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Abstract: The fabrication and initial applications of nanobubbles (NBs) have shown promising 

results in recent years. A small particle size is a basic requirement for ultrasound contrast-

enhanced agents that penetrate tumor blood vessel pores to allow for targeted imaging and 

therapy. However, the nanoscale size of the particles used has the disadvantage of weakening 

the imaging ability of clinical diagnostic ultrasound. In this work, we fabricated a lipid NBs 

contrast-enhanced ultrasound agent and evaluated its passive targeting ability in vivo. The 

results showed that the NBs were small (436.8 ± 5.7 nm), and in vitro ultrasound imaging 

suggested that the ultrasonic imaging ability is comparable to that of microbubbles (MBs). 

In vivo experiments confirmed the ability of NBs to passively target tumor tissues. The NBs 

remained in the tumor area for a longer period because they exhibited enhanced permeability 

and retention. Direct evidence was obtained by direct observation of red fluorescence-dyed NBs 

in tumor tissue using confocal laser scanning microscopy. We have demonstrated the ability to 

fabricate NBs that can be used for the in vivo contrast-enhanced imaging of tumor tissue and 

that have potential for drug/gene delivery.
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Introduction
Tumors induce angiogenesis to increase their nutrient and oxygen supply, enabling their 

rapid growth.1 However, the blood vessels in tumors are leaky and defective, with large 

pore cutoff sizes, and the endothelial cells are misaligned or have large fenestrations.2 

Moreover, tumors have poor lymphatic drainage compared with normal tissues.2,3 All 

of these features allow for the delivery of drugs and gene carriers, such as liposomes, 

polymer micelles/vesicles and other macromolecules, to the tumor tissue; this ability 

is known as the enhanced permeability and retention (EPR) effect.4,5

The EPR effect of tumor blood vessels enables the design of targeted treatment 

options such as the use of small, negatively charged and PEGylated agents.6 One of the 

basic requirements for therapeutic or imaging agents to be able to leak through tumor 

pores for tumor-targeted therapy and imaging is a small particle size.

The application of microbubbles (MBs) in contrast-enhanced ultrasound (CEUS) has 

become an indispensable part of clinical ultrasonography,7 and molecular imaging via 

ultrasound has recently attracted significant attention.8 MBs help to enhance the speci-

ficity and sensitivity of imaging for various types of diseases, especially with tumors.9 

Other advantages of using MBs include a lower cost of contrast agents, an opportunity 

for real-time observation and the elimination of the exposure to radiation.10
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In the development of molecular imaging, the fundamental 

enabling technology for ultrasonic molecular imaging is 

the targeted CEUS agent.11 However, compared with con-

trast agents for computed tomography (CT) and magnetic 

resonance imaging (MRI), MBs are much larger (2–8 µm). 

Therefore, when used in diagnostic ultrasound, MBs can 

become trapped in the blood pool after intravenous injection. 

Consequently, most research on targeted MBs has been 

limited to studies involving diseases of the cardiovascular 

system, such as inflammation, arteriosclerosis, and thrombus 

formation.12–15 MBs pose severe limitations in tumor-targeted 

imaging due to their large diameters.

Recently developed nanoscale bubbles (nanobubbles 

[NBs]) are promising contrast agents for extravascular ultra-

sonic imaging. Nanoscale ultrasound contrast agents with 

various shells (polymers or phospholipids) and cores (gas, 

liquid, or solid) have been fabricated and exhibit good con-

trast enhancement. Based on several in vitro16–19 and in vivo20 

studies, phospholipid-shell and gas-core NBs have shown 

optimal contrast enhancement abilities. However, research on 

NBs is still in the initial stages.21,22 Moreover, in vivo studies 

have focused on the contrast enhancement abilities of these 

agents in only normal organs or in tumors, and their passive 

tumor-targeted potential has not yet been explored. Whether 

NBs can pass through the endothelial gaps of tumors and 

maintain a high imaging quality is unknown.

In this study, phospholipids were used to form the 

membrane for the fabrication of NBs, which then demon-

strated an ultrasonic imaging ability similar to that of MBs. 

Scanning electron microscopy (SEM) was used to evaluate 

the morphology of the NBs. In vivo experiments confirmed 

the passive targeting ability of NBs in tumor tissues. The 

NBs remained in the tumor area for a longer period than 

MBs, and a high imaging quality was detected using in vivo 

tumor ultrasound imaging. Red fluorescent dye-labeled NBs 

were observed to remain in tumor tissues, as evaluated using 

confocal laser scanning microscopy, and this finding further 

supports the conclusion that NBs are passively targeted to 

tumor tissue.

Material and methods
Materials
The phospholipids used in the fabrication of the NBs included 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; Mw, 

734.05), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-[biotinyl(polyethylene glycol)2000] (PEG2000-DSPE; 

Mw, 3016.81) and 1,2-dipalmitoyl-sn-glycero-3-phosphate 

(DPPA; Mw, 670.88), which was in powder form (Avanti 

Polar Lipids Inc, Alabaster, AL) and used without further 

purification. Pluronic F-68 and glycerol were purchased from 

Sigma-Aldrich (St Louis, MO). Octafluoropropane (C
3
F

8
) gas 

was purchased from the R&D Center for Specialty Gases at 

the Research Institute of Physical and Chemical Engineering 

of Nuclear Industry (Tianjin, China). The fluorescent probes, 

DiI and Hoechst 33342, were purchased from Beyotime 

(Haimen, China).

Synthesis of the bubbles
NBs were prepared using a thin-film hydration-sonication 

method.22 Briefly, all phospholipids (18 mg DPPC, 3.5 mg 

PEG2000-DSPE, and 1 mg DPPA) were dissolved in 4 mL 

of chloroform (a small amount of the fluorescent membrane 

probe DiI was added for confocal laser scanning microscopy) 

and transferred into a 9-cm culture dish to form a thin phos-

pholipid film by natural evaporation in a fume hood. The mate-

rial was then hydrated with 4 mL of hydration liquid, which 

consisted of 10% glycerol (v/v) and 2 mg/mL Pluronic F-68, 

at 37°C in a shaking incubator for 1 hour to prepare liposomes. 

The liposomal suspension was transferred to a 50-mL centri-

fuge tube, and the air above the liquid was replaced with C
3
F

8
 

gas using a long, fine needle and a 50-mL syringe. Finally, 

the 6-mm probe of a VCS 130 PB ultrasonic processor 

(Sonics and Materials Inc, Newtown, CT) was placed at the 

air–liquid interface, and the solution was sonicated at 130 W 

for 5 minutes to form the NBs (Figure 1). Another sample of 

MBs was prepared as a control using the same formula, but 

without DPPA, Pluronic F-68, or glycerol.

The diameters of the bubbles varied widely (from 

100 nm to 3000 nm); thus, a purification of NBs between 

200 nm and 700 nm in diameter was necessary. A low-speed 

centrifugation (50 × g, 5 minutes) separated large bubbles 

from the suspension as a thin layer, which was discarded. 

Centrifugation at a higher speed (805 × g, 30 minutes) was 

performed after the suspension was transferred to a 15-mL 

centrifuge tube. Small NBs were collected after removing the 

lower liquid layer, which contained phospholipid fragments 

and liposomes. Finally, the NBs were resuspended in 4 mL 

phosphate-buffered saline (PBS) and stored at 4°C.

The NB and MB bubble concentrations were determined 

using a hemacytometer. A drop of DiI-labeled sample was 

transferred to a hemacytometer and observed using a Carl 

Zeiss Aviox-1 inverted fluorescence microscope (Carl Zeiss, 

Oberkirchen, Germany). A fluorescent compound, Dil, was 

used to detect bubbles that were not detectable at visible 

wavelengths. Three pairs of images (one fluorescent and 

one bright field image of each field) at different fields were 
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acquired (400×). The boundary of each bubble-counting 

region was confirmed in the bright field image using the 

hemacytometer. The number of bubbles in each region was 

then counted using WCIF ImageJ software (v1.37; National 

Institutes of Health, Bethesda, MA). Finally, the concentra-

tion of the sample (bubbles/mL) was calculated using the 

same cell-counting method. All measurements were carried 

out in triplicate.

Particle-sizing and zeta potential 
measurements
The particle sizes were measured using dynamic light scat-

tering (DLS) with a laser wavelength of 660 nm at an angle 

of 90° using the 90Plus Multi-angle Particle Sizing Option 

(Brookhaven Instruments Corporation, Holtsville, NY). Ten 

microliters of sample and 90 µL of PBS were mixed in sample 

wells before measuring the particle sizes at 25°C. The zeta 

potential of each sample was measured using a Zeta Plus Ana-

lyzer (Brookhaven Instruments Corporation) to determine the 

electrophoretic light scattering at 25°C. All samples used for 

zeta potential measurements were prepared at the same con-

centration as those used for particle sizing. The particle size 

and zeta potential of each sample were measured five times.

Scanning electron microscopy
To visualize the structure of the NBs, scanning electron 

microscopy (SEM) images were recorded. A drop of sample 

on a dust-free foil was placed in a desiccator. After the solvent 

evaporated, each sample was gold sputter-coated for 5 minutes. 

A field emission scanning electron microscope (JSM-6330F; 

JEOL, Tokyo, Japan) was used with a gun acceleration voltage 

of 3.0 kV and a working distance of 9.7 mm.

Biocompatibility tests
Cytotoxicity assay
To confirm good biocompatibility in vitro, we selected 

the mouse prostatic cancer cell line RM-1 to evaluate the 

cytotoxicity of the NBs using the MTT assay. All experiments 

were conducted in triplicate. The cells were seeded in 96-well 

plates at a density of 5000 cells/well and then cultured for 

24 hours in 100 µL of RPMI-1640 medium containing 10% 

fetal bovine serum (FBS) in a humidified atmosphere with 

5% CO
2
. The cells were then incubated for 24 hours in the 

same volume of fresh medium with various phospholipid 

concentrations (0.5–2500  µg/mL); the medium was then 

replaced with 100 µL of fresh medium containing 10 µL of 

MTT solution (5 mg/mL), and the cells were subsequently 

incubated for 4  hours. Dimethyl sulfoxide (100 µL) was 

added to dissolve the substrate after the MTT-containing 

supernatant was discarded. After gentle agitation for 

5  minutes, the absorbance of each well at 494  nm was 

recorded using an Infinite F200  multimode plate reader 

(Tecan, Männedorf, Switzerland).

Hemolysis test
Blood was obtained from the main abdominal artery of 

Sprague–Dawley rats and was collected in a tube that con-

tained heparin sodium (15 UI/mL). Each 4 mL of rat blood 

was mixed with 5 mL of normal saline. Then, 0.2 mL of 

blood diluent was added to 10  mL of normal saline as a 

negative control, and 0.2 mL of blood diluent was added to 

10 mL of double-distilled water as a positive control. The 

same erythrocyte concentration was used for all phospholipid 

concentrations (0.5–2500 µg/mL). The solutions were incu-

bated in a 37°C water bath for 1 hour. The degree of hemolysis  

DPPC

Thin-film C3F8 gas
H2O
core

C3F8 gas
core

SonicatedHydration

Liposome NanobubbleDPPA

PEG-DSPE

Figure 1 Formation and structural transitions of nanobubbles for ultrasonic imaging and tumor targeting.
Abbreviations: DPPA, 1,2-dipalmitoyl-sn-glycero-3-phosphate; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; PEG-DSPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[biotinyl(polyethylene glycol)2000].
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was determined spectrophotometrically at 540 nm using an 

Infinite F200 multimode plate reader (Tecan).

In vitro ultrasound imaging
To compare the ultrasonic imaging ability of the NBs with 

MBs, in vitro ultrasound imaging experiments were carried 

out; 1  mL of NB and MB suspension at various bubble 

concentrations (from 1.0  ×  105 to 6.4  ×  106 bubbles/mL) 

was added to the sample wells of a custom-made 2% 

(w/v) agarose mold (Figure  2). Another sample of NB at 

the concentration of 8.0 × 105 bubbles/mL was exposed to 

high-power ultrasound (1 MHz, 0.78 W/cm2) for 30 seconds 

by using a self-made low-frequency therapeutic ultrasound 

system (Chongqing, China) for NB destruction experiment. 

A clinical ultrasound scanner (Acuson Sequoia 512; Siemens, 

Malvern, PA) system with a 15 L8-S high-frequency linear 

transducer was used. The transmitted power was -18 db, 

which corresponded to an MI of 0.10. The contrast pulse 

sequencing (CPS) gain was 0 db, and the focal zone was 

placed at a depth of 1.5 cm, which was at the center of the 

sample well. Three images were taken for each sample.

Image analysis was performed using ImageJ software to 

analyze the gray-scale values of the samples. Circular regions 

of interest (ROIs) were outlined in each sample well. The 

quantitative grey-scale ultrasonic intensity of the samples 

was normalized to that of gas-free water. The intensity value 

was defined as the gray-scale value ratio of contrast agent 

to gas-free water.

In vivo contrast-enhanced ultrasound 
imaging
The in vivo imaging capability of the NB contrast agents 

was evaluated using Sprague–Dawley rats. Each rat was 

anesthetized with 300  mg/kg of 10% chloral hydrate by 

intraperitoneal injection. The animals were placed on a warm 

blanket to maintain their body temperature within normal 

range. The NB samples (109 bubbles/mL) were intravenously 

injected at a dosage of 0.1 mL/kg. Various organs, such as 

the heart, liver and kidneys, were imaged transabdominally 

using a broadband 15L8-S high-frequency linear transducer 

in CPS mode with an MI of 0.19. All animal experiments were 

carried out in accordance with the procedures and guidelines 

of the Institutional Animal Care and Use Committee and 

were approved by the Animal Experiment Committee and 

Biosafety Committee at Sun Yat-Sen University of Medical 

Science.

In vivo passive tumor-targeting ability
RM-1 cells were transplanted into BALB/c nude mice for 

passive tumor-targeting imaging experiments. The cells 

were cultured in RPMI-1640  medium supplemented with 

10% FBS (GIBCO, Carlsbad, CA) and incubated at 37°C 

in a humidified atmosphere of 5% CO
2
 in air. A total of six 

BALB/c nude mice (5 weeks, 18–23 g) were examined. The 

cells (106) were resuspended in 0.1 mL of PBS and subcutane-

ously injected into the dorsal scapular area on the right side 

for tumor xenografts. All in vivo experiments began when 

the tumors reached a diameter of 0.8–1.2 cm.

Mice were anesthetized with 10% chloral hydrate and 

fixed on a plate before ultrasonic imaging. The ultrasonic 

transducer was fixed on an iron support stand. The distance 

between the transducer and the tumor was approximately 

2 cm, and the space between them was filled with an adequate 

quantity of ultrasonic transmission gel. MBs and NBs were 

used in the same mice to compare the performance of NBs 

to that of MBs. MBs (6.0 × 106) were suspended in 50 µL of 

PBS and injected into the tail vein. Ultrasonic images were 

acquired using a 7-MHz transducer in CPS mode, and the 

acoustic focal zone was placed at the center of the tumor at the 

largest transverse cross-section. A 10-minute CPS imaging 

sequence was acquired, and further images were recorded 

every 30 seconds for 1.5 hours. After the MB experiments, 

the bubbles were allowed to clear from the circulation of the 

mouse for 2 hours. Finally, the NBs were studied using the 

same bubble concentration and imaging protocol.

All digital clips and images were stored for offline 

examination. Gray-scale images were analyzed using ImageJ. 

The quantitative gray-scale ultrasonic intensity of each image 

was defined as the ratio of post-contrast agent injection to 

pre-contrast agent injection. A time–intensity curve for each 

mouse was created, and three important parameters were 

Agarose mold
(top view) ScreenSamples

Sample
wells

Transducer

Figure 2 Custom-made 2% (w/v) agarose mold for use with in vitro ultrasound 
imaging and the in vitro experimental setup.
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analyzed statistically: time to peak (TTP), peak intensity 

(PI), and half-time of washout (HT).

Confocal laser scanning microscopy 
examination
To confirm that the NBs were small enough to pass through 

the endothelial gaps of tumors, we used confocal laser scan-

ning microscopy (CLSM) to determine the location of red 

fluorescently dyed NBs in vivo; this technique is regarded 

as the gold standard. Tumor-carrying mice were randomly 

separated into two groups: NB and MB injection. A total of 

250 µL (2.5 × 107 bubbles/mL) of DiI-labeled NBs or MBs 

were injected into the tail vein of each mouse. To clear the 

labeled bubbles from circulation, the heart was perfused with 

0.9% normal saline 3 hours after bubble injection. The tumors 

and muscles of the right thigh (used as negative controls 

because the capillaries of skeletal muscle are continuous) 

were immediately extracted for sectioning into 5-µm slices. 

Frozen sections were stained in a solution of 2  µg/mL 

Hoechst 33342 for 30 minutes to mark the nucleus. Images 

were recorded using an Olympus PV1000-IX81 Confocal 

Microscope (Olympus, Tokyo, Japan). DiI and Hoechst 

33342 were excited at 550 and 352 nm, respectively, and the 

emissions were recorded at 565 and 455 nm, respectively.

Statistical analysis
The unpaired Student’s t-test was performed for all 

comparisons. All data are expressed as the mean  ±  the 

standard errors of the mean (SEM). The data were statisti-

cally analyzed with SPSS software (version 13.0; SPSS 

Inc, Chicago, IL) using one-factor analysis of variance. 

A P value , 0.05 was considered statistically significant. 

All statistical tests were two-tailed.

Results
Characterization of the bubbles
The average diameter of the nanoscale ultrasound contrast 

agent (NBs) was 436.8 ± 5.7 nm (n = 5) (Figure 3A), and that 

of the control MBs was 1220 ± 65 nm (n = 5) (Figure 3B). 

Zeta potential measurements showed that the NBs had a net 

negative charge of −18.36 ± 0.81 mV (n = 5), while that of the 

MBs was −2.93 ± 0.42 mV (n = 5). The bubble concentrations 

of the NBs and MBs were (1.22 ± 0.16) × 109 bubbles/mL 

(n = 3) and (5.64 ± 0.19) × 108 bubbles/mL (n = 3), respec-

tively. The negative charge was due to the presence of the 

anionic phospholipid DPPA, which helped to avoid physical 

aggregation of the bubbles and restricted the size of the NBs. 

Surface morphology and size distribution were viewed using 

SEM (Figure 3C), and the results showed that the NBs were 

small, spherical, and nonaggregating. The size distribution 

of the NBs was between 250–500 nm, which was similar to 

that measured using DLS.

Biocompatibility tests
The cytotoxicity of the NBs was evaluated using the MTT 

assay and the mouse prostatic cancer cell line RM-1. 

Figure 4  shows the cytotoxicity of the NBs after incuba-

tion for 24 hours. The MTT results indicate that the NBs 

had no obvious cytotoxicity toward this cell line within 

the concentrations used for in vivo ultrasound imaging 

with phospholipids (0.5–5 µg/mL). At higher phospholipid 

concentrations (higher than 10 µg/mL), their cytotoxicity 

increased rapidly. In vitro hemolysis tests were carried out 

spectrophotometrically. As shown in Figure 4, the presence 

of lower concentrations of NBs had no effect on the rate 

of hemolysis. However, at phospholipid concentrations 

higher than 50  µg/mL, hemolysis occurred in a dose-

dependent manner.

In vitro and in vivo contrast enhancement 
abilities of NBs
Ultrasound images were acquired at various bubble con-

centrations (Figure 5A) using diagnostic high-frequency 

ultrasound (7  MHz). The results showed that as the 

bubble concentration increased, the ultrasonic signals 

of both the NBs and MBs increased. NBs exhibited an 
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ultrasonic contrast enhancement ability similar to that of 

MBs (Figure 5B). No statistical differences were observed 

between the signal enhancement from NBs and that of 

MBs (P = 0.134). After high-power ultrasound exposure, 

gray-scale intensity decreased as NBs were destroyed 

(Figure 5C).

In the in vivo studies, CPS-mode gray-scale images were 

obtained before and after the administration of NB contrast 

agent to Sprague–Dawley rats (Figure 6). The heart, liver, 

and kidneys showed excellent enhancement several seconds 

after intravascular administration of the NBs.

Imaging of tumors based on passive 
tumor targeting
CPS-mode imaging was carried out on six tumor-carrying 

mice. No animals died during the experiment. Figure 7 shows 

a representative set of images of the contrast enhancement 

provided by NBs (Figure 7A) and control MBs (Figure 7B) 

over time (0, 0.5, 1, 5, 10, and 15  minutes). The tumor 

imaging results showed that the NBs considerably improved 

contrast enhancement. The enhancement obtained using NBs 

lasted for approximately 1 hour, whereas that obtained using 

the control MBs lasted for only 15 minutes. At 15 minutes 

after injection, the gray-scale intensity of the NBs was sig-

nificantly higher than that of the control MBs (P , 0.001).

Representative time–intensity curves show the increases 

in the contrast ratio of the intensity produced by the NBs and 

control MBs over time (Figure 7C). The slope of the NB line 

is less steep than that of the control MB line. With the NBs, 

the TTP was later (P = 0.015), the PI was lower (P = 0.027), 

and the HT was longer (P = 0.001) than the corresponding 

values for the control MBs (Table 1).
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CLSM experiments
Under CLSM, the distributions of the DiI-labeled NBs or 

MBs in the frozen sections of the tumors and skeletal muscle 

were apparent (Figure 8). In tumors, a considerable number 

of DiI-labeled NBs were present in the intercellular space 

(Figure 8A), whereas the NBs could barely be observed in 

skeletal muscle sections (Figure 8C). In the control, rare DiI-

labeled MBs were observed in tumors and skeletal muscle 

(Figure 8B and D).

Discussion
Recently, nanoscale ultrasound contrast-enhanced agents 

with various shells (polymers or phospholipids) and cores 

(gas, liquid, or solid) have been fabricated. Good contrast-

enhanced effects have been observed in a number of reported 

studies, and phospholipid-shell and gas-core NBs have shown 

optimal contrast-enhancing abilities.16–19 However, studies in 

vivo have focused on the contrast enhancement abilities of 

these agents in normal organs or tumors, not on the potential 

of NBs for the passive targeting of tumors. As a result, the 

purpose of this work was to fabricate nanosized, phospholipid-

shelled NBs with high ultrasonic-imaging efficiency and of 

a sufficiently small size to pass through the pores of tumor 

vasculature and achieve passive tumor targeting. Herein, NBs 

that were demonstrated to have small diameters using DLS 

and SEM were evaluated for their ultrasound imaging ability 

in vitro and their delayed imaging ability in tumor tissues.

A key factor in producing small NBs was the presence of 

Pluronic F-68, which stabilizes the NBs, controls their size, 

and interacts with lipid shells to change the lipid fluidity or 

bubble elastic modulus.22 One of the components, the anionic 

phospholipid DPPA, equipped the NBs with negatively 

charged membranes to avoid aggregation and enhance the 

stability of the bubbles due to electrostatic repulsive forces. 

SEM is the gold standard for determining the diameter 

distribution and morphology of NBs. The results of SEM 

and DLS showed that the NBs were small (,500 nm) and 

spherical, which implies that the small NBs with the large 

bubbles removed responded well to ultrasound.

The NBs were composed of phospholipids that are used 

in the cell cytomembrane and are known to be low-toxicity 

Heart

Kidney

Liver

Figure 6 Contrast pulse sequencing-mode images of various organs of normal rats. 
Images after nanobubble injection (right) showed obvious contrast enhancement 
in the heart, kidney and liver of Sprague–Dawley rats compared with preinjection 
images (left).
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Figure 7 In vivo passive tumor targeting. Representative subcutaneous tumor 
images before (blue dotted line) and after the injection of nanobubbles (NBs) (A) 
compared with microbubbles (MBs) (B) at various time points (0, 0.5, 1, 5, 10, and 
15 minutes). The corresponding time–intensity curve of tumor enhancement after 
injection of the contrast agent (C).
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materials. The results of the MTT assay and the hemolysis 

test, which were used to determine the cytotoxicity of the 

NBs, confirmed their biological safety. At commonly used 

phospholipid concentrations, the NBs were safe for use in 

cell studies and in vivo ultrasound imaging.

The NBs exhibited similar echogenic ability to the control 

MBs in vitro using high-frequency diagnostic ultrasound. 

This similarity likely resulted from two factors. First, lipid 

shells are easier to form and yield a very echogenic and 

elastic bubble.23 Highly compressible shells play an impor-

tant role in the echogenicity of NBs by allowing high scat-

tering.24 Second, the CPS mode of the Sequoia 512 scanning 

instrument is not only a harmonic imaging mode, but also a 

summation of corresponding echoes from three pulses with 

different amplitudes and phases.25 Although the resonant fre-

quency of the NBs was much higher than that of the clinical 

diagnostic ultrasound, the high scattering may enhance the 

acoustic imaging impact of these NBs.

The results of in vivo ultrasonic experiments used to 

examine the passive targeting imaging of tumors suggested 

that NBs are retained in the tumor tissue for longer periods 

than MBs. All parameters of the time–intensity curve sup-

ported the imaging results. The TTP was later (P = 0.015), the 

PI was lower (P = 0.027), and the HT was longer (P = 0.001) 

in the NB group than the corresponding values for the con-

trol MB group in tumor areas; all of these results stemmed 

from the small size of the NBs. First, the small diameter 

helped the bubbles to permeate the tumor vasculature and 

remain in the tumor tissue.1 As time passed, greater num-

bers of NBs passed through the endothelial gaps and were 

retained. This allowed the echogenicity to remain strong 

for much longer periods than the MBs, which were almost 

cleared after 10 minutes. Second, some time is necessary for 

the permeation and aggregation of the NBs; this requirement 

explains why the TTP of the NBs was later than that of the 

control MBs, which were too large to fit through the endothe-

lial gaps. Third, because of their small size, the NBs were 

expected to absorb high-frequency ultrasound to a greater 

degree than their scattering at the fundamental frequency;26 

thus, the NBs exhibited a lower peak intensity in this study. 

Finally, their small size and PEGylated lipid shells helped the 

NBs escape from the mononuclear phagocyte system.27,28

CLSM imaging revealed the location of the NBs after 

intravenous injection. The majority of tumors have a pore 

cutoff size between 380 and 780 nm,16,29 which is the founda-

tion of the molecular imaging of tumors using passive tumor 

targeting.30 In the present study, DiI-labeled NBs penetrated 

through interendothelial gaps and accumulated in the tumor, 

and red fluorescence was observed in the images. However, 

Table 1 Quantitative parameters of NBs and MBs in in vivo 
tumor ultrasound imaging (mean ± SEM)

TTP (seconds) PI (ratio) HT (seconds)

NBs 165.0 ± 15.1 6.9 ± 0.8 1265.0 ± 60.3
MBs 24.2 ± 2.5 8.4 ± 0.7 310.0 ± 20.7
t 3.660 -3.096 7.222
P 0.015 0.027 0.001

Abbreviations: HT, half-time to washout; MBs, microbubbles; NBs, nanobubbles; 
PI, peak intensity; SEM, scanning electron microscopy; TTP, time to peak.

A

Merge

Dil

Nucleus

B C D

Figure 8 Confocal laser-scanning microscopy images of frozen sections after nuclear labeling. A considerable number of DiI-labeled nanobubbles are observed in the intercellular 
space (A), whereas DiI-labeled microbubbles are hardly visible in tumors (B). Both DiI-labeled nanobubbles and microbubbles were difficult to detect in skeletal muscle (C and D).
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the MBs were absent from the tumor tissue as demonstrated 

by the almost complete absence of DiI red fluorescence. 

These phenomena could explain the ultrasonic imaging per-

formance. At the later stage of ultrasound contrast-enhanced 

imaging, NBs passed through the pores in tumor vessels and 

accumulated in the tumor; therefore, the contrast enhance-

ment remained for a much longer period than when using 

the MBs, which do not pass through. The inter-endothelial 

gaps of normal tissue are less than 7 nm,31 and neither NBs 

nor MBs can pass through gaps of this size. As a result, there 

was passive targeting of the NBs to tumors.

Conclusion
The basic requirement of tumor imaging and targeting by 

ultrasound is that the particle size of the ultrasound contrast-

enhanced agents be small. However, a nanoscale particle size 

reduces the ultrasonic imaging ability in clinical diagnostic 

ultrasound applications. How this contradiction is solved to 

realize tumor targeting is an important topic in the use of 

ultrasound in molecular imaging. In this work, we fabricated 

a nano-sized lipid NB contrast-enhanced ultrasound agent 

and evaluated its echogenic ability in vitro and in vivo. Its 

ability to passively target tumors was confirmed by in vivo 

ultrasonic imaging and CLSM. Their characteristics suggest 

that NBs may be applicable to ultrasonic molecular imaging 

and tumor-targeting therapy. Potential applications for NBs 

include contrast-enhanced imaging and drug/gene delivery 

to tumors.
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