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Purpose: Immunological regimens are an important area of research for treating multiple myeloma (MM). Plasma cells play a crucial 
role in immunotherapy.
Patients and Methods: In our study, we used both single-cell RNA sequencing (scRNA-seq) and bulk sequencing techniques to 
analyze MM patients. We analyzed each sample using gene set variation analysis (GSVA) based on immune-related gene sets. We also 
conducted further analyses to compare immune infiltration, clinical characteristics, and expression of immune checkpoint molecules 
between the H-S100A9 and L-S100A9 groups of MM patients.
Results: We identified eight subpopulations of plasma cells, with S100A9 plasma cells being more abundant in patients with 1q21 
gain and 1q21 diploid. CellChat analysis revealed that GAS and HGF signaling pathways were prominent in intercellular commu-
nication of S100A9 plasma cells. We identified 14 immune-related genes in the S100A9 plasma cell population, which allowed us to 
classify patients into the H-S100A9 group or the L-S100A9 group. The H-S100A9 group showed higher ESTIMATE, immune and 
stroma scores, lower tumor purity, and greater immune checkpoint expression. Patients with 1q21 gain and four or more copies had the 
lowest ESTIMATE score, immune score, stroma score, and highest tumor purity. Drug sensitivity analysis indicated that the 
H-S100A9 group had lower IC50 values and greater drug sensitivity compared to the L-S100A9 group. Quantitative reverse 
transcription (RT-q) PCR showed significantly elevated expression of RNASE6, LYZ, S100A8, S100A9, and S100A12 in MM 
patients compared to the healthy control group.
Conclusion: Our study has identified a correlation between molecular subtypes of S100A9 plasma cells and the response to 
immunotherapy in MM patients. These findings improve our understanding of tumor immunology and provide guidance for 
developing effective immunotherapy strategies for this patient population.
Keywords: multiple myeloma, single-cell sequencing, bulk transcription, tumor immune microenvironment, S100A9

Introduction
Multiple myeloma (MM) is a malignant proliferative disease that manifests with symptoms including hypercalcemia, 
anemia, bone pain, and renal dysfunction, which significantly impact the patient’s health status.1 While the exact etiology 
of MM remains incompletely understood, it is recognized that its occurrence and progression are influenced by various 
factors, including chromosomal abnormalities, genetic factors, and immune disorders.1

In recent years, researchers have conducted comprehensive investigations into the molecular genetics, immunology, 
cell biology, pathology, and other aspects of MM. This research has yielded more precise and effective approaches for 
understanding the disease’s pathogenesis, diagnosis, and treatment. The primary treatment modalities for MM consist of 
induction therapy and maintenance therapy. Induction therapy involves the use of injectable proteasome inhibitors, oral 
immunomodulatory agents, and dexamethasone. A combination of induction therapy and autologous hematopoietic stem 
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cell transplantation, followed by lenalidomide maintenance therapy, is recommended for eligible patients.2 The introduc-
tion of proteasome inhibitors, such as bortezomib, has greatly enhanced the prognosis of patients diagnosed with multiple 
myeloma. However, a subset of patients have exhibited resistance to bortezomib treatment. Consequently, there is a need 
to explore alternative treatment approaches, including combination therapy and immunotherapy, in order to overcome 
this resistance.3 Prior research indicates that the combination of bortezomib and hydroxychloroquine treatment should be 
coupled with an anti-angiogenic drug to counteract the pro-angiogenic impact of bortezomib. This approach aims to 
inhibit the proliferation of a small residual tumor PC clone, thereby mitigating the risk of relapse.3 Recently, immu-
notherapy offers distinct advantages such as minimal invasiveness, reduced side effects, and favorable long-term 
outcomes, thereby providing additional therapeutic potential in the management of MM. As a novel approach, immu-
notherapy has emerged to cancer treatment and has gained widespread acceptance in MM therapy.4 Currently, various 
immunotherapy techniques are employed for treating MM, including anti-CTLA-4 and anti-PD-1/PD-L1 drugs, CAR-T 
cell therapy, among others. It is noteworthy that, despite the proven efficacy of immunotherapy in alleviating MM 
symptoms and improving patient survival, certain challenges and limitations still exist. For example, patients may exhibit 
different responses to immunotherapy methods like CAR-T cell therapy, and varying degrees of side effects may occur 
during the treatment process.5–7 Furthermore, more extensive research and exploration are necessary to determine 
optimal selection, dosage, and duration of specific immunotherapy regimens. Therefore, the identification of new 
immunotherapy targets assumes paramount importance.

MM with gain/amplification in the 1q21 gene region, known as 1q21 gain/amp MM, represents a distinct subtype 
characterized by chromosomal-level amplification. This subtype is frequently associated with adverse prognostic factors, 
including high-risk features, increased susceptibility to recurrence, and resistance to chemotherapy.8 However, 1q21 gain/ 
amp MM also exhibits certain specificity in immunotherapy. Studies have indicated that amplification in the 1q21 gene 
region is linked to immune exclusion and resistance to immune checkpoint blockade therapies.9

MMs are characterized by clonal proliferation of malignant plasma cells whose development and progression hinge 
on their interplay with their surrounding microenvironment.10 The tumor microenvironment involves a variety of 
components, including bone marrow stromal cells around plasma cells, immune cells, the vascular system and the 
extracellular matrix.11 These elements form a complex network of interactions with plasma cells through cell signaling, 
cytokine release, and cell-cell interactions.11,12 Plasma cells secrete several cytokines and mediators, including IL-17, IL- 
10, and IL-35, that stimulate inflammation and promote cell proliferation, resulting in a tumor-friendly environment.13–15 

Additionally, adipose tissue in the bone marrow promotes plasma cell proliferation and survival. Leptin, adiponectin, 
resistin, adipsin, and visfatin, all produced by adipose tissue within the bone marrow, are factors that promote plasma cell 
proliferation and survival via pSTAT-3/STAT-3 signaling.16,17 Finally, plasma cells interact with the tumor microenvir-
onment via immune cells such as macrophages, dendritic cells, and T lymphocytes. These immune cells play crucial roles 
in immune monitoring and activation of MM by affecting immune tolerance, immune response, and plasma cell 
proliferation.18

At the single-cell level, Single-cell sequencing technology enables a detailed analysis of gene expression patterns and 
subpopulation distribution in the tumor microenvironment. In this way, the characteristics and interactions of various cell 
types in the tumor microenvironment can be studied in greater detail, providing us with tools and data that assist in 
studying MM.19 Recent advances in single-cell technology have led to an increase in studies using single-cell sequencing 
to examine MM pathogenesis and treatment strategies.20

In our study, we employed single-cell analysis to classify plasma cell subpopulations. We identified a specific plasma 
cell subpopulation characterized by the expression of the immuno-oncological target S100A9. By examining genes 
associated with S100A9 plasma cells and using GSVA, we calculated S100A9 scores for each sample. Subsequently, we 
divided into two categories based on S100A9 score: H-S100A9 and L-S100A9. The H-S100A9 category exhibited 
a higher immune infiltration rate and immune checkpoint expression compared to the L-S100A9 category. Figure 1 
illustrates the workflow of this study. Our findings highlight the significant role of S100A9 plasma cells in tumor 
immunity, suggesting that patients with MM displaying H-S100A9 subpopulations are more suitable candidates for 
immunotherapy.
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Figure 1 Flow chart. **P < 0.01, ***P < 0.001.
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Materials and Methods
Data Acquisition and Processing
Single-cell transcriptome data was obtained from the Gene Expression Omnibus (GEO) dataset GSE161801. A total of 18 
MM samples were included for further analysis after excluding samples with 1q21 status unknown. The Seurat R package 
was used to analyze scRNA-seq data.21 The data was standardized and integrated using the “SCTransform” method and the 
“IntegrateData” function, resulting in the identification of 3000 highly variable genes. We excluded cells that contained less 
than 10% mitochondrial genes, cells with a total gene count exceeding 200, and genes with expression levels ranging from 
200 to 10,000 that were detected in less than three cells. The first 30 principal components were determined using Seurat’s 
“RunPCA” function. Subsequently, UMAP was employed to reduce the dimensionality of the 3000 hypervariable genes with 
a resolution of 0.2. K-nearest neighbors (KNN) clustering was performed using the “FindNeighbors” and “FindCluster” 
functions. Furthermore, differential expression analysis was conducted using the Seurat’s “FindMarkers” function.

The RNA-seq data were obtained from TCGA-MMRF, GSE4581, and GSE2658. 787 MM patients’ count sequencing data 
and clinical data were downloaded from the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). The RNA 
sequencing data was transformed into transcripts per kilobase million and further log-2 transformed to ensure comparability 
of gene expression across different samples. Significantly differentially expressed genes were identified based on the screening 
criteria of a log fold change greater than 2 and an adjusted p-value less than 0.05. In addition, MM expression profile datasets 
GSE458122 and GSE265823 were also downloaded from the GEO database using GEOquery.24 Both GSE4581 and GSE2658 
datasets consisted of homo sapiens bone marrow samples, including 414 and 559 cases, respectively. The GPL570 platform 
was used for both datasets. In all datasets, the expression level of each gene was transformed into z-scores.

Cell-Cell Communication Analysis
The intercellular communication of cell clusters was calculated and analyzed using the CellChat package.25 The standard 
process recommended by CellChat was followed to analyze the incoming and outgoing communication modes involving 
S100A9 plasma. Initially, the CellChat objects were generated through the utilization of the “createCellChat” function. 
Subsequently, the communication probability was deduced via the use of the “computeCommunProb” and 
“computeCommunProbPathway” functions. The network centrality scores and the impact of every ligand-receptor pair on 
the signaling pathway were calculated utilizing the “netAnalysis_computeCentrality” and “netAnalysis_contribution” func-
tions, respectively. Finally, all visual representations depicting cell communications were created using the embedded 
functions within the CellChat package. Circle, heat, and bubble diagrams were used to visually represent the potential ligand- 
receptor interactions and the strength of cell-cell communication networks between S100A9 plasma and other cell clusters.

Immune Infiltration Analysis in MM
We performed single sample gene set enrichment analysis (ssGSEA)26,27 and quantified the relative abundance of 
28 immune cell types in each sample using the GSVA package.28 GSVA package was used to perform single sample 
gene set enrichment analysis (ssGSEA) and quantify the relative abundance of 28 immune cell types in each 
sample. In addition, to verify the stability and robustness of the ssGSEA results, the ESTIMATE algorithm29 was 
employed.

Consensus Clustering
Consensus clustering30 was based on resampling and used subsampling to induce sampling variability to provide 
clustering stability and parameter decision-making. This approach is used to identify each member of subgroups and 
verify the rationality of clustering. The ConsensusClusterPlus package31 was used to identify different MM immune- 
related subtypes based on enrichment scores calculated by ssGSEA analysis.

Weighted Correlation Network Analysis (WGCNA)
WGCNA32 refers to a systems biology technique that is utilized for the characterization of gene association patterns across 
samples. Through this technique, highly synergistic gene sets can be identified and candidate biomarker genes or therapeutic 
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targets can be explored based on the connectivity of gene sets and their associations with phenotypes. R package WGCNA32 was 
employed to calculate key gene sets related to Cluster 1, Cluster 2, and Cluster 3, and subsequently identified positive/negative 
correlation modules associated with MM immune-related aggregation. The “pickSoftThreshold” function was utilized to filter 
power parameter values ranging from 1 to 20. We selected a soft threshold value of 11 that met the criteria of a scale 
independence of 0.9 and a minimum power value. Next, we constructed modules, clustered similar ones, and obtained a gene 
list corresponding to each module. We specifically selected the positive correlation module within Cluster 3 and intersected it 
with the gene set highly expressed in S100A9 plasma cells. Finally, the key immune-related genes in MM were identified using 
a Venn diagram.

Gene Set Enrichment Analysis (GSEA) and Drug Sensitivity Analysis
To evaluate the impact of a pre-defined gene set on phenotype, GSEA was utilized to analyze the correlation distribution 
trend within a gene table sorted by phenotype correlation.33 To conduct enrichment analysis of all differentially expressed 
genes in our study, the clusterProfiler package34 was employed. The threshold for significance in the enrichment analysis 
was set at a P value less than 0.05. The GSEA gene set used in this study was obtained from the MSigDB Collections 
gene set database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp).

We used the pRRophytic35 package to predict the drug sensitivity analysis of MM patients, and used a box plot to 
display the differences in drug sensitivity between H-S100A9 group and L-S100A9 group.

Patients and Samples
The study complied with the Declaration of Helsinki and was approved by the Ethics Committee of Xiangya Third 
Hospital (permission number: 2021-S440), and all participating patients provided written informed consent. We applied 
the IMWG criteria for diagnosing MM to our patient cohort. Subsequent to obtaining informed consent, healthy donors 
were utilized as the control group. Eight bone marrow samples were obtained from both patients (four bone marrow 
samples) and the healthy control group (four bone marrow samples), and monocytes were isolated using lymphocyte 
isolation solution (Gibco, Carlsbad, CA, USA).

Quantitative Reverse Transcription (q-RT) PCR
Total RNA was extracted from cells using TRIzol reagent (Invitrogen, USA). The extracted RNA was then qualified and 
quantified using a UV spectrophotometer, and the concentrations were adjusted accordingly. To convert RNA to cDNA, 
a reverse transcription kit from Vazyme (Jiangsu, China) was utilized. For qPCR analysis, the SYBR qPCR master mix 
(Vazyme) was employed. GAPDH was selected as the reference gene for normalizing the expression of genes. The 
relative expression levels were determined using the 2–ΔΔCT method.

Statistical Analysis
All data processing and analysis in this article were conducted using R software (Version 4.1.2). Continuous variables 
were presented as mean ± standard deviation. Means of 2 continuous normally distributed variables were compared by 
independent samples Student’s t-test. Mann–Whitney U-test and Kruskal–Wallis test were used, respectively, to compare 
means of 2 and 3 or more groups of variables not normally distributed. Statistical significance between two groups of 
categorical variables was assessed using the chi-square test or Fisher’s exact test. P-value<0.05 was considered 
statistically significant.

Results
An Overview of the Cell Types in MM
To determine cell types in 1q21-negative, 1q21-diploid, and 1q21-gain MM samples, we analyzed the single-cell 
sequencing dataset GSE161801. Supplementary Table 1 shows the chromosome 1q21 status of all patients. There was 
no significant batch effect among the 18 samples, which were used for subsequent analysis (Figure 2A). 189,534 cells 
were obtained after quality control, including 55,212 cells from the 1q21-negative group, 22,319 cells from the 1q21- 
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Figure 2 The Overview of Cell Types in MM. (A) The integration of the 18 samples yielded satisfactory results. (B) The UMAP diagram illustrates the cell distribution 
among the different groups of MM samples based on their 1q21 status (negative, diploid, or gain). (C and D) Dimension reduction cluster analysis was performed resulting in 
the identification of 11 distinct cell clusters across all 18 samples. (E) The UMAP map visualization provides insights into the expression patterns of marker genes.

https://doi.org/10.2147/JIR.S452062                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 1532

Long et al                                                                                                                                                             Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


diploid group, and 112,003 cells from the 1q21-gain group (Figure 2B). Based on the surface marker genes of different 
cell types (Figure 2C and D), we identified six cell types: erythroid precursor cells, B cells, monocytes, natural killer 
cells, plasma cells, and T cells (Figure 2E).

S100A9 Plasma Cells are More Abundant in MM Patients with 1q21 Gain and 1q21 
Diploid Status
The plasma cells were categorized into eight subgroups (Figure 3A). We examined the distribution of each patient sample 
in the integrated dataset and analyzed the overall status of plasma cell clusters in patients with different 1q21 statuses, 
including 1q21 negative, 1q21 gain, and 1q21 diploid samples (Figure 3B and C). Each plasma cell subpopulation was 
annotated based on the identified cell markers (Figure 3E), such as TNFRSF17, S100A9, AHNAK, STMN1, ODC1, 
CCND1, FABP5, and ITGA8 plasma cells. Then, we compared the proportions of plasma cell subgroups among patients 
with different 1q21 statuses. Our findings revealed a markedly elevated ratio of S100A9 plasma cells in 1q21 gain and 
1q21 diploid MM tissues compared to 1q21 negative MM patients (Figure 3F, Supplementary Table 2). This suggests that 
S100A9 plasma cell subsets are closely associated with the occurrence of MM. To better understand the function of 
S100A9 plasma cells, GSEA analysis was conducted, revealing significant enrichment of pathways such as 
HALLMARK_APOPTOSIS, HALLMARK_COMPLEMENT, HALLMARK_P53_PATHWAY, 
HALLMARK_TGF_BETA_SIGNALING, HALLMARK_WNT_BETA_CATENIN_SIGNALING, and others. These 
pathways are involved in immune response, apoptosis, cell transcription, and related processes (Figure 3D).

Cell-Cell Interaction Analysis of S100A9 Plasma
To investigate cellular interactions involving S100A9 plasma cells, we performed cell communication analysis using 
CellChat. An interaction network between all cell types was constructed, as presented in Figure 4A. Notably, S100A9 
plasma cells exhibited greater interaction intensity with T cells and TNFRSF17 plasma cells than with other cell types, as 
illustrated in Figure 4B. Furthermore, important ligand-receptor pairs that may interact with S100A9 plasma cells were 
identified and depicted in Figure 4C. Additionally, our in-depth studies of the GAS signaling pathway and HGF signaling 
pathway revealed that the S100A9 plasma cluster displayed high expression levels of GAS and HGF pathway 
components, including the major sender, receiver, mediator, and influencer (Figure 4D and E).

Development of Consensus Clusters for Immune Infiltration
To investigate immune infiltration differences in MM, we employed the ssGSEA algorithm for the evaluation of the 
infiltration levels of 28 types of immune cells in the MM dataset. We conducted consensus clustering analysis to divide 
the MM samples into k clusters ranging from 2 to 9. The consensus score matrix, cumulative distribution function curve, 
and t-distributed stochastic neighbor embedding chart demonstrated that a cluster quantity of k=3 was optimal (Figure 5A 
and B, Supplementary Figure 1A). Immune infiltration was significantly different between Cluster3 compared to Cluster1 
and Cluster2. The overall immune infiltration abundance of Cluster3 was significantly higher than that of Cluster1 and 
Cluster2 (Figure 5C, D), leading us to define Cluster1 and Cluster2 as “immune cold” tumors and Cluster3 as “immune 
hot” tumors. Furthermore, through the use of ESTIMATE, we validated the stability and robustness of the ssGSEA 
results. The ESTIMATE results indicated that Cluster3 had a higher immune score that was consistent with the ssGSEA 
results (Figure 5E).

The Identification of the Immune Related Genes of S100A9 Plasma Cells
We utilized the immune infiltration level in MM to construct a co-expression network. After screening, we determined 
that a soft threshold of 11 provided an approximate scale-free topology, with a fitting index >0.9 and the lowest power 
value (Supplementary Figure 1B and C). We then performed clustering analysis to identify similar modules, resulting in 
28 modules (Supplementary Figure 1D). Subsequently, the association between module features and clinical character-
istics by examining the module sample feature genes were analyzed. Notably, in the Cluster 3 state, modules such as 
MEgrey60 (r=0.34; P=7e-06), MEdarkorange (r=0.31; P=3e-05), MEgreenyellow (r=0.43; P=5e-09), MEdarkolivegreen 
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Figure 3 The identification and category S100A9 plasma cells in MM. S100A9 plasma cell is identified. (A) UMAP plot depicting the classification of different plasma 
subpopulations. (B) UMAP embedding with the colors representing patients in the MM group. (C) The distribution of plasma cells across 1q21 negative MM samples, 1q21 
gain MM samples, and 1q21 diploid MM samples is visualized in the t-SNE plot. (D) GSEA analysis. (E) The expression patterns of marker genes for different subgroups are 
illustrated in the bubble diagram. (F) S100A9-expressing plasma cells are predominantly observed in both 1q21 gain MM samples and 1q21 diploid MM samples, as confirmed 
by chi-square test p-values.
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Figure 4 CellChat reveals the cell communication relationship among various cell groups. (A) The interaction among all cell types. (B) The interactions between S100A9 
plasma cells and other cell types. (C) The identification of ligand-receptor pairs that may interact with S100A9 plasma cells. (D and E) The heatmaps heatmaps depict the 
GAS and HGF signaling pathways to evaluate each cell type’s involvement in cell interaction.
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Figure 5 The identification of immune-related genes associated with S100A9 plasma cells. (A) The consensus score matrix of MM immune related subtypes. (B) Cumulative 
distribution function curve. (C) The infiltration abundance of three clusters was evaluated using ssGSEA. (D) A box plot illustrating the infiltration and distribution between 
the two groups. (E) Boxplot depicting the immune scores among the three immune cell subsets. (F) Relationship between module characters in MM, with correlation 
coefficients and P-values displayed in each cell. (G) Venn diagram shows the intersection of WGCNA and S100A9 plasma cell marker genes. (H) GSEA enrichment analysis 
of TCGA-MMRF cohort. ns P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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(r=0.19; P=0.02), and MElightgreen (r=0.19; P=0.02) showed positive correlations (Figure 5F). Consequently, we 
identified 2878 genes within these five modules as key genes associated with the immune subtype of MM. In order to 
accurately identify genes related to S100A9 plasma cells, we combined scRNA-seq and Bulk-seq data. By intersecting 
the genes obtained from WGCNA with those highly expressed in S100A9 plasma cells, we identified 14 genes (FTL, 
BLVRB, CTSD, FES, PRSS21, IFI6, LYZ, TEX101, S100A8, S100A9, S100A12, CCND2, RNASE6, TCN2) 
(Figure 5G). In order to better understand the functional differences between the two clusters, we conducted a GSEA. 
Differential genes were significantly enriched in several immunologically related terms, including Chemokine Signaling 
Pathway, Cd8 Tcr Pathway, Immunoregulatory Interactions, Natural Killer Cell Mediated Cytotoxicity, T Cell Receptor 
Signaling Pathway, and Pd-1 Signaling, among others (Figure 5H).

Compare Immune Infiltration and Related Factors in Two Clusters Based on S100A9 
Score
Each sample in the TCGA-MMRF dataset had its S100A9 score calculated using the GSVA R package. On the basis of 
the median score, the samples were divided into two groups: L-S100A9 and H-S100A9. Analysis using the ssGSEA 
algorithm revealed that the H-S100A9 group exhibited higher levels of immune infiltration compared to the L-S100A9 
group (Figure 6A and B). Moreover, we noted substantial up-regulation of critical immune checkpoints (CD96, CSF1R, 
CTLA4, HAVCR2, IL10, KDR, LGALS9, PDCD1, SNCA) in the H-S100A9 group when comparing the expression of 
immune checkpoints between the two groups (Figure 6C). Additionally, the H-S100A9 group displayed higher 
ESTIMATE score, Immune score, Stroma score, and lower tumor purity compared to the L-S100A9 group 
(Figure 6D–G).

The GEO Dataset Validates the Extent of Immune Infiltration Between the Two 
Clusters
We validated our findings using GSE4581 and GSE2658 datasets to confirm the relationship between S100A9 score and 
immune infiltration. Using the same approach as in the TCGA-MMRF cohort, we evaluated the S100A9 score in each 
sample. The H-S100A9 group showed significantly higher levels of immune cell infiltration than the L-S100A9 group in 
both GSE4581 and GSE2658 datasets (Figures 7A, B, 8A and B). A greater expression of immune checkpoint markers 
CSF1R, PDCD1, and PDCD1LG2 was observed in GSE4581 for the H-S100A9 group (Figure 7C), while in GSE2658, 
H-S100A9 was associated with increased expression of immune checkpoint genes CSF1R, PDCD1, PDCD1LG2, and 
TGFB1 (Figure 8D). Moreover, the H-S100A9 group demonstrated higher ESTIMATE score, immune score, and stroma 
score and lower tumor purity than the L-S100A9 group in both GSE4581 and GSE2658 (Figures 7D–G, Figure 8E–H). 
Notably, 1q21 gene copy number variations affected ssGSEA score, with different copy numbers displaying diverse 
ssGSEA scores (Figure 8C). Overall, consistent with our previous findings from TCGA-MMRF dataset, these results 
indicate that H-S100A9 group exhibits greater immune infiltration and expression of immune checkpoint markers.

The Relationship Between Immune Infiltration and 1q21 Copy Numbers
Our research found that a sequential decrease in the ESTIMATE score, immune score, and stroma score among cases 
with 2 copies, 3 copies, and 4+ copies of 1q21. Conversely, there was a sequential increase in tumor purity. 
Specifically, the 4+ copies group, which exhibited the most aggressive and poor prognosis, showed the lowest 
ESTIMATE score, immune score, and stroma score (Figure 9A–C). While Figure 9B does not demonstrate statistical 
significance in the stromal score between different 1q21 copy numbers, it is still evident that the stromal score is 
higher in cases with 2 copies compared to those with 3 copies and 4+ copies. A similar trend is observed in the stromal 
score shown in Figure 9C. This phenomenon may be attributed to the smaller number of cases with 4+ copies, as 
compared to those with 2 and 3 copies. Nevertheless, overall, patients with 4+ copies exhibit lower levels of immune 
infiltration.

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S452062                                                                                                                                                                                                                       

DovePress                                                                                                                       
1537

Dovepress                                                                                                                                                             Long et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Drug Sensitivity Analysis
We conducted drug sensitivity analyses on both the high S100A9 (H-S100A9) and low S100A9 (L-S100A9) groups, and 
presented the results through box plots. Figure 10 demonstrates that the S100A9 score is positively correlated with drug 
sensitivity for medications including AZD6482, bortezomib, and cisplatin, all of which are used to treat MM. These 
findings suggest that drug sensitivity may be influenced by the S100A9 score, which could ultimately impact patient 
prognosis. The H-S100A9 group exhibited lower IC50 values and greater drug sensitivity in comparison to the L-S100A9 
group. Therefore, for patients in the H-S100A9 group, utilizing the drugs demonstrated in Figure 10 may lead to more 
favorable therapeutic outcomes.

Figure 6 Two clusters in the TCGA-MMRF dataset were compared for immune cell infiltration. (A and B) SsGSEA showed that a higher level of immune cell infiltration in 
H-S100A9 compared to L-S100A9. (C) The expression of immune checkpoint markers between the two groups. (D–G) The comparison chart of ESTIMATE score (D), 
immune score (E), stromal score (F) and tumor purity score (G) between H-S100A9 group and L-S100A9 group. **P < 0.01, ***P < 0.001.
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Verification of Marker Genes
We used the STRING database for protein-protein interaction analysis of 14 immune-related genes (FTL, BLVRB, CTSD, 
FES, PRSS21, IFI6, LYZ, TEX101, S100A8, S100A9, S100A12, CCND2, RNASE6, TCN2). Subsequently, we constructed 
a protein-protein interaction network (Figure 11A). Notably, LYZ, S100A8, S100A9, S100A12, RNASE6, and TCN2 
emerged as pivotal node proteins. To validate the expression levels of RNASE6, LYZ, S100A8, S100A9, and S100A12 in 
MM patients, we conducted qRT-PCR. The results depicted in Figure 11B–F demonstrate significantly elevated expression of 
RNASE6, LYZ, S100A8, S100A9, and S100A12 in MM patients compared to the healthy control group.

Discussion
In the development of MM, plasma cells play multiple roles. Firstly, abnormal proliferation and accumulation of plasma 
cells suppress normal hematopoietic cells in the bone marrow, leading to anemia, infection, and bleeding.1 Secondly, 

Figure 7 GSE4581 dataset confirms the immune infiltration levels between the L-S100A9 group and the H-S100A9 group. (A and B) the heatmap displays higher immune 
infiltration levels in the H-S100A9 group compared to the L-S100A9 group. (C) the expression of immune checkpoint-related genes in both groups. (D–G) The H-S100A9 
group has higher ESTIMATE score, immune score, and stroma score, but lower tumor purity than the L-S100A9 group. *P < 0.05, **P < 0.01, ***P < 0.001.
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M-proteins secreted by plasma cells may cause kidney and organ damage, leading to renal dysfunction and other related 
clinical issues.36 Additionally, cytokines and regulatory molecules produced by plasma cells can affect the bone marrow 
microenvironment, suppressing immune responses and promoting tumor cell survival, proliferation, invasion.37 Although 
abnormal clonal proliferation of plasma cells is a fundamental characteristic of MM, there is still controversy and 
incomplete understanding regarding the initiation events, maintenance, and transformation of plasma cell clonality. Some 
studies have suggested the existence of different subclones of plasma cell populations in the development of MM, which 
may possess distinct characteristics, functions, and impacts on disease progression.38–40 Furthermore, the interaction 
between plasma cells and the bone marrow microenvironment is an active area of research. Cellular and molecular 

Figure 8 In the L-S100A9 and H-S100A9 groups, the GSE2658 dataset confirms the degree of immune infiltration. (A and B) A heatmap indicating the immune infiltration 
levels calculated by the ssGSEA algorithm. (C) Comparison of risk scores between the 2, 3, and 4 copies groups using the ssGSEA algorithm. (D) The expression of genes 
related to immune checkpoints in the two groups. (E–H) Compared with L-S100A9 group, H-S100A9 group has higher ESTIMATE score, immune score and stroma score 
and lower tumor purity. *P < 0.05, **P < 0.01, ***P < 0.001.
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signals within the bone marrow microenvironment may play a crucial role in the growth and survival of plasma cells in 
MM. Plasma cells also influence and alter the bone marrow microenvironment by secreting cytokines and regulatory 
molecules, forming a vicious cycle.18 Single-cell sequencing has enabled the identification of distinct plasma cell 
subpopulations within the tumor microenvironment, subsequently enhancing our understanding of the relationship 
between MM and immunotherapy. Through single-cell sequencing, we have identified the S100A9 plasma cell sub-
population. Myeloid-derived S100A9 can produce TNFSF13B through myeloid cells, neutrophils, and macrophages, and 
the enhanced TNFSF13B signal can activate the NF-κB pathway, thereby promoting plasma cell proliferation.41 

Additionally, the S100A8/S100A9 protein produced by bone marrow neutrophils and monocytes regulates myeloma 
progression by promoting megakaryocyte expansion and angiogenesis.42 However, it remains unclear whether plasma 
cells with high expression of S100A9 impact tumor immunity. In this study, we integrated scRNA-seq and Bulkseq to 
analyze the role of S100A9 plasma cells in MM patients. A higher proportion of S100A9 plasma cells were observed in 
1q21 gain MM patients and 1q21 diploid MM patients compared to 1q21 negative MM patients. Furthermore, GSEA 

Figure 9 Comparison of immune scores between the 2, 3, and 4+ copies groups using the ESTIMATE algorithm. Immune scores between different copy numbers in the 
TCGA-MMRF dataset (A), GSE4581 dataset (B), and GSE2658 dataset (C). ns P ≥ 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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analysis revealed an association between S100A9 plasma cells and immune response, cell apoptosis, and cell transcrip-
tion. We employed CellChat to explore cellular communication and signaling pathways involved in S100A9 plasma cells. 
Our findings indicate that the GAS and HGF signaling pathways exhibit high expression in the main senders, receivers, 
mediators, and influencers of this signaling pathway.

Figure 10 Box plot of drug sensitivity in H-S100A9 group and L-S100A9 group. The horizontal axis represents the L-S100A9 and H-S100A9 groups, while the vertical axis 
denotes the IC50 value of the drug. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 11 Validation of marker genes in clinical samples. (A) Protein-protein network. (B–F) Relative expression of RNASE6, LYZ, S100A8, S100A9, and S100A12 in MM 
patients. *p < 0.05, **p < 0.01.
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GAS, growth arrest-specific, impacts the immune status through various mechanisms. The Gas6/Axl signaling 
pathway regulates immune cell functions and has potential as a therapeutic target in cancer immunotherapy.43 In 
endometrial cancer, GAS5 enhances the phagocytosis, antigen presentation, and cytotoxic T cell activation of tumor- 
associated macrophages and endometrial cancer cells by activating the miR-21-PTEN-AKT pathway and inhibiting 
YAP1.44 In hepatocellular carcinoma, HGF exists in the immune microenvironment, stimulating tumor cell proliferation, 
migration, invasion, and promoting angiogenesis.45,46 Upon binding with HGF, c-MET becomes active and drives 
complex biological processes, contributing to the occurrence of various types of cancer.47–49 c-MET expression regulates 
immune regulatory molecules such as programmed cell death ligand 1 and indoleamine-2,3-dioxygenase in cancer 
cells.50 HGF has been implicated in the upregulation of programmed cell death ligand 1 mediated by PI3K signaling 
pathway, which is commonly mutated in head and neck cancer.51 The GAS and HGF signaling pathways represent 
prominent patterns in S100A9 plasma cells.

Single-cell analysis was employed to identify marker genes for the S100A9 plasma cell population. Transcriptome 
data were utilized to identify genes associated with immune infiltration in MM patients. The intersection of two gene sets 
resulted in the identification of 14 marker genes, namely FTL, BLVRB, CTSD, FES, PRSS21, IFI6, LYZ, TEX101, 
S100A8, S100A9, S100A12, CCND2, RNASE6, and TCN2, which were found to be related to immune infiltration in 
MM patients. FTL, an iron regulatory protein, regulates iron metabolism, antioxidant response, and inflammatory 
regulation, thereby affecting the phagocytosis, immune regulation, and antibacterial ability of macrophages.52 BLVRB, 
also known as biliverdin reductase B, participates in biliverdin metabolism and may contribute to immune regulation by 
protecting cells from oxidative stress and inflammation.53 CTSD (Cathepsin D) plays a vital role in antigen processing 
and presentation, suggesting its involvement in adaptive immune responses.54 FES, a tyrosine kinase, is involved in 
various aspects of immune system function, including limiting immune system activation, regulating hematopoietic cell 
growth, survival, differentiation, and activating macrophages and mast cells.55–57 PRSS21 encodes testosterone, which is 
anchored to the cell surface through glycosylphosphatidylinositol (GPI), inducing angiogenesis and regulating micro-
vascular endothelial permeability.58 IFI6, also known as interferon alpha-inducible protein 6, prevents virus-induced ER 
membrane invasion, impairs viral entry by inhibiting EGFR activation, modulates innate immune responses, and inhibits 
virus replication.59 LYZ (Lysozyme) is an antibacterial protein present in various human tissues and fluids, capable of 
directly dissolving bacterial cell walls to exhibit antibacterial activity.60 Moreover, LYZ regulates proinflammatory 
cytokines and chemokines, thus influencing the overall immune response.61 TEX101 is a glycoprotein that influences 
the function of urokinase-type plasminogen activator receptor, matrix metalloproteinases, and cathepsin B. These 
proteins play crucial roles in immune responses and cancer progression.62 S100A8, a key regulator of inflammation 
and immune response, affects chemotaxis and inflammatory cell activation. It facilitates the aggregation of immune cells 
at inflammatory sites, intensifying and prolonging the inflammatory response.63 Additionally, S100A8 regulates the 
expression of complement factor C3, a pivotal component in nuclear-level immune defense, potentially impacting 
immune responses and inflammatory processes.64 S100A12, a member of the S100 protein family, activates and recruits 
immune cells, stimulates the production of pro-inflammatory cytokines, and contributes to various inflammatory diseases, 
such as inflammatory bowel disease, vasculitis, and systemic vasculitis.65,66 CCND2, belonging to the D-type cyclin 
family, is expressed in immune cells such as T cells, B cells, and macrophages. Upregulation of CCND2 promotes cells 
entering the G1 phase and initiating DNA replication.64 RNASE6, a key immunoinflammatory gene, potentially 
contributes to immunoinflammatory damage in the glomerulus.67 TCN2, a type of transcobalamin (TC), primarily 
binds to vitamin B12 and facilitates its transportation within the body.68 However, the expression level of TCN2 varies 
in certain inflammatory states, potentially influencing the regulation of the inflammatory response.69

Given the resistance observed in certain patients towards bortezomib treatment, the investigation into combination 
therapy involving multiple myeloma and immunotherapy has gained significant importance. A study conducted by Lernia 
et al demonstrated that the combination of bortezomib and hydroxychloroquine with anti-angiogenic drugs effectively 
suppresses the proliferation of residual tumor PC clones by neutralizing the pro-angiogenic impact of bortezomib, 
consequently impeding relapse.3 In this study, we utilized the GSVA algorithm to assign scores to patients with MM. 
Based on these scores, the patients were divided into two groups: H-S100A9 and L-S100A9, using the median score as 
the cut-off. We performed GSEA analysis to gain insights into the functional disparities between these two groups. The 
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high S100A9 group had a significant impact on immune-related pathways, including the Chemokine Signaling Pathway, 
Cd8 Tcr Pathway, Immunoregulatory Interactions, Natural Killer Cell Mediated Cytotoxicity, T Cell Receptor Signaling 
Pathway, and PD-1 Signaling. Then, we utilized the ssGSEA and ESTIMATE algorithms to investigate the potential 
differences in immune infiltration between MM patients with high and low S100A9 scores. Our findings revealed that the 
H-S100A9 group exhibited a significantly higher level of immune infiltration, as evidenced by increased ESTIMATE 
score, immune score, and stroma score, and lower tumor purity. The higher the degree of immune infiltration, the more 
sensitive it is to immunotherapy. Moreover, the expression of immune checkpoints was examined in both cohorts, 
revealing that the H-S100A9 group exhibited heightened expression levels of specific immune checkpoints, including 
CSF1R and PDCD1. These findings potentially hold implications for the investigation and therapeutic targeting of these 
checkpoints. To validate our results, we applied the GSVA algorithm to score the samples from GSE4851 and GSE4658, 
enabling us to differentiate between the H-S100A9 and L-S100A9 groups, followed by confirmation using the ssGSEA 
and ESTIMATE algorithms. The validation outcomes were similar to those obtained previously. Additionally, we 
explored whether different copy numbers of 1q21 influenced the degree of immune infiltration. Our analysis revealed 
that an increase in 1q21 copy numbers led to a decrease in ESTIMATE score, immune score, and Stroma score, as well as 
an increase in tumor purity. Among the various groups, those with 4+ copies exhibited the lowest ESTIMATE score, 
immune score, and stromal score, indicating the strongest invasiveness and worst prognosis. Previous studies have shown 
that patients with 1q21 amplification (≥4 copy numbers) had shorter PFS than those with 1q21 gain (3 copy numbers) 
(median PFS was 24 months vs Not reached, P=0.0403). A difference in OS between these two groups was not 
considered clinically significant (the median OS was not reached, P=0.2162).8 Our results suggest that changes in 
1q21 copy numbers could potentially influence the degree of immune infiltration, and hence, the effectiveness of 
immunotherapy. Patients with 1q21 amplification (≥4 copy numbers) exhibited lower degrees of immune infiltration 
than those with 1q21 gain (3 copy numbers) and patients with 2 copy numbers, indicating a possible need for stronger 
immunotherapy to achieve effectiveness.

Although the analysis of scRNA-seq and bulk-seq has partly revealed that S100A9 plasma cells may be associated 
with immunotherapy in MM, further in-depth mechanism research is still necessary. However, this study has some 
limitations that should be considered. Firstly, this is a retrospective study, and future prospective studies should be 
conducted to avoid potential analytical biases. By designing prospective research, we can obtain more accurate and 
reliable data of S100A9 plasma cells in immunotherapy. Secondly, in our current research, we have used existing scRNA 
seq and bulk seq datasets from GEO and TCGA, which may have limitations in sample size and variability. In the future, 
we will seek collaboration with multiple research institutions and access additional datasets to expand the patient cohort. 
Thirdly, this study primarily utilizes scRNA-seq and transcriptomic data, proteomic and spatial transcriptomic data 
should also be explored. These additional dimensions can provide more comprehensive information, helping us better 
comprehend the function and regulatory mechanisms of S100A9 plasma cells in MM patients. Fourthly, we conducted 
RT-qPCR on RNASE6, LYZ, S100A8, S100A9, and S100A12 expression in MM patients. In the future, we plan to 
perform additional experiments, such as Western blotting, flow cytometry, or functional assays to validate the functional 
significance of key genes in S100A9 plasma cells. Fifthly, due to the lack of information on patient post-treatment status 
in the immunotherapy queue, it is challenging to compare and predict treatment efficacy after chemotherapy. To more 
accurately assess the predictive ability of S100A9 plasma cells in immunotherapy, we need to collect detailed informa-
tion about patients’ post-treatment status and systematically analyze these data.

Conclusion
In patients with MM who have 1q21 gain/diploid, there are a large number of S100A9 plasma cells. We identified 14 
genes related to S100A9 plasma cell immunity and calculated S100A9 scores for each patient sample to predict the 
response to immunotherapy. Compared to the L-S100A9 group, the H-S100A9 group exhibited higher levels of immune 
infiltration and immune checkpoint gene expression. These findings offer a novel perspective that can aid in advancing 
our understanding of tumor immunology. Furthermore, these results provide valuable references for designing persona-
lized immunotherapy regimens suitable for S100A9 patients in clinical practice. Based on these findings, we believe that 
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immunotherapy can be directed more precisely towards S100A9 patients, which will lead to the achievement of better 
efficacy.
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