflammation, leading to impaired healing rates and host mortality. 

This review describes the deleterious bacterial–host interactions, as well as the beneficial role 

of pH and probiotics in chronic wound infections.
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Definition of the wound biofilm; bacterial species 
that colonize chronic wounds
The skin is the first line of defense for the body, providing protection against toxins, 

microorganisms, and chemicals in the environment. Thus, the loss of skin integrity 

can result in substantial physiologic imbalance and significant disability or death. 

The prevalence of chronic wounds associated with the loss of skin is an important 

concern within the health care field.1 It is estimated that approximately seven million 

patients have some form of chronic wounds/ulcers that are associated with diabetes 

or pressure.2–4 The health care cost for chronic wounds is estimated to be as high as 

$20 billion annually in the United States.5–8 The current standard of care for chronic 

wounds consists of debridement, irrigation, moisture retentive bandages, and antimi-

crobial therapy. These treatment paradigms are aimed at promoting wound healing 

and the restoration of homeostasis.

Despite incredible advancements in the field of wound healing over the last decade, 

the prevalence and incidence of chronic wounds continues to rise.6,7 Clinically, chronic 

wounds/ulcers are defined as any wound that is nonhealing after 30 days, and can be 

classified into three types of ulcers: vascular (eg, venous or arterial); diabetic; and 

pressure.9,10 These wounds are resistant to natural healing, and may require long-term 

medical care.10,11 Chronic wounds display delayed healing for a variety of reasons 

including diminished blood supply, uncontrolled inflammatory response, reduced 

re-epithelialization, and the presence of biofilm-associated infections.10,12

Biofilms are characterized as aggregated communities of microbes attached to a 

surface and/or each other, embedded in an extracellular polymeric substance (EPS) 

matrix composed of microbial- and host-derived extracellular DNA, proteins, and 

 polysaccharides. These communities are often polymicrobial and dynamic, consist-

ing of diverse species that are continuously changing.13 Biofilms can be found in a 
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number of places on and in the body including the teeth, 

gastrointestinal mucosa, nasal epithelium, and any implanted 

artificial surface (eg, orthopedic implants, artificial valves, 

and  catheters). Though the impact of biofilms in the pathogen-

esis of wound infections remains debatable, certain bacterial 

species have clearly been shown to hinder wound healing. It 

is thought that wounds are first contaminated and then colo-

nized by adherent replicating microorganisms, which do not 

cause tissue damage. When the bacterial load in the wound 

exceeds 105 colony-forming units/gram tissue,14 the initial 

colonization is thought to have progressed to an  infection. 

While microbial colonization of a wound alone does not 

prolong healing,15 the subsequent infection can lead to tissue 

damage. The classical symptoms of a chronic wound infec-

tion are pain, heat, edema, and purulence. However, more 

contemporary signs and symptoms include pain, foul odor, 

and wound breakdown.16

The microbial flora of chronic wounds encompasses a 

variety of microorganisms including aerobic and anaerobic 

Gram-negatives and Gram-positives, as well as fungi.17 Some 

of the most common causes of wound infections are the 

ESKAPE pathogens (Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, 

Pseudomonas aeruginosa, and Enterobacter spp.).18 How-

ever, just as every tumor is different, every biofilm infection is 

a unique consortium of bacteria, fungi, and host components, 

which can vary greatly from the initial injury to a long-term 

nonhealing wound. Prior to injury, normal flora inhabit the 

skin and differ depending on the location – eg, sebaceous 

areas harbor Propionibacterium spp., while moist areas 

predominantly support Staphylococcus and Corynebacterium 

spp. and, surprisingly, dry areas foster many Gram-negative 

bacteria previously thought to rarely colonize the skin.19

Normal flora can easily colonize wounds and lead to wound 

infections, as reported by a recent clinical study examining 

the evolution of the microflora in burn wound  infections.20 In 

this study, 33% of patients’ wounds were already colonized 

upon admission. About 50% of these burn wounds were 

found to be colonized by S. aureus, while the other 50% 

harbored Gram-negative organisms such as P. aeruginosa, 

as well as Acinetobacter, Klebsiella, and Enterobacter spp., 

and Escherichia coli.20 However, as this study was con-

ducted using standard culturing techniques (serial dilutions, 

and culturing on nutrient-rich agar plates), nonculturable 

microorganisms were not considered. In contrast, utilizing 

a variety of molecular techniques (pyrosequencing, denatur-

ing gradient gel electrophoresis, and full ribosome shotgun 

sequencing), the Wolcott laboratory reported the microbial 

populations from 30 patients with different types of chronic 

wound infections.21 Regardless of the type of wound (diabetic, 

pressure, or  vascular), the most common genera found were 

 Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, 

Stenotrophomonas, Finegoldia, and Serratia spp.21 Strict and 

facultative anaerobic bacteria were shown to make up the 

majority of the microbial population (around 80%) in the 

wounds, but ratios of strict/facultative anaerobes differed 

based on the wound type: diabetic (25%/65%);  pressure 

(58%/25%); and venous (5%/75%).

With high-throughput sequencing techniques becom-

ing cheaper and more accessible to health care providers, a 

whole host of new microbes are now becoming associated 

with disease. Undoubtedly, large amounts of new information 

will be generated concerning which microbes are harmful, 

beneficial, and/or neutral in the chronic wound. Meanwhile, 

the purpose of this review is to examine recent evidence 

concerning the deleterious interactions between bacteria 

and wound tissue, discuss the possibility of using beneficial 

bacteria to treat wound infections, and consider the transla-

tional potential of current studies to optimize future wound 

management approaches.

Deleterious bacterial–host 
interactions in chronic wound 
pathophysiology
Bacterial biofilms are thought to delay wound healing for a 

variety of reasons, namely by shifting the wound immune 

response toward chronic inflammation (Figure 1). In theory, 

as long as the biofilm is present, the immune system will 

try to remove it, resulting in prolonged inflammation with 

collateral damage to the host tissue.22 The host immune 

response is a complex multifaceted system that has been 

divided into the adaptive and innate immune systems. The 

innate immune response is made up of the skin barrier, com-

mensal bacteria, the complement system, and both phagocytic 

(eg, macrophages and neutrophils) and nonphagocytic (eg, 

natural killer cells) leukocytes. The innate immune system 

recognizes a broad group of molecules specific to microbes 

such as lipopolysaccharide, peptidoglycan, and lipoteichoic 

acid via pattern recognition receptors, and is critical in fight-

ing off bacterial infections and mounting the initial immune 

response to invading microbes.23 Once the epithelial skin 

barrier is compromised, the microbial skin flora are typically 

the first to contaminate, colonize, and potentially infect the 

wound. Tissue macrophages and other cells respond to these 

invading bacteria by releasing cytokines and chemokines, 

which stimulate polymorphonuclear neutrophil (PMN) 
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EPS matrix inhibits chemotaxis and phagocytosis
Rhamnolipids lyse PMNs
PMN DNA enhances biofilm formation
Degrade NETs and trigger apoptosis

Neutrophil

Macrophage

Bacterial enzymes

Wound biofilm

3-oxo-C12-HSL induces apoptosis
Exclude macrophages via NET degradation
Alginate prevents phagocytosis

Proteases degrade growth factors and receptors
Proteases disrupt complement activation
Urease breaks down urea to increase pH

Figure 1 Deleterious actions of biofilms in chronic wounds.
Notes: Bacterial biofilms are thought to delay wound healing for a variety of reasons, including reducing local oxygen levels, mechanically inhibiting granulation, increasing 
tolerance to antimicrobials, and shifting the immune response toward chronic inflammation. Interactions between bacterial biofilms and dying or ineffective neutrophils and 
macrophages appear to significantly contribute to the chronic inflammatory state seen in chronic wound infections.
Abbreviations: EPS, extracellular polymeric substance; PMN, polymorphonuclear neutrophil; NET, neutrophil extracellular trap; 3-oxo-C12-HSL, N-3-oxo-doedecanoyl-
L-homoserine lactone.
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chemotaxis to the wound site. One to 2 days later, mac-

rophages migrate to the wound site to phagocytose bacterial 

cells, and for efferocytosis, which refers to the engulfment of 

apoptotic cells. Dendritic cells and macrophages then present 

antigens to the correct T-cells, which begins the cascade for 

subsequent antibody production.24 However, pathogenic bac-

teria have evolved numerous methods to evade the immune 

response in wound infections, which the following section 

will expound upon.

Polymorphonuclear neutrophils  
and biofilms
PMNs are critical to the host defense against bacteria, 

illustrated by the life-threatening bacterial sepsis problems 

associated with individuals who lack PMNs (neutropenia).25 

Activated PMNs rapidly migrate to the site of injury, and 

persist there for 2–3 days.26 PMNs do not recognize specific 

antigens, but instead recognize evolutionary conserved 

molecules shared by numerous bacterial species such as 

lipopolysaccharides and bacterial DNA.27 PMNs are able 

to recognize bacterial DNA and complex carbohydrates, 

both of which are essential components of the biofilm EPS 

matrix.28,29 PMNs have been shown to kill bacteria by four 

specific mechanisms: phagocytosis; the release of microbi-

cidal compounds through degranulation; reactive oxygen 

species (ROS) generation; and the formation of neutrophil 

extracellular traps (NETs).30

While most of the previous work examining the bacteri-

cidal abilities of neutrophils was performed with planktonic 

bacteria, there has been a surge in recent published stud-

ies examining the relationship of PMNs and biofilms. The 

majority of work on PMNs and biofilm interactions has been 

done with P. aeruginosa and S. aureus biofilms.31 When 

P. aeruginosa biofilms were incubated with PMNs in vitro, the 

PMNs settled onto the biofilms, but they exhibited very little 

bactericidal activity or movement.32 One explanation for this 

observation was that the alginate present in P. aeruginosa’s 

EPS matrix inhibited PMN phagocytosis and chemotaxis.33 

Rhamnolipids are another mechanism by which P. aeruginosa 

biofilms antagonize PMNs and are actively produced in the 

biofilm mode of growth.34,35 Jensen et al36 observed that rham-

nolipids, produced by biofilms, rapidly lysed human PMNs 

in vitro. This group went on to show that P. aeruginosa upregu-

lated rhamnolipid production in response to the presence of 

PMNs, signifying that P. aeruginosa actively recognizes and 

responds to these immune cells. P.  aeruginosa biofilms have 

also been shown to produce rhamnolipids in vivo, resulting 

in increased PMN lysis.37

There is also considerable in vitro and in vivo evidence 

that lysed PMNs enhance P. aeruginosa biofilm  formation. 

For example, PMNs were shown to eradicate planktonic 

P. aeruginosa cells, while their presence increased the 

number of biofilm cells.37 The authors concluded that 

P. aeruginosa utilized the actin and DNA from lysed PMNs 
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to fortify their biofilms. In addition, neutrophil-enhanced P. 

aeruginosa biofilms were more tolerant to antipseudomonal 

antibiotics. When these biofilms were treated with DNase, 

the biofilm was disrupted and there was an increase in 

planktonic cells.38 Furthermore, P. aeruginosa’s ability to 

take advantage of neutrophils was recently demonstrated in 

a murine type-1 diabetic wound infection model.39 Diabetic 

mice on insulin therapy that were wounded and infected with 

P. aeruginosa were shown to have increased PMN migra-

tion as compared to both diabetic and nondiabetic mice. 

However, this increased migration did not lead to increased 

bacterial clearance. Rather, increased neutrophil migration 

in this group of mice resulted in P. aeruginosa biofilms that 

contained more DNA and exhibited increased tolerance to 

the antibiotic gentamicin.39

Further evidence of the deleterious interactions between 

biofilms and PMNs came from Nguyen et al,40 who utilized 

a type 2 diabetic murine wound infection model to show 

that the presence of S. aureus biofilms significantly reduced 

neutrophil oxidative activity, leading to higher bacterial load 

and decreased healing rates. While S. aureus induces NETo-

sis in PMNs, it was recently shown that S. aureus is able to 

degrade NETs to deoxyadenosine, triggering the caspase-3-

mediated cell death of immune cells.41 In addition, clinical 

staphylococcal infections seem to be correlated to reduced 

neutrophil apoptosis in diabetic patients, which leads to 

prolonged tumor necrosis factor-α production and reduced 

neutrophil clearance.42 In summary, PMNs are effective at 

killing planktonic cells,43 but biofilms appear to resist the 

bactericidal effects of PMNs, and may even benefit from the 

cellular debris left in their wake. It is clear from these recent 

studies that interactions between bacterial biofilms and dying 

or ineffective neutrophils contribute strongly to the chronic 

inflammatory state seen in chronic wound infections.

Macrophages and biofilms
Following the migration of PMNs to the site of injury, another 

innate immune cell population arrives: the macrophages. 

Macrophages arrive 2–3 days following tissue damage to 

challenge any microbial invaders, which the PMNs have not 

eradicated. Macrophages also phagocytize apoptotic/necrotic 

cells in a process called efferocytosis.44 Macrophages kill 

bacterial cells by phagocytosis followed by the production of 

ROS, but the interactions of macrophages with biofilms are 

less well characterized than those of PMNs. In 2003, it was 

observed that N-(3-oxododecanoyl)-l-homoserine lactone 

(3-oxo-C12-HSL), a quorum-sensing molecule produced 

by P. aeruginosa, induced apoptosis in macrophages.45 

 However,  3-oxo-C12-HSL has also been shown to activate 

phagocytosis, while not affecting ROS production.46 When bio-

films were incubated with macrophages in vitro, those lacking 

alginate were eradicated by macrophages in 4 hours. The kill-

ing of these biofilm cells was mediated through phagocytosis, 

and was dependent on the presence of interferon-γ.47 S. aureus 

has been shown to reduce macrophage numbers by releasing 

nuclease and adenosine, which degrade NETs and exclude 

macrophages from abscesses.41 Based upon the literature, 

P. aeruginosa biofilms seem less protected from macrophages, 

though there are various mechanisms that P. aeruginosa and 

S. aureus employ to diminish their effectiveness.

Bacterial proteases and wound tissue
Pathogenic bacteria produce a wide range of serine, cysteine, 

and metalloproteases that have intracellular and/or extracel-

lular targets and can aid in colonization, the evasion of host 

defense, dissemination of bacteria, and tissue degradation.48,49 

Intracellular proteases are typically important in cellular 

and metabolic processes, while extracellular proteases are 

important in the ability of bacteria to interact with the host 

environment, such as absorbing and utilizing hydrolytic 

products.50 In addition, bacterial proteases have the capabil-

ity to degrade host growth factors and their receptors.51 For 

example, Laarman et al52 showed that P. aeruginosa alkaline 

protease was capable of disrupting complement activation 

by inhibiting opsonization of the bacteria by C3b and the 

subsequent formation of C5a. This protease has also been 

shown to help P. aeruginosa evade phagocytosis in the lung 

by degrading surfactant protein-A.53

Wound pH and biofilm formation
The acidic pH of the skin (pH 4–6), known as the acid mantle, 

is one of the key mechanisms that protects the skin from 

microbial infections. In chronic wounds, the destruction of 

underlying tissue releases bodily fluids (pH 7.4) that shift the 

pH of the wound toward neutral/alkaline conditions.54 The pH 

of the wound environment has been shown to be an accurate 

method of predicting nonhealing wounds (Figure 2). Clinical 

studies have suggested that if the wound environment does not 

shift toward an acidic pH early in treatment, the probability of 

the wound failing to heal and requiring a skin graft increases 

significantly. For example, a randomized clinical study found 

that out of 25 venous ulcers, those that were considered “non 

healing” had a pH of 7.42, while wounds that had a pH of 

6.91 healed.55 The relationship of wound healing and pH was 

further explored in a clinical study that examined the pH of 

50 chronic and acute wounds. Overall, the authors reported 
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Figure 2 The importance of managing pH in chronic wound infections.
Notes: The acidic pH of the skin is one of the key mechanisms that protect it from 
microbial infections. In wounds, increasingly alkaline pH is a predictor that they 
will become nonhealing or chronic. However, wounds that are too acidic are less 
likely to successfully accept grafts. The activities of most biological and enzymatic 
therapies have pH optimums, and numerous factors can shift wound pH including 
debridement and bacterial colonization.
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therapy. Utilizing commensal probiotics has shown promise 

in preventing and treating gut, oral, and urinary tract bac-

terial infections.58 As probiotics are typically bacteria that 

reside in the gut, they prefer an acidic environment and grow 

best in pH 3–5. It has been proposed that, because probiotics 

can compete with pathogens for host tissue binding sites, 

stimulate the release of anti-inflammatory cytokines, lower 

pH, release antimicrobial compounds, and deactivate the 

virulence factors of bacterial pathogens, they are excellent 

candidates for promoting wound healing in diabetic foot 

ulcers.59 The following section will focus on probiotic studies 

conducted in vitro and in vivo.

Battling wound pathogens with probiotics
Among the ESKAPE pathogens, probiotic therapies have pre-

dominantly been utilized against S. aureus and P.  aeruginosa. 

The primary probiotic bacterial species that have been tested 

therapeutically include numerous Lactobacillus spp., Bifido-

bacterium spp., and Propionibacterium spp. For example, 

Lactobacillus casei and Lactobacillus acidophilus inhibited 

the growth of ten clinical strains of S. aureus by up to 99% 

after a 24-hour coculture.60 In the same study, L. acidophilus 

also exhibited antimicrobial activity against 5/6 ESKAPE 

pathogens isolated from burn wounds.60 In another study, S. 

aureus biofilms were reduced by 11–17 mm using the spot 

plate assay by several Lactobacillus spp. and Bifidobacterium 

spp.61 The proposed mechanism for the inhibitory effect on S. 

aureus lies in the production of organic acids (and the subse-

quent lowering of pH), as this antagonistic effect was abated 

when culture supernatants were neutralized.61 As recently 

as 2014, propionic acid, a byproduct of Propionibacterium 

acnes, was shown to kill planktonic S. aureus by lowering 

the pH of the bacterial cytoplasm.62 Additionally, propionic 

acid exerted broad-spectrum activity against E. coli and the 

fungal pathogen Candida albicans, inhibiting their growth 

at concentrations .10 mM. Other studies examining the 

efficacy of probiotics to treat S. aureus are described in this 

recent review.63

In 2010, Ramos et al64 provided some of the strongest 

evidence for the utilization of probiotics in the destruction 

of P. aeruginosa biofilms in vitro. The authors reported 

that acidic filtrates prepared from Lactobacillus plantarum 

supernatants disrupted biofilms made by a laboratory 

strain of P. aeruginosa by 43% and a P. aeruginosa clini-

cal strain isolated from a wound by 35%.64 Ramos et al65 

went on to use L. plantarum supernatants to both disperse 

and inhibit P. aeruginosa biofilms, and indirectly reduce 

the  production of numerous virulence factors (elastase, 

that healing wounds shifted below a pH of 8.0, while chronic 

wounds remained above a pH of 8.5.56

There are numerous factors that shift the wound toward 

an alkaline pH, including lowered oxygen tension, stage 

of healing, debridement, maggot therapy, and bacterial 

colonization (Figure 2).54 For example, Proteus mirabilis, 

Klebsiella spp., and P. aeruginosa produce urease, an enzyme 

that catalyzes the formation of ammonia from urea. The 

release of alkaline ammonia promotes bacterial attachment 

and growth, as many wound pathogens require neutral to 

alkaline pH environments to form biofilms.57 Additionally, 

an alkaline pH reduces the release of oxygen supporting the 

growth of anaerobic bacteria. For more information on the 

impact of pH on wound healing and biofilm formation, refer 

to this recent and thorough review.57 Increased wound pH 

has major implications for delayed wound healing, and the 

next section will focus on bacterial therapies that target this 

problem in chronic wound infections.

Beneficial bacterial–host 
interactions that promote  
chronic wound healing
Physicians face many challenges in the management of 

nonhealing chronic wounds including disrupting bacterial 

biofilms, the global rise in antibiotic resistance, excessive 

inflammation, and an alkaline wound environment. Thus, 

the ideal therapy for wound infections is one that can reduce 

wound pH, dampen the immune response and target the 

bacterial infection. One promising and relatively unexplored 

treatment that meets these criteria is the use of probiotic 
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 pyocyanin,  rhamnolipids).65 Overall, these studies provide the 

groundwork for understanding the antibiofilm properties of 

probiotics. However, there remain many questions as to the 

antimicrobial efficacy of probiotics against wound pathogens 

and multispecies biofilms.

Another mechanism by which probiotics have been 

shown to enhance wound healing is by protecting the host 

from pathogens like S. aureus and dampening the immune 

response. For example, the probiotic strains Lactobacillus 

reuteri and Lactobacillus rhamnosus were shown to protect 

human keratinocytes from S. aureus-induced cell death when 

applied prior to or concurrently with S. aureus. However, if 

S. aureus cells were incubated with keratinocytes for as little 

as 1 hour, the addition of Lactobacillus spp. did not provide 

any protection to the host skin cells.66 In another recent study, 

when L. rhamnosus was simultaneously incubated with S. 

aureus and PMNs (murine and human), there was a reduction 

in S. aureus-associated PMN death and NET formation.67 As 

ROS production is essential to NET formation, the authors 

next tested if pretreating PMNs with L. rhamnosus could 

prevent ROS production. L. rhamnosus incubation resulted 

in decreased ROS production when PMNs were activated 

with phorbol 12-myristate 13-acetate or H
2
O

2
. Some of the 

probiotic strains tested were able to activate NETosis alone, 

so this anti-inflammatory effect is clearly species specific.67 

L.  plantarum supernatants were similarly shown to protect 

human PMNs from P. aeruginosa-associated apoptosis/

necrosis via the destruction of P. aeruginosa quorum-sensing 

molecules.68 By disrupting pathogenic biofilms and protect-

ing key cells in the wound environment, probiotics have 

clearly demonstrated efficacy to provide crucial support to 

wound healing in vitro.

In vivo efficacy of probiotics  
to promote chronic wound healing
While there are numerous studies investigating the impact 

of probiotics on wound pathogens in vitro, far fewer have 

examined their efficacy in vivo. Of the studies performed, 

by far the most common approach has been to apply a pro-

biotic species topically to wounds, either prophylactically or 

concurrently with infection, and then monitor wound healing 

and/or bacterial load. For example, the ability of L. plantarum 

to prevent either S. aureus or P. aeruginosa infection was 

investigated by treating mouse wounds with L. plantarum 

(cells or supernatant) plus S. aureus, P. aeruginosa, or the 

pathogens alone.69 Based on histopathological analysis from 

tissue taken 2 days post-treatment, the authors concluded that 

L. plantarum had prevented wound infection.69  Similarly, P. 

acnes topical therapy was tested in mouse incisions infected 

with S. aureus.70 Mice were given 5 mm wounds and treated 

with P. acnes that had been incubated for 3 days with either 

phosphate buffered saline (PBS) or glycerol. Wounds 

were then infected with S. aureus and followed for 3 days. 

 Following the wound infection, the mice treated with P. acnes 

incubated in glycerol displayed a 60% decrease in S. aureus 

bacterial burden and increased wound healing as compared to 

treatment with P. acnes that had been incubated in PBS.70 This 

study suggests that glycerol fermentation and the production 

of compounds, like propionic acid, provide the mechanism 

for targeting wound pathogens. While the studies discussed 

earlier used probiotic therapy to treat or prevent wound infec-

tion, topical treatment with Lactobacillus brevis was also 

shown to increase wound healing and decrease inflammation 

over 21 days in uninfected rat wounds.71

Another probiotic application was based on the idea 

that Lactobacillus fermentum plus glucose produces nitrate 

and protons leading to nitric oxide gas (gNO) production, 

which can lower pH, promote healing, and kill S. aureus. 

This concept was tested in a rabbit full thickness wound 

infection model.72 One day after the wounds were infected 

with S. aureus, they were treated for 21 days with an adherent 

patch containing lactic acid bacteria that produced gNO. The 

authors observed that wounds treated with the gNO patch 

were 2.52 times more likely to close and displayed modest 

histological improvements, as compared to wounds treated 

with control patches. While some of the work performed in 

animal models is encouraging, as of yet, there have been no 

studies treating pre-established in vivo biofilms with topical 

probiotic  therapeutics. Clearly there is much work to be done 

in this field, examining different pathogens, various probiotic 

strains, and optimizing treatment strategies.

Clinical studies examining the efficacy  
of probiotics to enhance wound healing
While mechanistic studies examining the use of topical pro-

biotics on wounds in animal models is lacking, there have 

been some very thorough and informative clinical studies. 

For example, a study conducted in Argentina evaluated the 

use of topical L. plantarum cultures to treat infected second-

degree and noninfected third-degree burns.73 The probiotic 

therapy was compared to silver sulfadiazine for the treat-

ment of 80 total burn wounds (38 L. plantarum treatments 

versus 42 silver sulfadiazine treatments), and the markers 

of clinical effectiveness measured were bacterial load and 
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wound healing rates. L. plantarum cultures were applied 

directly to the wounds for 10 days, and the patients  receiving 

the probiotic topical therapy did not receive any other form 

of antimicrobial treatment. The other group of patients 

received a daily antiseptic bath with 0.5% chlorhexidine and 

treatment with silver sulfadiazine cream daily for 10 days. 

While there were no significant differences in bacterial load 

or healing rates observed between the groups, there were 

also no cases of sepsis in either treatment group, suggesting 

that L. plantarum can be safely used in humans and function 

similarly to the antimicrobial standard of care treatments for 

slow-healing burn wound infections.73 Another study was 

performed by the same research group examining the impact 

of topical L. plantarum cultures on 14 diabetic ulcers and 

20 nondiabetic ulcers.74 Although no difference was observed 

between groups, treatment with topical L. plantarum reduced 

the numbers of bacteria, neutrophils, apoptotic/necrotic cells, 

and promoted wound healing.

The most recent clinical probiotic wound study was 

also conducted by Valdez et al and reported in a 2013 book 

chapter.75 In this study, type 2 diabetics with foot ulcers were 

treated with topical L. plantarum cultures (number [n] =20) 

or with standard debridement (n=10) over the course of 

30 days, and then the patients were followed for 20 days post-

treatment. The investigators reported that treating the diabetic 

foot ulcers with L. plantarum doubled the rates of wound 

healing, granulation, and bacterial load reduction.75 Overall, 

these clinical studies provide a great deal of optimism for the 

utilization of probiotic therapy in wound care management. 

While much optimization and evaluation remain to be done, 

the studies conducted thus far provide an excellent foundation 

for the clinical proof of principle for this therapy.

Applying current knowledge  
to optimize the management  
of chronic wounds
Throughout this review, we have discussed biofilms, the 

bacterial pathophysiology of wounds, probiotics, and wound 

healing, but how does this information translate to the clinic? 

One of the main translational concepts presented was the 

importance of pH in wound healing (Figure 2). The measure-

ment of wound pH is an easy and important, but often over-

looked, indicator of nonhealing wounds. Nonhealing wounds 

typically have a pH that is neutral to slightly alkaline,57 and 

from the experimental evidence, it appears that attempts 

should be made to reduce pH and shift the wound toward 

an acidic environment. This was found to be especially true 

when the pH of 30 burn wounds was measured following 

a second dressing change.76 Those wounds that went on to 

heal had a mean pH of 7.32, while the mean pH was 7.73 in 

nonhealing wounds that required skin grafting.

This review also covered the use of probiotics to lower 

wound pH, which theoretically will lead to decreased 

biofilm formation and persistence of pathogens,57 reduced 

apoptosis67,68 and migration of PMNs,57 and will ultimately 

shift wounds toward the healing spectrum. However, there 

are some concerns with the use of probiotics to treat wounds, 

specifically concerning septicemia caused by the topical 

application of Lactobacillus spp. Although there were no 

reports of septicemia in the clinical wound studies that used 

L. plantarum topically,73–75 Lactobacillus septicemia is possi-

ble in severely immunocompromised individuals, and seems 

to be strain specific. Two retrospective studies comprising 

a total of 260 cases of Lactobacillus septicemia noted that 

the top causative strain was L. rhamnosus.77,78 Thus, there 

is a clear need for investigators to conduct future probiotic 

studies to carefully consider published data before choosing 

their probiotic strains and study parameters.

Although the use of probiotics may take some time to 

become widely accepted, there are therapeutics already 

available, which can lower pH and promote wound healing – 

namely, honey and acidified nitrate creams.57 Recently, an 

acidic therapeutic 3% citric acid solution was applied to 

diabetic and nondiabetic wounds and compared to the alka-

line therapeutic, Eusol. In both the diabetic and nondiabetic 

patients, the 3% citric acid solution reduced the length of treat-

ment time to nearly half that of the Eusol-treated groups.79

While debridement is essential in managing nonhealing 

wounds, it should also be noted that any form of debridement 

seems to immediately shift the wound toward an alkaline pH 

(Figure 2) due to the increased perfusion of blood compo-

nents into the wound site.54 In addition, medicinal maggots 

used for debridement release ammonium bicarbonate as a 

byproduct, which potentially shifts the wound environment 

toward alkalinity.57 Though maggot debridement therapy is 

reported to be an effective wound therapeutic, there remains 

a clear gap on the impact of this therapy on wound pH. 

Overall, there is a therapeutic window for the application of 

the aforementioned acidic agents following debridement to 

promote wound healing.

The efficacy of enzymatic debridement and antibiotics are 

also closely tied to wound pH. For instance, enzymatic debri-

dement agents like papain have a pH range of 3–12 (optimum 

pH: 7), while collagenase has an optimum pH range of 6–8 
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(Figure 2), but fibrinolysis used in conjunction with DNase 

only has pH activity ranging from 4.5 to 5.5.54 Additionally, 

the impact of pH on new fluoroquinolones has recently been 

explored and it appears that acidic pH  environments enhance 

the antimicrobial activity of delafloxacin80 and finafloxacin81 

against S. aureus, but acidic environments decrease the 

antimicrobial activity of monofloxacin81 and ciprofloxacin.80 

Thus, the optimal pH for different enzymatic and antibiotic 

agents needs to be carefully considered before applying these 

treatments to wounds.

Finally, wound pH also appears to be an important fac-

tor influencing grafting success. Several studies of burn 

and chronic wounds have noted that tissue rejection is more 

likely when wounds are acidic,54,76 and the more alkaline the 

wound, the better the likelihood that the skin graft will take 

(Figure 2).82 For example, in 18 different wounds requiring 

grafts, patients with a wound pH below 7.4 experienced 0% 

graft acceptance, while those above this cutoff experienced 

99% graft acceptance.56 Thus, acidic pH in the wound is not 

always beneficial and must be adjusted and evaluated properly 

based on the required therapy.

Conclusion
Chronic wounds persist for a variety of reasons, but the role of 

bacterial biofilms in preventing healing seems very clear. The 

continuous presence of biofilms results in a chronic state of 

inflammation in the wound. Collateral tissue damage occurs as 

the immune system tries to remove the biofilm, and this often 

increases bacterial pathogenesis by stimulating growth, spread, 

or even invasion of the pathogen. Pathogens in a wound can 

contribute to increased wound pH, cause neutrophil destruc-

tion, reduce macrophage infiltration, and decrease oxygen 

tension, all of which contribute to delayed wound healing. 

 Manipulating the microbial ecology of wounds with probiotics 

appears to be a promising and cost-effective therapy with the 

potential to lower wound pH, increase oxygen tension, reduce 

inflammation, and prevent or disrupt infection by pathogens.
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