Supplementary materials

Figure S2 Annotated phylogenetic tree representation of dominant genera. Dots are showing genera relative abundance. The cutoff point for genera abundance was set 0.5%. *Indicates significant at p < 0.05. The arrow direction is indicating decrease (\downarrow) or increase (\uparrow) in OTUs abundance. Kruskal–Wallis was performed for determining significant changes. *Significant at p < 0.05. ** Highly significant at $p \leq 0.01$. Abbreviations are as described for Figure S1.

PC1 = 13.582

Figure S3 The multivariate principal coordinate analysis of the studied groups using type-1 scaling. The vectors are representing groups and their direction is showing variability. Dots are showing relative position of each species. Abbreviations are as described for Figure S1.

Figure S4 Average percentage abundance of dominant bacterial species (abundance ≥0.6%) identified through culturomics.

Figure S5 Percentage presentation of total resistant isolates. (A) Relative percentage abundance of total isolates resistant to single and multiple antibiotics. (B) Relative percentage abundance of isolates resistant to single antibiotic. (C) Relative percentage abundance of isolates resistant to two antibiotics. (D) Relative percentage abundance of isolates resistant to three antibiotics. Abbreviations: TMP-SMX, trimethoprim/sulfamethoxazole, MTZ, metronidazole; AZM, azithromycin; OTET, oxytetracycline; AMP, ampicillin; KM, kanamycin; Cyclo, cycloserine; CAM, chloramphenicol; AMX, amoxicillin; CFX, cefixime; GEN, gentamicin; CIP, ciprofloxacin.

Figure S6 Relative abundance of multiple- antibiotics resistant genera. Number of isolates are showing on Y-axis.

Figure S7 Comparison of the bacterial genera between non-pregnant and pregnant groups that showed resistant toward ampicillin, amoxicillin, azithromycin, trimethoprim/sulfamethoxazole, chloramphenicol, cefixime, and cycloserine. Average abundance of genera is showing on Y-axis.

Figure S8 Comparison of the bacterial genera between non-pregnant and pregnant individuals that showed resistant toward gentamicin, kanamycin, metronidazole, and oxytetracycline. Average abundance of genera is showing on y-axis.

 Table S1 Composition of media used for culturomic analysis

Ingredients	Concentration
Acid hydrolysate of casein	0.24 g/L
Yeast extract	0.24 g/L
Dextrose	0.87 g/L
Soluble starch	0.24 g/L
Dipotassium phosphate	1.42 g/L
Magnesium sulfate heptahydrate	0.024 g/L
Sodium pyruvate	0.14 g/L
Calf brain	30.76 g/L
Beef heart	38.4 g/L
Proteose peptone	2.16 g/L
Sodium chloride	1.58 g/L
Disodium phosphate	0.43 g/L
Pancreatic digest of casein	1.7 g/L
Papaic digest of soyabean meal	0.3 g/L
Ascorbic acid	1g/L
Blood	5%
Agar	13 g/L

Table S2 List of primer sequence used for the amplification of antimicrobial resistant gene from the genomic DNA of the studied stool samples

Primer Name	Sequence/gene	Size (bp)	Annealin g Temp. (°C)	Reference
emeA-F	GTGACAGCCTTTGTGGCAGAT	007	57	- 1
emeAR	TAGTCCGTTGATGGTTCCTTG	687		
aac6-aph2-F	CCAAGAGCAATAAGGGCATA	220	55	
aac6-aph2-R	CACTATCATAACCACTACCG	220		
aph3-II-F	GCCGATGTGGATTGCGAAAA	202	EE	
aph3-II-R	GCTTGATCCCCAGTAAGTCA	292	55	
ant6-I-F	ACTGGCTTAATCAATTTGGG	507	55	
ant6-I-R	GCCTTTCCGCCACCTCACC	- 597		
gyrA faecium-F	CGGGATGAACGAATTGGGTGTGA	240	50	
gyrA faecium-R	AATTTTACTCATACGTGCTTCGG	240	50	2
gyrA faecalis-F	CGGGATGAACGAATTGGGTGTGA	241	55	2
gyrA faecalis-R	AATTTTACTCATACGTGCTTCGG	241	55	
parC faecium-F	TTCCCGTGCATTTCGATCAGTACTTC	151	FO	- 3
parC faecium-R	CGTATGACAAAGGATTCGGTAAATC	151	58	
parC faecalis-F	AATGAATAAAGACGGCAATA	101	40.7	
parC faecalis-R	CGCCATCCATACTTCCGTTG	191	40.7	
<i>van</i> A-F	GGGAAAACGACAATTGC	1020	48.7	4
<i>van</i> A-R	GTACAATGCGGCCGTTA	1030		
<i>van</i> B-F	ATGGGAAGCCGATAGTC	122	54	
<i>van</i> B-R	GATTTCGTTCCTCGACC	433		
<i>van</i> R-F	AGCGATAAAATACTTATTGTGGA	645	62	
<i>van</i> R-R	CGGATTATCAATGGTGTCGTT	043		
<i>van</i> S-F	AACGACTATTCCAAACTAGAAC	1004	60	
<i>van</i> S-R	GCTGGAAGCTCTACCCTAAA	1094		
<i>van</i> H-F	ATCGGCATTACTGTTTATGGAT	0/3	60	
<i>vanH</i> -R	TCCTTTCAAAATCCAAACAGTTT	343		
<i>van</i> Y-F	ACTTAGGTTATGACTACGTTAAT	866	5 55	
<i>van</i> Y-R	CCTCCTTGAATTAGTATGTGTT	000		
vanC2/C3-F	5'-CGGGGAAGATGGCAGTAT-3'	181	54	1
vanC2/C3-R	5'-CGCAGGGACGGTGATTTT-3'	404		
orf-1A-F	AGGGCGACATATGGTGTAACA	844	58	4
orf-1A-R	GGGCGACGGTACAACATCTT	044		
orf-1B-F	TGGTGGCTCCTTTTCCCAGTTC	1007	60	
orf-1B-R	CGTCCTGCCGACTATGATTATTT	1007		
orf-1C-F	ACCGTTTTTGCAGTAAGTCTAAAT	1066	60	
orf-1C-R	AAACGGGATTTAGAAATAGTTAAT	1000	00	
orf-1D-F	CCATTTCTGTATTTCAATTTATTA	925	58	

<i>orf</i> -1D-R	CATAGTTATCACCCTTTCACATA			
orf-1E-F	TTGCGGAAAATCGGTTATATTC	540	56	
orf-1E-R	AGCCCTAGATACATTAGTAATT			
<i>bla</i> sнv-F	CTTTATCGG CCCTCACTCAA	207	19.5	
<i>bla</i> shv-R	AGGTGCTCATCATGGGAAAG	521	40.5	
<i>bla_{тем}-</i> F	KACAATAACCCTGRTAAATGC	940	48.5	5
<i>bla_{тем}-</i> R	AGTATATATGAGTAAACTTGG			
<i>Ыа</i> стхм-F	ATGTGCAGYACCAGTAARGTKATGGC			
<i>bla</i> _{CTXM} -R	TGGGTRAARTARGTSACCAGAAYCAGC GG	593	48.5	
<i>bla</i> OXA-51 - F	TAATGCTTTGATCGGCCTTG	0.50		
<i>bla</i> oxa-51 - R	TGGATTGCACTTCATCTTGG	353	52	
<i>bla</i> oxa-23-F	GATCGGATTGGAGAACCAGA			
<i>bla</i> oxa-23-R	ATTTCTGACCGCATTTCCAT	501	52	
<i>bla</i> OXA-24 - F	GGTTAGTTGGCCCCCTTAAA			
<i>bla</i> oxa-24-R	AGTTGAGCGAAAAGGGGATT	240	52	
<i>bla</i> OXA-58-F	AAGTATTGGGGCTTGTGCTG	590	52	
<i>bla</i> OXA-58-R	CCCCTCTGCGCTCTACATAC			
<i>bla</i> OXA-143 - F	TGGCACTTTCAGCAGTTCCT	· 149	52	
<i>bla</i> OXA-143-R	TAATCTTGAGGGGGCCAACC		52	
IS <i>Aba/bla</i> oxa-23- F	AGAGCATTACCATATAGATT		41	
IS <i>Aba/bla</i> oxa-23 - R	CACAATTTCTGATAAAGATA	321		
IS <i>Aba/bla</i> oxa-51- F	AAGCATGATGAGCGCAAAG	007	50	6
IS <i>Aba/bla</i> oxa-51- R	GGTGAGCAGGCTGAAATAAAA	227	52	
ISAba 4/ <i>bla</i> _{OXA-} 23 - F	CACAATTTCTGATAAAGATA			
ISAba 4/ <i>bla</i> _{OXA-} 23-R	TTTATTAAATTATGCTGAAC	327	41	
<i>bla</i> _{ACT} -F	ATTCGTATGCTGGATCTCGCCACC		50	
<i>bla</i> _{АСТ} -R	CATGACCCAGTTCGCCATATCCTG	396		
<i>bla</i> FOX-F	CACCACGAGAATAACC		50	
<i>bla</i> FOX-R	GCCTTGAACTCGACCG	1184		
<i>bla</i> ımı-F	ATGTCATTAGGTGATATGGC	055		7
<i>bla</i> імі-R	GCATAATCATTTGCCGTACC	879	50	
<i>Ыа</i> сму-g1- F	GCTGACAGCCTCTTTCTCCAC	4000	= -	
<i>bla</i> сму-g1 - R	CCTCGACACGGRCAGGGTTA	1082	56	
<i>bla</i> _{CMY-G2} -F	GGTCTGGCCCATGCAGGTGA	963	56	

<i>Ыа</i> смү-д2 - R	GGTCGAGCCGGTCTTGTTGA			
tet (A)-F	F: GCT ACA TCC TGC TTG CCT TC	210	55	- 1
tet (A)-R	R: CAT AGA TCG CCG TGA AGA GG		55	
<i>erm</i> B-F	F: GAT ACC GTT TAC GAA ATT GG	204	59	
<i>erm</i> B-R	R: GAA TCG AGA CTT GAG TGT GC	304	50	
StrA-F	TTGATGTGGTGTCCCGCAATGC	202	57	8
StrA-R	CCAATCGCAGATAGAAGGCAA	303		
StrB-F	CCGCGATAGCTAGATCGCGTT	470	59	9
StrB-R	CGACTACCAGGCGACCGAAAT	470		9
<i>cml</i> A-F	CCGCCACGGTGTTGTTATC	698	55	10
<i>cml</i> A-R	CACCTTGCCTGCCCATCATTAG			
<i>cat</i> A1-F	AGTTGCTCAATGTACVTATAACC	547	55	
<i>cat</i> A1-R	TTGTAATTCATTAAGCATTCTGCC			
<i>bla</i> DHA-F	AACTTTCACAGGTGTGCTGGGT	405	60	7
<i>bla</i> DHA-R	CCGTACGCATACTGGCTTTGC	403		
<i>bla</i> GES-F	ATGCGCTTCATTCACGCAC	591	FG	
<i>bla</i> GES-R	CTATTTGTCCGTGCTCAGG		00	
<i>bla</i> _{ADC} -F	CCGCGACAGCAGGTGGATA	420	60	11
<i>bla</i> ADC-R	TCGGCTGATTTTCTTGGTT			
IS <i>Aba/bla</i> _{ADC} -F	CATTGGCATTAAACTGAGGAGAAA	451	55	
IS <i>Aba/bla</i> _{ADC} -R	TTGGAAATGGGGAAAACGAA			
IS <i>Adc/bla</i> ADC-F	GTTGCACTTGGTCGAATGAAAA	751	60	
IS <i>Adc/bla</i> ADC-R	ACGTCGCGAGTTGAAGTAAGTT		00	

References

- 1. Jia W, Li G, Wang W. Prevalence and antimicrobial resistance of *Enterococcus* species: a hospital-based study in China. *Int J Environ Res Public Health*. 2014;11:3424-3442.
- Petersen A, Jensen LB. Analysis of *gyr*A and *par*C mutations in enterococci from environmental samples with reduced susceptibility to ciprofloxacin. *FEMS Microbiol Lett*. 2014;231:73-76.
- Lopez M, Tenorio C, Del Campo R, Zarazaga M, Torres C. Characterization of the mechanisms of fluoroquinolone resistance in vancomycin-resistant enterococci of different origins. *J Chemother*. 2011;23:87-91.

- Miele A, Bandera M, Goldstein, BP. Use of primers selective for vancomycin resistance genes to determine van genotype in enterococci and to study gene organization in *van*A isolates. *Antimicrob Agents Chemotherl.* 1995;39:1772-1778.
- 5. Dandachi I, Salem Sokhn E, Najem E, Azar E, Daoud Z. Carriage of beta-lactamaseproducing Enterobacteriaceae among nursing home residents in north Lebanon. *Int J Infect Dis.* 2016;45:24-31.
- Bahador A, Raoofian R, Pourakbari B, Taheri M, et al. Genotypic and antimicrobial susceptibility of carbapenem-resistant *Acinetobacter baumannii*: analysis of is Aba elements and *bla*OXA-23-like genes including a new variant. *Front Microbiol*. 2015;6:1249.
- Du J, Li P, Liu H, Lu D, Liang H, Dou Y. Phenotypic and molecular characterization of multidrug resistant *Klebsiella pneumoniae* isolated from a university teaching hospital, China. *PLoS One*. 2014;9:e95181.
- Hochhut B, Lotfi Y, Mazel D, Faruque SM, Woodgate R, Waldor MK. Molecular analysis of antibiotic resistance gene clusters in *Vibrio cholerae* O139 and O1 SXT constins. *Antimicrob Agents Chemother*. 2001;45:2991-3000.
- Kumar P, Wilson PA, Bhai R, Thomas S. Characterization of an SXT variant *Vibrio* cholerae O1 Ogawa isolated from a patient in Trivandrum, India. *FEMS Microbiol Lett*. 2009;303:132-136.
- Keyes K, Hudson C, Maurer JJ, Thayer S, White DG, Lee MD. Detection of florfenicol resistance genes in *Escherichia coli* isolated from sick chickens. *Antimicrob Agents Chemother*. 2000;44:421-424.
- Ruiz M, Marti S, Fernandez-Cuenca F, Pascual A, Vila J. Prevalence of IS(Aba1) in epidemiologically unrelated *Acinetobacter baumannii* clinical isolates. *FEMS Microbiol Lett*. 2007;274:63-66.