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Abstract: A continuously increasing number of therapeutic proteins are being released into the 

market, including biosimilars. In contrast to small organic drugs, therapeutic proteins require 

an extensive analysis of their exact chemical composition because of their complexity and 

proof of the absence of contaminants, such as host cell proteins and nucleic acids. Especially 

challenging is the detection of low abundant species of therapeutic proteins because these spe-

cies are usually very similar to the target therapeutic protein. However, the detection of these 

species is very important for the safety of patients because a very small change of the exact 

chemical composition may cause serious side effects. In this review, we give a brief overview 

about the most important analytical approaches for characterizing therapeutic protein species 

and their contaminants and focus on the progress in this field during the past 3 years. Top-down 

mass spectrometry of intact therapeutic proteins in the future may solve many of the current 

problems in their analysis.
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Introduction
Therapeutic proteins have become the leading drugs in the biologic class among 

vaccines and diagnostics in the drug market.1,2 They gained ground in the 1980s and 

have rapidly grown since then with over 200 marketed products3 greatly benefiting the 

quality of life of millions of patients worldwide. The biotherapeutic market consists of 

peptides, small therapeutic proteins, and nonimmune proteins with the fastest growing 

product class being therapeutic antibodies and their related products which include 

antibody–drug conjugates (ADC), Fc-fusion proteins, and antibody fragments.4

Production and formulation of these therapeutic proteins exhibit very critical and 

technical challenges from those set by the traditional small molecule drugs. These 

complex molecules are produced from a very broad platform of expression systems 

such as bacteria like Escherichia coli, yeast, mammalian, insect, and plants.5 These 

generate a variety of process-related impurities, such as contamination with host cell 

proteins (HCPs), as well as diverse species of the therapeutic target protein,6,7 which 

can copurify with the therapeutic target protein thereby requiring very robust, sensitive, 

and selective identification as well as effective and economic purification techniques.8 

Depending on the therapeutic proteins created and the host cell system, the response 

to HCPs could potentially vary from negligible to quite severe, including anaphylactic 

shock or cytokine release syndrome.9
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The structure of therapeutic proteins range from relatively 

unordered to highly ordered, multimeric states. Their activity 

and side effects are highly affected by their exact chemical 

composition. Product-related species, such as aggregates, 

unwanted glycosylated species of monoclonal antibodies, 

or charge variants, are of great concern.6 Such changes in 

the exact chemical composition could not only affect the 

final product but also the efficiency of the purification steps 

involved if not detected. The exact chemical composition 

of the final product is therefore of critical concern as very 

minor changes in the composition can lead to the appearance 

of unwanted protein species, which could lead to dangerous 

outcomes, such as decrease or total loss of activity of the 

active pharmaceutical ingredient resulting in the change 

of the intended efficacy or potential toxicity to patients. 

These variant protein species are mostly present in lower 

concentrations in relation to the main target product species 

thereby making identification and separation even harder. 

In order to ensure product consistency, quality, and purity, the 

manufacturing process has to be tightly monitored since it is 

quite challenging to fully characterize the finished product 

in the laboratory.

It was estimated that 32 biologics, with a combined US 

$51 billion of sales in 2009, will lose patent protection by 

2015;10 this gives room for biosimilars to emerge. Unlike 

generic small molecules, there are a lot of difficulties associ-

ated with the production of biosimilars, which is heightened 

by their high degree of complexity. Since biosimilars are 

similar but not identical to the reference product,11 these slight 

differences have to be extensively characterized to ensure that 

these deviations from the original validated target species 

have no effect on the dosage and patient safety. The approval 

process for biosimilars relies primarily on comprehensive 

analytical data at quality, preclinical, and clinical levels to 

establish comparability and high similarity with the originator 

biologic.12,13 Basically, for these drug classes, “the product 

is the process”.14 Excellent reviews giving comprehensive 

overviews about the analysis of therapeutic proteins have 

been published recently.15–17 In Table 1, an overview of the 

methods applied for the analysis of therapeutic proteins, 

including further important reviews and some comments 

about benefits and pitfalls, is given.

Thus, in this review, we focus on research papers pub-

lished mainly in the last 3 years with a focus on the analysis 

of therapeutic proteins. In addition, we give the reader a 

general brief overview of the current analytic tools avail-

able for their characterization and discuss the most recent 

developments in the field.

Process-related impurities
Upstream process conditions are responsible for a lot of 

 impurities accompanying the protein of interest, such as host 

cell derived molecules, cell culture media  components,  solvents, 

and buffers used for chromatographic  purifications.18,19 These 

can nonetheless be reduced by accurate and well-monitored 

manufacturing procedures.

A petrifying drawback in therapeutic protein  production 

for clinical use is HCP20 and DNA21 contamination and their 

detection, identification, and elimination in the final drug 

product to acceptable levels.22 There also exists the  possibility 

of HCP-associated product damage in cases where they 

 possess proteolytic activities.23 As the identification rate of 

HCP and sensitivity of the methods employed still remain 

ambiguous, the most common high-throughput methods 

used are the immunoassays, such as enzyme-linked immuno-

sorbent assay (ELISA) and Western blot.24–26  However, a 

major limitation to the HCP ELISA methods is the inability 

to detect non- or low immunoreactive HCP and its depen-

dence on antibody– antigen binding  conditions25  leading to 

the under- quantification of particular HCPs which can be 

potentially deadly. The rise of other  orthogonal methods, 

such as liquid chromatography (LC) and mass spectrometry 

(MS), in the pharmaceutical industry has alleviated these 

shortcomings and greatly complemented HCP ELISA.27,28 

MS-based quantitative proteomics incorporates methods, 

such as two-dimensional difference gel electrophoresis and 

two- dimensional high pressure LC, and HCP enrichment, 

combined with tandem mass spectrometry (MS/MS), for 

identifying HCP.24,29,30 Zhu- Shimoni et al25 reported a sce-

nario whereby low Chinese  hamster ovary protein ratios 

were reported for the final pools of a therapeutic monoclonal 

antibody drug “mAb1” after  Chinese hamster ovary protein 

ELISA. But, an additional peak was detected upon analysis 

with capillary electro phoresis using sodium dodecyl sulfate, 

which was later identified with sodium dodecyl sulfate poly-

acryl amide gel electrophoresis and matrix assisted laser 

desorption ionization-peptide mass  fingerprint. Capillary 

electrophoresis typically uses background electrolytes, such 

as epsilon-aminocaproic acid (EACA), to enhance electro-

phoretic mobility, which makes online MS  impossible.31 

However, Redman et al32 developed an integrated microflu-

idic capillary electrophoresis-electrospray-ionization (ESI) 

approach with online MS  analysis for intact antibodies using 

top-down MS. For validation, they used a commercially 

available antibody infliximab and IgG1 and IgG2. Using 

both MS and ELISA is a better strategy that has been used 

to study the inter actions of HCP with monoclonal antibod-
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ies,7 which cause the problem of copurification of HCP on 

Protein A affinity chromatography.18 However, Levy et al18 

reported to have identified HCP–monoclonal antibody 

impurities by cross-interaction chromatography followed 

by two-dimensional gel electrophoresis and MS (matrix 

assisted laser desorption ionization-tandem time-of-flight 

mass analyzer [TOF/TOF]).

Multiple protein analytes in the same sample can be 

rapidly analyzed and identified in a high-throughput fashion 

with MS, also giving light on what is present or not present in 

the samples, although absolute quantification is still a chal-

lenge. Good knowledge of the therapeutic protein expression 

system, upstream conditions implemented, and target protein 

itself gives a better insight on which HCPs are to be expected 

and therefore widens the ideas on which detection methods 

are preferable and at which point to employ these methods 

in the protein production process.33

Product-related impurities
Therapeutic proteins designed for clinical use are characteri-

zed thoroughly to be able to detect molecular variants which 

could either be of genetic origin or emerge at the protein 

level34 possibly during the manufacturing process and/or 

storage of the drug. From post-translational modifications 

(PTMs) to truncated forms to aggregates, which occur dur-

ing the formulation process or even during administration, 

protein therapeutics pose problems which need to be care-

fully monitored.

PTMs, such as phosphorylation, can be detected via elec-

trostatic repulsion hydrophilic interaction chromato graphy 

with tandem immobilized metal affinity chromatography/

titanium dioxide (IMAC/TiO
2
) enrichment and identifica-

tion of the subsequent phosphopeptides by LC-MS/MS.35 

Fc glycosylation of Fc fusion proteins can be analyzed by 

cleaving with IdeS protease and the resulting fragments 

analyzed by LC-MS.36 Protein glycans can generally be 

identified by chromatographic staining methods (eg, sodium 

dodecyl sulfate poly-acryl amide gel electrophoresis stained 

with fluorescent stains) or affinity-based methods (eg, lectin 

blot).37 MS-based approaches, such as nano-LC-MS/MS, 

have been used to analyze glycoproteins with respect to 

site-specificity.38 Most PTMs (acetylation, methylation, and 

ubiquitination) can be detected by immunoaffinity techniques 

using motif antibodies to enrich for the specific PTM fol-

lowed by LC-MS/MS analysis.39 With high-resolution mass 

spectrometers becoming more affordable (such as orbitraps), 

a more comprehensive analysis of the microheterogeneity of 

glycosylation and PTMs of intact protein analysis using top-
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down or middle-down MS became possible. One limitation 

of top-down analysis by MS is the need for high purity of the 

analyte because otherwise the highly complex spectra cannot 

be interpreted properly.16

The biophysical characterization of drugs, such as ADCs 

(a potent cytotoxic agent which is covalently linked via a 

linker to an antibody),40 which are either cysteine or lysine 

conjugates is still a challenge. Accurate information on the 

conjugation profiles and the drug-loading distribution of 

these highly complex drugs is important for ADC engineering 

as these affect the pharmacokinetics, toxicity, and clearance 

of the drug. Native MS is a powerful approach for studying 

the lysine conjugates.41 Native MS in combination with ion 

mobility-MS was used to directly determine the drug to 

antibody ratio and drug loading profiles of trastuzumab–

emtansine.41 Debaene et al42 also illustrated the use of native 

MS and ion mobility-MS to rapidly assess ADC structural 

heterogeneity and how they can be implemented into MS 

workflows for in-depth ADC analytical characterization.

Another point of interest is the introduction of other 

protein species due to aggregation, which can occur during 

all stages of the lifetime of a therapeutic protein (expression, 

refolding, purification, sterilization, shipping, storage, and 

delivery processes). Changes in therapeutic protein formula-

tions, such as temperature, pH, and salt content, can cause 

aggregation or precipitation and thus detection of aggregates 

in protein drug products, especially on the subvisible size 

range, is important. It is greatly faced during formulation as 

concentration is increased to decrease administration volume 

as these aggregates can highly jeopardize patient safety. Many 

biophysical techniques are available for doing so, but each 

method has a series of shortcomings leading to inconsistency 

of results across platforms. Methods include the traditional 

size exclusion chromatography dynamic light scattering, 

differential scanning calorimetry, field-flow fractionation, 

atomic force microscopy, resonant mass measurement, 

sedimentation velocity analytical ultracentrifugation, Coulter 

counting, microflow imaging, and nanoparticle tracking 

analysis.43–48 Size exclusion chromatography is most often the 

method of choice as it is relatively fast and cheap. Recently, 

methods such as bright-field differential dynamic microscopy 

have also been developed and used to quantify the dynamics 

of submicron particles in protein-rich liquid clusters.49

Biosimilars and follow-on biologics
The meaning of a biosimilar varies by jurisdiction but often 

refers to a biologic product that is comparable (European 

Union) or highly similar (the USA) to a previously approved 

biologic.50 Due to the fact that the manufacturing process for 

biologics always changes, the concept of biosimilarity needs 

to be demonstrated by extensive analytical methods before 

preclinical and clinical data are used.50 Verifying charge 

 variants by determining the pI value is a great way for  product 

identification, stability monitoring, and as a purity assay 

for quality control release. The biopharmaceutical industry 

generally relies on methods such as ion-exchange chromato-

graphy, isoelectric-focusing gel electrophoresis, and capillary 

equivalents such as capillary isoelectric focusing and imaged 

capillary isoelectric focusing to characterize charge variants. 

Imaged capillary isoelectric focusing is more sensitive and 

reliable as it takes into account not only the surface-exposed 

but also the intrinsic net charges.51–53 Recently, Stoll et al54 

were able to characterize isoforms and variants of rituximab 

using selective comprehensive two-dimensional separation by 

liquid chromatography (2D-LC) combined with online MS 

analysis for the intact monoclonal antibodies and its partially 

digested and reduced forms using a middle-up approach. 

Here they used ion-exchange chromatography (in this case 

a cation-exchange chromatography [CEX] column) in the 

first dimension, which is the gold standard for separation of 

charged forms but has a low resolution compared to other 

separation techniques, and coupled it in the second dimension 

to a reversed-phase chromatography (RPC). They identi-

fied three major species and 19 minor species of the intact 

rituximab. For the partially digested forms, they were able to 

identify six major and 14 minor species and for the partially 

digested and reduced forms five major and 16 minor species. 

Some of these differences include different glycoforms as 

well as C-terminal lysine.

Outlook
Meanwhile, many tools have been established for analyzing 

the exact chemical composition in depth. However, until 

now, it is still very challenging to differentiate variant spe-

cies, which differ only in one or a few moieties, from the 

therapeutic target protein, because the differences in the 

chemical properties are very small. Thus, the separation 

of these species from the therapeutic target protein is very 

difficult. With modern high-resolution mass spectrometers, 

these species can often be detected, even if their separation is 

not possible. Nevertheless, this analytical approach requires 

top-down mass spectrometric methods by which the species 

are infused in an intact form into the mass spectrometer. 

This requirement still can be troublesome depending on the 

nature of the therapeutic protein. Especially, large proteins, 

such as therapeutic antibodies, are troublesome regarding 
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the top-down mass spectrometric analysis. Thus, we need 

new methods for making top-down MS more easy, reliable, 

faster, and automatable.
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