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Background: The purpose of this paper is to report on the bacterial species isolated from patients 

with bacterial conjunctivitis participating in three clinical trials of besifloxacin ophthalmic 

suspension, 0.6%, and their in vitro antibacterial susceptibility profiles.

Methods: Microbial data from three clinical studies, conducted at multiple clinical sites in 

the US and Asia were integrated. Species were identified at a central laboratory, and minimum 

inhibitory concentrations were determined for various antibiotics, including β-lactams, fluoro-

quinolones, and macrolides.

Results: A total of 1324 bacterial pathogens representing more than 70 species were isolated. 

The most common species were Haemophilus influenzae (26.0%), Streptococcus pneumoniae 

(22.8%), Staphylococcus aureus (14.4%), and Staphylococcus epidermidis (8.4%). H. influenzae 

was most frequently isolated among patients aged 1–18 years, while S. aureus was most preva-

lent among those .65 years. Drug resistance was prevalent: Of H. influenzae isolates, 25.3% 

were β-lactamase positive and 27.2% of S. pneumoniae isolates were penicillin-intermediate/

resistant; of S. aureus isolates, 13.7% were methicillin-resistant (MRSA), and of these, 65.4% 

were ciprofloxacin-resistant, while 45.9% of S. epidermidis isolates were methicillin-resistant 

(MRSE), and, of these, 47.1% were ciprofloxacin-resistant. Besifloxacin was more potent than 

comparator fluoroquinolones overall, and particularly against Gram-positive bacteria. Against 

ciprofloxacin-resistant MRSA and MRSE, besifloxacin was four-fold to $ 128-fold more potent 

than other fluoroquinolones.

Conclusions: While the pathogen distribution in bacterial conjunctivitis has not changed, drug 

resistance is increasing. Patient age and local antibiotic resistance trends should be considered 

in the treatment of this ocular infection. Besifloxacin showed broad-spectrum in vitro activity 

and was particularly potent against multidrug-resistant staphylococcal isolates.

Keywords: besifloxacin, fluoroquinolones, in vitro activity, ocular isolates, bacterial 

conjunctivitis

Introduction
Conjunctivitis is an inflammation of the thin, transparent mucous membrane covering 

the eye.1 Bacterial conjunctivitis is a common external ocular infection that affects 

persons of all ages.2,3 Although acute conjunctivitis can be viral in nature, the majority 

of cases in children and approximately 50% of cases in adults are caused by bacteria.2,4 

Some of the more common causative organisms can be components of the normal eye-

lid flora (eg, Staphylococcus aureus, Staphylococcus epidermidis) or nasopharyngeal 

flora (eg, Haemophilus influenzae, Streptococcus pneumoniae).1,2,5–7 Other common 
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pathogens that can cause bacterial conjunctivitis include 

Moraxella spp, Neisseria spp, Corynebacterium spp, and 

other Streptococcus spp.2

Besifloxacin, an N-1 cyclopropyl, 8‑chloro-fluoroqui-

nolone, was developed for the topical treatment of ocular 

infections. Besifloxacin demonstrates potent inhibition of 

both bacterial DNA gyrase and topoisomerase IV noted for 

some fluoroquinolones. Cambeau et al found besifloxacin 

to be as active against the DNA gyrase of S. pneumoniae as 

against topoisomerase IV.8 In vitro studies showed the new 

fluoroquinolone to be effective against both Gram-positive 

and Gram-negative bacteria, as well as multidrug-resistant 

strains9 and to be rapidly bactericidal for the common patho-

gens of bacterial conjunctivitis.10,11

Besifloxacin ophthalmic suspension 0.6% was approved 

in 2009 by the US Food and Drug Administration for the 

treatment of bacterial conjunctivitis. Three clinical trials were 

conducted to evaluate the clinical and microbiological efficacy 

of besifloxacin ophthalmic suspension 0.6% compared with 

vehicle, or moxifloxacin ophthalmic solution 0.5% dosed three 

times daily for 5 days.12–14 Integrated clinical microbiological 

eradication rates for the three studies are described in the com-

panion paper by Morris et al.15 Here we describe those bacterial 

pathogens most commonly isolated from patients in these stud-

ies and their in vitro antibacterial susceptibility to besifloxacin, 

comparator fluoroquinolones, and other ophthalmic antibacte-

rial drugs. Pathogen distribution was further characterized by 

the age of the patient and by geography.

Methods
Studies
Microbiological data for bacterial isolates from three pro-

spective, randomized, multicenter, double-masked clinical 

trials (two vehicle-controlled and one active-controlled) 

evaluating the clinical safety and efficacy of besifloxacin 

ophthalmic suspension 0.6% in the treatment of bacterial 

conjunctivitis were integrated. A general description of the 

trial designs is presented in the companion manuscript by 

Morris et al.15 Individual study results have been reported 

previously.12–14

In each study, microbiological cultures of the conjunc-

tival cul-de-sac were taken at visit 1 (day 1), visit 2 (day 

4 ± 1 or day 5 ± 1),12–14 and visit 3 (day 8 or 9) prior to 

administration of the morning treatment dose. Microbiologi-

cal samples were collected on a sterile swab and inserted 

into validated transport medium. The collection procedure 

was repeated with a second swab for viral culture using 

viral transport medium. All swabs were transported under 

refrigerated or frozen conditions to a central laboratory 

(Covance Central Laboratory Services, Indianapolis, IN) 

for analysis. Briefly, 0.5  mL and 0.1  mL aliquots of the 

suspended specimen were inoculated onto chocolate agar 

and trypticase soy agar with 5% sheep blood. Two serial 

10-fold dilutions were also inoculated onto separate plates 

of each medium for quantitative plate counts. All inoculated 

plates were incubated at 35°C in 5%–7% CO
2
 atmosphere, 

and bacterial colonies were counted after 24 and 48 hours 

of incubation. A specimen sample (0.1 mL) and two 10-fold 

dilutions for yeast culture were inoculated onto Sabouraud 

dextrose agar and incubated at 30°C. Yeast/mycelial colonies 

were counted after a total of 48–120 hours (2–5 days) of 

incubation. For viral culture, a 0.2 mL aliquot of specimen 

suspended in transport medium was inoculated into appro-

priate cell lines, incubated for 1 hour at 36°C, then washed, 

refed with maintenance media, and observed daily for 2–3 

weeks for cytopathic effect. Commercial immunofluorescent 

reagents were used to identify adenovirus and herpes sim-

plex virus.

Bacterial isolates were considered causative of the con-

junctivitis if the colony count equaled or exceeded the thresh-

old value on the Cagle list as modified by Leibowitz.16,17

In vitro susceptibility testing
In vitro susceptibilities to antibacterial agents were determined 

for all bacterial isolates at or above the Cagle threshold 

at baseline.16,17 Antibacterial agents evaluated included 

besifloxacin, moxifloxacin, azithromycin, ciprofloxacin, 

gatifloxacin, levofloxacin, and ofloxacin. Penicillin antimicrobial 

susceptibilities were determined for S. pneumoniae and beta-

hemolytic streptococci, and oxacillin susceptibilities were 

determined for all Staphylococcus species. Susceptibility 

testing was conducted on microtiter plates manufactured by 

Covance Central Laboratory. Minimum inhibitory concentra-

tions (MICs) were determined by broth microdilution according 

to the procedure recommended by the Clinical and Laboratory 

Standards Institute (CLSI).18,19 Isolates from selected species 

were further characterized by their antimicrobial resistance 

phenotype. Ciprofloxacin was chosen to determine sensitivity 

or resistance to fluoroquinolones. H. influenzae isolates were 

classified as β-lactamase positive or negative. Strains of S. 

aureus and S. epidermidis were designated methicillin-sensitive 

or methicillin-resistant based on current CLSI breakpoints for 

oxacillin.20,21 Similarly, S. pneumoniae isolates were desig-

nated as being penicillin-sensitive, penicillin-intermediate, 

or penicillin-resistant based on CLSI breakpoints for oral 

penicillin.20,21 As an exclusively topical agent, besifloxacin 
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Table 1 Bacterial pathogens in order of decreasing prevalence

Organism n (%) Organism n (%) Organism n (%)

Haemophilus influenzae 344 (26.0) Stenotrophomonas maltophilia 9 (0.7) Streptococcus pyogenes 5 (0.4)
Streptococcus pneumoniae 302 (22.8) Streptococcus salivarius 9 (0.7) Nonfermentative Gram-negative rod 4 (0.3)

Staphylococcus aureus 190 (14.4) Brevibacterium spp 8 (0.6) Rothia mucilaginosa 4 (0.3)

Staphylococcus epidermidis 111 (8.4) Corynebacterium pseudodiphtheriticum 8 (0.6) Staphylococcus caprae 4 (0.3)

Streptococcus mitis groupa 45 (3.4) Corynebacterium striatum 8 (0.6) Streptococcus sanguinis 4 (0.3)

CDC coryneform group G 29 (2.2) Pseudomonas aeruginosa 8 (0.6) Achromobacter xylosoxidans 3 (0.2)

Streptococcus mitis 20 (1.5) Staphylococcus lugdunensis 8 (0.6) Acinetobacter calcoaceticus 3 (0.2)

Streptococcus oralis 18 (1.4) Corynebacterium macginleyi 6 (0.5) Corynebacterium spp 3 (0.2)

Streptococcus sppa 13 (1.0) Corynebacterium propinquum 6 (0.5) Granulicatella adiacens 3 (0.2)

Moraxella catarrhalis 12 (0.9) Proteus mirabilis 6 (0.5) Neisseria meningitidis 3 (0.2)

Aerococcus viridans 10 (0.8) Staphylococcus warneri 6 (0.5) Staphylococcus haemolyticus 3 (0.2)

Moraxella lacunata 9 (0.7) Enterococcus faecalis 5 (0.4) Streptococcus anginosus 3 (0.2)

Serratia marcescens 9 (0.7) Haemophilus parainfluenzae 5 (0.4) Viridans streptococci 3 (0.2)
Staphylococcus hominis 9 (0.7) Staphylococcus capitis 5 (0.4)

Notes: aIsolates that were identified to the species level were listed separately. Species and phenotypes with less than three isolates: Abiotrophia defectiva (n = 1); Acinetobacter 
johnsonii (1); Acinetobacter spp (1); Bacillus spp (1); Brevibacterium casei (1); Brevundimonas vesicularis (1); CDC coryneform group I1 (1); Citrobacter koseri (1); Coagulase-negative 
staphylococci (2); Corynebacterium afermentans (2); Corynebacterium amycolatum (1); Corynebacterium argentoratense (2); Corynebacterium auris (1); Corynebacterium jeikeium 
(2); Corynebacterium minutissimum (2); Corynebacterium urealyticum (2); Eikenella corrodens (1); Enterobacter cloacae (1); Enterobacter sakazakii (1); fermentative Gram-negative 
rod (1); Gemella morbillorum (2); Gemella spp (2); Kingella denitrificans (1); Klebsiella oxytoca (2); Klebsiella ozaenae (1); Kocuria kristinae (2); Leminorella spp (1); Micrococcus 
spp (2); Moraxella catarrhalis, β-lactamase negative (1); Moraxella nonliquefaciens (1); Moraxella spp (1); Morganella morganii (2); Neisseria gonorrhoeae (2); Neisseria sicca (1); 
Neisseria subflava (1); Pasteurella multocida (1); Pseudomonas fluorescens (1); Staphylococcus chromogenes (1); Staphylococcus intermedius (1); Staphylococcus xylosus (2); Streptococcus 
agalactiae (1); Streptococcus anginosus group (1); Streptococcus dysgalactiae (2); Streptococcus milleri group (1); Streptococcus parasanguinis (2); and Streptococcus thermophilus (1).
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susceptibility test interpretive criteria (ie, breakpoints) have 

not been established; however, quality control ranges for 

besifloxacin susceptibility testing were included.22 Initial 

fluoroquinolone MIC testing spanned a drug concentration 

range of 0.004–8 µg/mL. All besifloxacin MICs were within 

the initial test drug concentration range (#8 µg/mL). Because 

initial MIC testing of several S. aureus and S. epidermidis iso-

lates resulted in at least one fluoroquinolone comparator MIC 

exceeding the highest concentration (8 µg/mL) tested, these 

isolates were retested in triplicate with a higher range of drug 

concentrations for all fluoroquinolones (up to 512 µg/mL) to 

obtain endpoint values for all fluoroquinolones.

Integrated analyses
Microbiological data from all three studies were pooled for a 

comprehensive, integrated analysis. The proportions of indi-

vidual species at or above threshold across the three studies 

were tabulated along with their in vitro susceptibilities and 

antimicrobial resistance phenotypes. While only one eye per 

patient (study eye) was considered for the primary efficacy 

endpoints of clinical resolution and bacterial eradication in the 

clinical study analyses,12–14 both eyes could contribute microbio-

logical samples to the integrated analyses if both eyes had signs 

and symptoms of bacterial conjunctivitis and the pathogenic 

organism in the nonstudy eye was different from the organism 

in the study eye. In addition, more than one species from each 

eye was included if each species met the Cagle criteria.

Results
Pathogen distribution
A total of 1324 bacterial pathogens were isolated at baseline 

(visit 1) at or above the Cagle threshold from 1041 culture-

confirmed bacterial conjunctivitis patients across the three 

clinical studies, with 92.8% (1229/1324) and 7.2% (95/1324) 

of the bacterial isolates obtained from patients at US and Asian 

clinical sites, respectively. Although some isolates could only 

be identified to the genus or group level, more than 70 different 

species of bacteria were identified. Isolates identified included 

430 streptococci, 349 Haemophilus spp, 342 staphylococci, 

73 corynebacteria, 24 Enterobacteriaceae, 23 Moraxella spp, 

9 Pseudomonas spp, and 7 Neisseria spp. In addition, 148 

patients were positive for viral cultures at baseline. Of the 

viral positive cultures, 94.6% (140/148) were identified as 

adenovirus and 5.4% (8/148) were identified as herpes simplex 

virus; 28 of these viral pathogens were isolated from eyes that 

also yielded bacterial isolates at or above threshold, indicating 

that 2.7% (28/1041) of bacterial culture-positive eyes were 

coinfected with virus. Yeast was rarely recovered from subjects 

with bacterial conjunctivitis. The few fungal isolates recovered 

included Candida parapsilosis (n = 1) at baseline and Penicil-

lium spp (n = 1), Candida glabrata (n = 1), and Saccharomyces 

cerevisiae (n = 1) at subsequent visits.

Table  1 presents a listing of bacterial species isolated 

across the three clinical studies in decreasing order of 

prevalence. Gram-positive and Gram-negative bacteria 
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Figure 1 Distribution of Haemophilus influenzae, Streptococcus pneumoniae, 
Staphylococcus aureus, Staphylococcus epidermidis, and other species among bacterial 
conjunctivitis isolates stratified by age group.
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contributed 66.9% (886/1324) and 33.1% (438/1324) of the 

isolates, respectively, and the four most prevalent species, 

H. influenzae, S. pneumoniae, S. aureus, and S. epidermidis, 

together accounted for 71.5% (947/1324) of all isolates. The 

species distribution among isolates obtained from patients 

enrolled at Asian clinical sites was similar to that observed 

for patients enrolled at US sites (data not shown), with the 

exception of S. pneumoniae, which accounted for 3.2% (3/95) 

of isolates from Asian clinical sites, compared with 24.3% 

(299/1229) of isolates from US clinical sites.

Of the isolates, 11.8% (156/1324) were contributed by 

patients aged 1–2 years, 32.3% (428/1324) by patients aged 

3–18 years, 40.7% (539/1324) by patients aged 19–64 years, 

and 15.2% (201/1324) by patients aged 65 years and older. 

Figure 1 presents the pathogen distribution by age group. 

H. influenzae was the most prevalent species in patients aged 

1–2 years, representing 46.8% (73/156) of the isolates in that 

age group, and gradually decreased in prevalence as the patient 

age increased. However, even in the patients aged 65 years 

and older, 13.4% (27/201) of all isolates were H. influenzae. 

S. pneumoniae was commonly isolated from patients 1–64 

years of age and peaked with 29.7% (127/428) in the 3–18-year 

age group. Only 9.5% (19/201) of isolates in the 65+ age group 

were S. pneumoniae. Other species of Streptococcus, most 

notably those belonging to the Streptococcus mitis group, were 

also more prevalent in younger than in older patients (data not 

shown). Moraxella spp accounted for only 23 isolates, but those 

were more frequently isolated from patients aged 1–2 years 

and 3–18 years compared with older patients.

In the older patient population, staphylococci and 

corynebacteria were most prevalent. S. aureus contributed 

10.3% (16/156) of isolates to the youngest age group and 

increased in prevalence with the age of the population to 

22.4% (45/201) of all isolates from patients 65 years and 

older. Similarly, unspeciated staphylococci and S. epidermidis 

increased from 0% to 1.9% (0/156 and 3/156, respectively) in 

1–2-year-old patients to 8.5% to 11.0% (17/201 and 22/201) 

in the oldest patient group. The same trend was noted for 

corynebacteria, which increased in frequency with age from 

1.3% (2/156) to 13.4% (27/201). The number of Enterobac-

teriaceae also increased with patient age, ranging from 0.3% 

(2/584) for patients 18 years or younger, to 2.6% (14/539) 

to 4.0% (8/201) for patients aged 19–64 years and 65 years 

and older, respectively. Age-specific isolation patterns were 

also observed for Moraxella spp, but the number of isolates 

was too small to draw any conclusions.

Overall in vitro susceptibility
Table 2 presents the MIC values for besifloxacin and com-

parator antibacterial agents for those species with $10 iso-

lates recovered for all Gram-positive and all Gram-negative 

bacteria and for bacteria overall. For all 1324 isolates, the 

MIC
50

 and MIC
90

 for besifloxacin were 0.06 and 0.25 µg/mL, 

respectively. These values were lower than those of the other 

fluoroquinolones, where the comparable MIC
50

 values were 

in the range of 0.125–0.5 µg/mL, and the MIC
90

 values were 

in the range of 0.5–2 µg/mL. MIC
50

 and MIC
90

 values for 

Gram-positive bacteria were widely spread, showing a 16-fold 

difference between the most and least potent fluoroquinolone. 

Besifloxacin was the most potent agent in this group, followed 

by moxifloxacin, gatifloxacin, levofloxacin, ciprofloxacin, and 

ofloxacin. Against Gram-negative bacteria, values for the five 

fluoroquinolones varied only by a two-fold dilution for the 

MIC
50

 and a four-fold dilution for the MIC
90

. Against these 

organisms, the older fluoroquinolones, ciprofloxacin and levo-

floxacin, remained the most potent antibacterial agents.

Figure 2 shows the MIC distributions for besifloxacin and 

ciprofloxacin for Gram-positive and Gram-negative isolates 

obtained from patients at US clinical sites. The 825 Gram-

positive isolates among US isolates had MIC
50

/MIC
90

 values 

of 0.06/0.25 µg/mL for besifloxacin and 0.5/2 µg/mL for 

ciprofloxacin. Many Gram-positive isolates had ciprofloxa-

cin MICs $ 4 µg/mL, reflecting the ciprofloxacin resistance 

among staphylococcal isolates (discussed further below). 

The corresponding MIC
50

/MIC
90

 values for the 404 Gram-

negative isolates were 0.03/0.25 µg/mL for besifloxacin and 

0.015/0.06 µg/mL for ciprofloxacin.

Figure 3 presents the MIC distributions for besifloxacin 

and ciprofloxacin for all isolates obtained from patients 

at Asian clinical sites, which included sites in India and 

the Philippines. While the MIC distributions for isolates 
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Table 2 In vitro activity of besifloxacin and comparator anti-infectives against bacterial pathogens from three clinical trialsa

Organism Minimum inhibitory concentration (μg/mL)

BES CIP GAT LVX MXF OFX AZM

All isolates (n = 1324) Range 0.008–8 #0.004–8 #0.004–8 #0.004–8 #0.004–8 0.008–8 0.008–8
MIC50 0.06 0.25 0.125 0.25 0.125 0.5 2
MIC90 0.25 2 0.5 1 0.5 2 .8

Gram-positive (n = 886) Range 0.008–8 0.015–8 0.008–8 0.008–8 0.008–8 0.008–8 0.008–8
MIC50 0.06 0.5 0.25 0.5 0.125 1 1
MIC90 0.25 4 1 2 0.5 4 .8

Gram-negative (n = 438) Range 0.008–8 #0.004–8 #0.004–8 #0.004–8 #0.004–8 0.015–8 0.015–8
MIC50 0.03 0.015 0.015 0.03 0.03 0.03 2
MIC90 0.5 0.125 0.25 0.125 0.25 0.25 .8

Aerococcus viridans (n = 10) Range 0.015–0.03 0.06–0.125 0.06–0.5 0.125–0.25 0.03–0.06 0.125–0.25 4–8
MIC50 0.03 0.06 0.25 0.125 0.03 0.25 4
MIC90 0.03 0.06 0.5 0.25 0.06 0.25 8

CDC coryneform  
group G (n = 29)

Range 0.008–2 0.03–8 0.03–8 0.06–8 0.03–8 0.125–8 0.06–8
MIC50 0.015 0.06 0.06 0.06 0.03 0.125 0.125
MIC90 0.125 0.5 0.5 1 0.25 2 .8

Haemophilus influenzae 
  All (n = 344)

  BL-neg (n = 253)

  BL-pos (n = 87)

Range 0.008–0.5 #0.004–1 #0.004–0.5 #0.004–1 0.008–1 0.015–2 0.015–8
MIC50 0.03 0.015 0.015 0.03 0.03 0.03 2
MIC90 0.06 0.015 0.03 0.03 0.06 0.06 4

Range 0.008–0.5 0.008–1 0.008–0.5 0.008–1 0.008–1 0.015–2 0.015–8
MIC50 0.03 0.015 0.015 0.03 0.03 0.03 2
MIC90 0.06 0.015 0.03 0.03 0.06 0.06 4

Range 0.008–0.06 #0.004–0.06 #0.004–0.06 #0.004–0.06 0.008–0.125 0.015–0.125 0.125–4
MIC50 0.03 0.015 0.015 0.03 0.03 0.03 2
MIC90 0.06 0.015 0.03 0.03 0.06 0.06 2

Moraxella catarrhalis
  All (n = 12)

  BL-pos (n = 11)

Range 0.06–0.25 0.03–1 0.03–0.5 0.06–2 0.06–0.5 0.06–4 0.03–0.25
MIC50 0.06 0.03 0.06 0.06 0.125 0.125 0.06
MIC90 0.25 0.5 0.25 1 0.5 2 0.25

Range 0.06–0.25 0.03–1 0.03–0.5 0.06–2 0.06–0.5 0.06–4 0.06–0.25
MIC50 0.06 0.03 0.06 0.06 0.125 0.125 0.06
MIC90 0.25 0.5 0.25 1 0.5 2 0.25

Staphylococcus aureus
  All (n = 190)

  MSSA-CS (n = 144)

  MRSA-CS (n = 9)

  MSSA-CR (n = 17)

  MRSA-CR (n = 17)

Range 0.008–8 0.06–8 0.03–8 0.03–8 0.03–8 0.125–8 0.06–8
MIC50 0.03 0.5 0.125 0.25 0.06 0.5 2
MIC90 0.5 .8 4 8 2 .8 .8

Range 0.008–1 0.06–1 0.03–8 0.03–0.5 0.03–0.25 0.125–1 0.06–8
MIC50 0.03 0.5 0.125 0.25 0.06 0.5 2
MIC90 0.06 0.5 0.25 0.25 0.125 0.5 .8

Range 0.03–0.06 0.25–0.5 0.06–0.25 0.25–0.5 0.06–0.06 0.25–1 2–8
MIC50 0.06 0.5 0.125 0.25 0.06 0.5 .8

Range 0.125–2 4–8 0.25–8 1–8 0.25–8 2–8 2–8
MIC50 0.5 .8 4 8 2 .8 .8
MIC90 2 .8 .8 .8 8 .8 .8

Range 0.125–8 4–8 0.25–8 1–8 0.5–8 2–8 2–8
MIC50 0.5 .8 4 8 4 .8 .8
MIC90 4 .8 .8 .8 .8 .8 .8

Staphylococcus epidermidis  
  All (n = 111)

  MSSE-CS (n = 50)

Range 0.03–4 0.125–8 0.06–8 0.125–8 0.06–8 0.25–8 0.5–8
MIC50 0.06 0.25 0.125 0.25 0.125 0.5 1
MIC90 0.5 .8 2 8 4 .8 .8

Range 0.03–0.25 0.125–1 0.125–0.5 0.125–0.5 0.06–0.25 0.25–1 0.5–8
MIC50 0.06 0.25 0.125 0.25 0.125 0.5 1
MIC90 0.06 0.25 0.25 0.25 0.125 0.5 .8

(Continued)
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Table 2 (Continued)

Organism Minimum inhibitory concentration (μg/mL)

BES CIP GAT LVX MXF OFX AZM

  MRSE-CS (n = 27) Range 0.03–0.06 0.125–0.5 0.06–0.5 0.125–0.25 0.06–0.25 0.25–0.5 0.5–8
MIC50 0.06 0.25 0.125 0.25 0.125 0.5 .8
MIC90 0.06 0.25 0.25 0.25 0.125 0.5 .8

 � MSSE-CR (n = 10) Range 0.5–2 8–8 2–8 4–.8 1–8 4–.8 0.5–8
MIC50 0.5 .8 2 8 4 .8 1
MIC90 1 .8 8 .8 8 .8 .8

 � MRSE-CR (n = 24) Range 0.25–4 4–8 1–8 1–8 1–8 8–8 1–8
MIC50 0.5 8 2 8 2 8 .8
MIC90 4 .8 .8 .8 .8 .8 .8

Streptococcus mitis (n = 20) Range 0.06–0.25 0.25–4 0.25–1 0.5–2 0.06–0.5 1–4 0.06–8
MIC50 0.125 1 0.5 1 0.125 2 2
MIC90 0.125 2 1 1 0.25 2 4

S. mitis group (n = 45) Range 0.03–1 0.06–8 0.06–2 0.125–8 0.03–2 0.25–8 0.03–8
MIC50 0.125 1 0.5 1 0.125 2 2
MIC90 0.25 4 0.5 2 0.25 4 8

Streptococcus oralis (n = 18) Range 0.015–0.25 0.03–4 0.03–1 0.125–2 0.015–0.5 0.125–4 0.06–8
MIC50 0.125 2 0.5 1 0.25 2 4
MIC90 0.25 4 1 2 0.25 4 .8

Streptococcus pneumoniae
  All (n = 302)

  PSSP (n = 220)

  PISP (n = 71)

  PRSP (n = 11)

Range 0.03–0.25 0.125–8 0.125–1 0.125–2 0.06–1 0.5–4 0.06–8
MIC50 0.06 0.5 0.25 0.5 0.125 1 0.125
MIC90 0.125 1 0.5 1 0.125 2 .8

Range 0.03–0.25 0.125–2 0.125–1 0.125–2 0.06–1 0.5–4 0.06–8
MIC50 0.06 0.5 0.25 0.5 0.125 1 0.125
MIC90 0.125 1 0.5 1 0.125 2 0.25

Range 0.03–0.125 0.25–2 0.125–0.5 0.5–2 0.06–0.5 1–2 0.06–8
MIC50 0.06 0.5 0.25 0.5 0.125 1 8
MIC90 0.06 0.5 0.5 1 0.125 2 .8

Range 0.03–0.125 0.25–8 0.25–1 0.5–1 0.125–0.25 1–2 0.06–8
MIC50 0.06 1 0.5 1 0.125 2 8
MIC90 0.125 1 0.5 1 0.125 2 .8

Unspeciated streptococci  
(n = 13)

Range 0.015–0.25 0.03–4 0.03–1 0.125–2 0.015–0.5 0.125–4 0.125–8
MIC50 0.03 0.06 0.5 0.125 0.06 0.25 8
MIC90 0.125 1 1 1 0.5 2 .8

Note: aSpecies isolated from $10 patients.
Abbreviations: BES, besifloxacin; CIP, ciprofloxacin; GAT, gatifloxacin; LVX, levofloxacin; MXF, moxifloxacin; OFX, ofloxacin; AZM, azithromycin; OXA, oxacillin; PEN, 
penicillin; BL-neg, β-lactamase negative; BL-pos, β-lactamase positive; MSSA-CS, methicillin-susceptible ciprofloxacin-susceptible S. aureus; MRSA-CS, methicillin-resistant 
ciprofloxacin-susceptible S. aureus; MSSA-CR, methicillin-susceptible ciprofloxacin-resistant S. aureus; MRSA-CR, methicillin-resistant ciprofloxacin-resistant S. aureus; MSSE-
CS, methicillin-susceptible ciprofloxacin-susceptible S. epidermidis; MRSE-CS, methicillin-resistant ciprofloxacin-susceptible S. epidermidis; MSSE-CR, methicillin-susceptible 
ciprofloxacin-resistant S. epidermidis; MRSE-CR, methicillin-resistant ciprofloxacin-resistant S. epidermidis; PSSP, penicillin-susceptible S. pneumoniae; PISP, penicillin-intermediate 
S. pneumoniae; PRSP, penicillin-resistant S. pneumoniae.

obtained from US clinical sites had a distinct peak, MIC 

values for isolates obtained from Asian sites were more 

widely distributed, and ciprofloxacin MICs $4  µg/mL 

were more common, indicating that isolates from Asian 

sites were overall more resistant to ciprofloxacin compared 

with isolates from US sites. The increase in ciprofloxacin 

MIC
90

 values between isolates from US and Asian sites was 

noted overall for Gram-positive and Gram-negative bacteria 

and specifically for S. aureus and H. influenzae (discussed 

further below).

In vitro susceptibility of most prevalent 
genera
Of the H. influenzae isolates, 25.3% (87/344) were 

β-lactamase positive. As expected, H. influenzae MIC
50

/MIC
90

 

values were low for all fluoroquinolones tested regardless of 

β-lactamase status. Although no fluoroquinolone-resistant 

isolates were recovered, two strains with elevated MIC values 

of 1 µg/mL for ciprofloxacin, levofloxacin, and moxifloxacin 

were identified. H. influenzae isolates from Asian clinical 

sites had higher MIC
90

 values for fluoroquinolones than those 
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Figure 2 Distribution of minimum inhibitory concentrations for besifloxacin (light 
gray) and ciprofloxacin (dark gray) for 825 Gram-positive (A) and 438 Gram-
negative isolates from the US (B).
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Figure 3 Distribution of minimum inhibitory concentrations for besifloxacin (light 
gray) and ciprofloxacin (dark gray) for 95 isolates from Asia.
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from US sites, with MIC
90

 value ranges of 0.25–1 µg/mL for 

isolates from Asian sites (n = 12) and 0.015–0.06 µg/mL for 

isolates from US sites (n = 332).

Overall, besifloxacin was the most active agent tested 

against all streptococcal isolates. Among S. pneumoniae 

isolates, 72.8% (220/302) were penicillin-susceptible, 

23.5% (71/302) were penicillin-intermediate (PISP), and 

3.6% (11/302) were penicillin-resistant (PRSP). Penicillin 

susceptibility/resistance did not influence fluoroquinolone 

MIC
50

/MIC
90

 values. Among PISP and PRSP isolates, the 

azithromycin MIC
50

 values were 8 µg/mL, and MIC
90

 values 

were .8 µg/mL, indicating that dual resistance to azithromy-

cin and penicillin is not uncommon in S. pneumoniae. The 

MIC
50

/MIC
90

 values for each of the fluoroquinolones were 

similar against Streptococcus oralis, S. mitis, and S. mitis 

group isolates; besifloxacin was the most potent, followed 

by moxifloxacin, gatifloxacin, levofloxacin, ciprofloxacin, 

and ofloxacin.

Among S. aureus isolates, 75.8% (144/190) were methicillin-

susceptible and ciprofloxacin-susceptible, 8.9% (17/190) 

were methicillin-susceptible and ciprofloxacin-resistant 

(MSSA-CR), 4.7% (9/190) were methicillin-resistant and 

ciprofloxacin-susceptible, 8.9% (17/190) were resistant to 

both antibacterials (MRSA-CR), and 1.6% (3/190) were 

ciprofloxacin-intermediate (two methicillin-susceptible and 

one methicillin-resistant). Based on MIC
50

/MIC
90

 values, 

besifloxacin was the most potent fluoroquinolone against all 

of these phenotypes. Against ciprofloxacin-resistant isolates of 

S. aureus, MIC
50

 and MIC
90

 values for besifloxacin were at least 

four-fold lower than for the next most active fluoroquinolone, 

moxifloxacin. MIC
90

 values for azithromycin were .8 µg/mL 

for all resistance phenotypes of S. aureus. Azithromycin 

resistance was especially prominent among MRSA isolates, 

with at least 50% of all isolates having MIC values .8 µg/mL. 

S. aureus isolates from US clinical sites had different MIC 

values compared with those from Asian sites. The MIC
50

 

values for the fluoroquinolones for isolates from US clinical 

sites (n = 170) ranged from 0.03–0.5 µg/mL compared with 

0.5 µg/mL to more than 8 µg/mL for isolates from Asian sites 

(n = 20). In contrast, the MIC
90

 value for oxacillin was higher 

in isolates from US clinical sites compared with Asian sites 

(.8 µg/mL and 0.5 µg/mL, respectively). Consistent with this 

finding, 13 of the 17 MSSA-CR isolates in the overall data set 

came from patients in Asia, whereas all 26 MRSA isolates were 

obtained from clinical sites in the US, including 17 isolates 

that were also ciprofloxacin-resistant.

Among S. epidermidis isolates, 45.0% (50/111) were 

methicillin-susceptible and ciprofloxacin-susceptible, while 

24.3% (27/111) were methicillin-resistant and ciprofloxacin-

susceptible. A further 9.0% (10/111) and 21.6% (24/111) of 

isolates were methicillin-susceptible, ciprofloxacin-resistant, 

and methicillin-resistant and ciprofloxacin-resistant 

(MRSE-CR). Besifloxacin MIC
50

 values were the lowest for 

the ciprofloxacin-resistant isolates (0.5 µg/mL) regardless 

of methicillin susceptibility, followed by gatifloxacin and 

moxifloxacin (2–4 µg/mL) and ciprofloxacin, levofloxacin, 

and ofloxacin (8 µg/mL to more than 8 µg/mL). The MIC
90

 

values were $8  µg/mL for all fluoroquinolones except 

besifloxacin. Azithromycin MIC
90

 values were .8 µg/mL for 

all S. epidermidis isolates regardless of methicillin-resistant 

or ciprofloxacin-resistant phenotype.
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Table 3 In vitro activity of besifloxacin and comparator fluoroquinolones against ciprofloxacin resistant Staphylococcus aureus and 
Staphylococcus epidermidis: Results of the expanded range retest

Organism Fluoroquinolone MIC (μg/mL) MIC90 versus 
besifloxacinRange MIC50 MIC90

MSSA–CR (n = 14) Besifloxacin 0.5–2 0.5 1 –
Moxifloxacin 2–16 2 4 4×
Gatifloxacin 2–16 4 8 8×
Levofloxacin 4–128 8 16 16×
Ciprofloxacin 16–256 32 128 128×

MRSA–CR (n = 15) Besifloxacin 0.5–16 1 4 –
Moxifloxacin 2–128 4 64 16×
Gatifloxacin 2–256 8 64 16×
Levofloxacin 4–512 16 512 128×
Ciprofloxacin 16–256 128 256 64×

MSSE–CR (n = 9)a Besifloxacin 0.5 0.5
Moxifloxacin 2–4 4
Gatifloxacin 2–4 4
Levofloxacin 8–16 16
Ciprofloxacin 8–128 64

MRSE–CR (n = 13) Besifloxacin 0.5–8 0.5 4 –
Moxifloxacin 2–32 4 32 8×
Gatifloxacin 2–64 4 64 16×
Levofloxacin 4–256 16 256 64×
Ciprofloxacin 8–64 64 64 16×

Note: aDue to the limited isolates, only the MIC50 value is given.
Abbreviations: MSSA-CR, methicillin-susceptible ciprofloxacin-resistant Staphylococcus aureus; MRSA-CR, methicillin-resistant ciprofloxacin-resistant S. aureus; MSSE-
CR, methicillin-susceptible ciprofloxacin-resistant Staphylococcus epidermidis; MRSE-CR, methicillin-resistant ciprofloxacin-resistant S. epidermidis; MIC, minimum inhibitory 
concentration.
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To assess these relative potency differences against 

ciprofloxacin-resistant staphylococcal isolates further, any 

isolates with an MIC . 8 µg/mL for any of the fluoroquino-

lones tested in the initial analysis were retested at higher drug 

concentrations. Results of the retest are shown in Table 3. 

For MSSA-CR, besifloxacin showed a 4–128-fold greater 

potency compared with the other fluoroquinolones, while 

for MRSA-CR, besifloxacin showed a 16–128-fold greater 

potency compared with other fluoroquinolones. Likewise, 

for MRSE-CR, besifloxacin showed an 8–64-fold greater 

potency compared with other fluoroquinolones.

Overall, besifloxacin was the most potent antibacterial 

agent tested against corynebacteria, while ofloxacin was 

the least potent fluoroquinolone. The MIC
50

/MIC
90

 values 

for besifloxacin against CDC coryneform group G were 

0.015 µg/mL and 0.125 µg/mL. In contrast, the comparators, 

ie, moxifloxacin, gatifloxacin, ciprofloxacin, and levofloxa-

cin, had MIC
50

 values that were 2–4-fold higher and MIC
90

 

values that were 2–8-fold higher.

In vitro susceptibility of other species of 
ophthalmic interest
Table 4 presents susceptibility data for less frequently isolated 

ocular pathogens of particular interest in ophthalmology, 

namely Neisseria spp, Pseudomonas aeruginosa, and 

Serratia marcescens. Eight P. aeruginosa isolates were 

obtained in the three clinical studies. Ciprofloxacin was the 

most active fluoroquinolone against P. aeruginosa, with MIC 

values ranging from 0.125 µg/mL to 1 µg/mL. Less active 

were besifloxacin (MIC range 1–4 µg/mL) and moxifloxacin 

(MIC range 1–8  µg/mL). The MIC values for Neisseria 

spp (n = 7) varied from 0.008 µg/mL and 0.25 µg/mL for 

besifloxacin to #0.004 µg/mL and 2 µg/mL for ciprofloxacin. 

Nine S. marcescens isolates were obtained in the three clinical 

studies. Ciprofloxacin was the most active fluoroquinolone 

against S. marcescens, with MIC values ranging from 0.03 

to 0.5 µg/mL.

Discussion
The primary objective of this study was to report on the 

bacterial pathogen distribution across three clinical trials 

of besifloxacin ophthalmic suspension 0.6% in the treat-

ment of bacterial conjunctivitis and to report on the in vitro 

antibacterial susceptibility of these pathogens. The clinical 

antimicrobial efficacy of besifloxacin integrated across 

these three clinical trials is described in the companion 

paper by Morris et  al.15 A total of 1324 bacterial patho-

gens were isolated across these studies from 1041 patients 
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Table 4 In vitro activity of besifloxacin and comparator 
fluoroquinolones against pathogens of ophthalmic interest

MIC (μg/mL)

Organism Fluoroquinolone Range MIC50

Neisseria spp  
(n = 7)a

Besifloxacin 0.008–0.25 0.015
Moxifloxacin 0.008–1 0.015
Gatifloxacin 0.008–0. 5 0.25
Levofloxacin 0.008–2 0.015
Ciprofloxacin #0.004–2 0.03

Pseudomonas aeruginosa  
(n = 8)

Besifloxacin 1–4 2
Moxifloxacin 1–8 2
Gatifloxacin 0.5–4 1
Levofloxacin 0.5–2 1
Ciprofloxacin 0.125–1 0.25

Serratia marcescens  
(n = 9)

Besifloxacin 0.125–1 0.5
Moxifloxacin 0.125–4 0.5
Gatifloxacin 0.06–1 0.25
Levofloxacin 0.06–0.5 0.25
Ciprofloxacin 0.03–0.5 0.125

Note: aIncludes Neisseria meningitidis (n = 3), Neisseria gonorrhoeae (n = 2), Neisseria 
sicca (n = 1), Neisseria subflavia (n = 1).
Abbreviation: MIC, minimum inhibitory concentration.
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with culture-confirmed bacterial conjunctivitis, with H. 

influenzae, S. pneumoniae, S. aureus, and S. epidermidis 

being the most prevalent species identified. Other species of 

Corynebacterium, Streptococcus, and Staphylococcus were 

less frequently isolated, while only a few members of the 

Acinetobacter, Enterobacteriaceae, Moraxella, Neisseria, and 

Pseudomonas spp were recovered. Consistent with previous 

reports,4,5 2.7% of eyes at baseline yielding bacterial isolates 

were coinfected with virus, primarily adenovirus, indicating 

that bacterial and viral infections can occur together.

Previous studies on the etiology of bacterial conjunctivitis 

reported the same or similar bacterial pathogens, although 

sometimes with different frequencies.1,7,23,24 These differences 

might be due to several factors, including bacterial culture 

conditions, nomenclature, detection methods, patient age and 

geographic origin, as well as the threshold used to characterize 

an isolate as pathogenic. Sampling the surface of the eyes of 

healthy volunteers has shown that most conjunctivae are colo-

nized by various bacterial species, such as staphylococci and 

corynebacteria.1 Cagle based his definition of a conjunctivitis 

pathogen on the number of bacteria isolated from a patient 

relative to the number of bacteria of the same species isolated 

from healthy subjects.16 If the number of bacteria from a patient 

exceeded a predetermined species-specific threshold level, then 

the isolate was considered to be the cause of the disease. The 

Cagle criteria were applied in the current analysis.

The present study shows differences in the relative patho-

gen distribution of bacterial conjunctivitis by age. In both the 

1–2-year and 3–17-year age groups, H. influenzae was the 

most frequently isolated pathogen, followed by S. pneumoniae 

and other streptococci. In patients 18–64 years of age, the 

most common pathogens were S. pneumoniae, H. influenzae, 

and S. aureus. In patients 65 years and older, S. aureus was 

the most prevalent isolate, followed by corynebacteria and 

H. influenzae. In general, the contribution of H. influenzae, 

S. pneumoniae, other streptococci, and Moraxella catarrhalis 

to the number of bacterial conjunctivitis isolates decreased 

with increasing patient age, while staphylococci, coryne-

bacteria, and Gram-negative species (Enterobacteriaceae, 

Neisseria spp, Pseudomonas spp) increased in prevalence 

with increasing patient age. These results are consistent with 

other studies.7,23,25,26

The overall species contribution was similar between 

the US and Asian clinical sites, with the exception of 

S. pneumoniae, which was far less prevalent among isolates 

from Asian sites. Mahajan et al reported on the etiology of 

bacterial conjunctivitis in India and likewise found a low 

prevalence of S. pneumoniae isolates, specifically 7.5%.24 

Isolates obtained from clinical sites in Asia and the US 

also differed in their antibacterial resistance profiles, most 

notably for S. aureus and H. influenzae. For both species, 

MIC values for all of the fluoroquinolones were higher for 

isolates obtained from Asian clinical sites compared with US 

sites, while for S. aureus oxacillin MIC values were higher in 

isolates obtained from US sites compared with Asian sites.

Approximately one-fourth of H. influenzae and S. pneu-

moniae isolates were β‑lactamase-positive and penicillin-

intermediate-resistant, respectively, a trend which has been 

reported previously.25,27 Cavuoto et  al and Adebayo et  al 

recently reported an increase in methicillin resistance among 

S. aureus isolates from bacterial conjunctivitis patients.23,28 

Similarly, in this study, 13.7% of S. aureus isolates and 45.9% 

of S. epidermidis isolates were methicillin-resistant, and, of 

these, a further 65.4% and 47.1% were also ciprofloxacin-

resistant. In addition, many of the methicillin-resistant and 

ciprofloxacin-resistant isolates were also resistant to azithro-

mycin, indicating that resistance to two or three antibacterial 

agents is not uncommon. This is consistent with previous 

studies of ocular MRSA isolates in which we found similar 

multidrug resistance trends among isolates characterized as 

hospital-associated as well as community-acquired.29 While 

multidrug resistance among ocular isolates has been reported 

in various surveillance studies,30–32 to our knowledge this 

finding represents the largest and most recent analysis of 

multidrug resistance observed in prospective and controlled 

clinical studies of bacterial conjunctivitis. Thus, while the 

spectrum of causative pathogens associated with bacterial 
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conjunctivitis has not changed, multidrug resistance among 

common conjunctivitis pathogens is evolving.

The in vitro potency of besifloxacin was similar to or 

exceeded that of comparator antibacterials. Against Gram-

positive isolates, besifloxacin was the most potent drug, 

followed by moxifloxacin, gatifloxacin, levofloxacin, and 

ciprofloxacin. Against Gram-negative bacteria, ciprofloxacin 

was the most potent antibacterial, while the potency of besi-

floxacin was similar to that of moxifloxacin. In agreement 

with previous reports,32–35 besifloxacin’s potency against 

ciprofloxacin-resistant staphylococcal isolates far exceeded 

that of other ophthalmic fluoroquinolones. Results of sus-

ceptibility retests indicated that besifloxacin was 4–128-

fold more potent against ciprofloxacin-resistant MRSA 

and MRSE compared with other fluoroquinolones. Thus, 

although the methicillin-resistance phenotype does not affect 

fluoroquinolone relative potency, ciprofloxacin resistance, 

which is often concurrent with methicillin resistance, did. 

Silverstein et al recently reported that the in vitro potency 

of besifloxacin was similar to that of vancomycin against 

staphylococcal isolates, including ciprofloxacin-resistant 

MRSA.36 Vancomycin is often used in the treatment of ocular 

MRSA infections.28,37,38

While the superior in vitro activity of besifloxacin against 

drug-resistant staphylococcal isolates is notable, the clinical 

relevance of these in vitro results remains to be shown. Topi-

cal administration of ocular antibiotics results in tear and 

conjunctival tissue concentrations often several-fold higher 

than the MIC, even if the latter is elevated due to development 

of resistance, raising the possibility that some antibacterials 

may be clinically effective even against bacterial strains with 

increased MICs. Nevertheless, the vitro potency of besifloxa-

cin in conjunction with the favorable pharmacokinetic profile 

at the ocular surface39,40 could provide a clinical advantage. 

After a single dose, besifloxacin exposure on the ocular 

surface results in C
max

/MIC and AUC
0–24

/MIC ratios that are 

well above the generally accepted pharmacodynamic ratios 

required for fluoroquinolone efficacy (ie, C
max

/MIC  $  10 

and AUC
0–24

/MIC  $  30–50 for Gram-positive bacteria or 

$100–125 for Gram-negative bacteria)41–43 even for drug-

resistant staphylococcal isolates.

In summary, while the spectrum of causative pathogens 

associated with bacterial conjunctivitis has not changed, the 

incidence of resistance of these organisms to antibacterial 

agents has been increasing.23,28,31,32 Thus, there is a need 

for the development of novel anti-infective agents with 

improved potency and activity against drug-resistant 

pathogens. In this integrated data analysis, besifloxacin, a 

novel chlorofluoroquinolone, demonstrated broad-spectrum 

in vitro activity against the causative agents of bacterial 

conjunctivitis, with potent activity against multidrug-resistant 

staphylococcal isolates.
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