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Abstract: Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung 

disease characterized by airflow limitation that is not fully reversible. In a significant proportion of 

patients with COPD, reduced lung elastic recoil combined with expiratory flow limitation leads 

to lung hyperinflation during the course of the disease. Development of hyperinflation during the 

course of COPD is insidious. Dynamic hyperinflation is highly prevalent in the advanced stages 

of COPD, and new evidence suggests that it also occurs in many patients with mild disease, 

independently of the presence of resting hyperinflation. Hyperinflation is clinically relevant for 

patients with COPD mainly because it contributes to dyspnea, exercise intolerance, skeletal 

muscle limitations, morbidity, and reduced physical activity levels associated with the disease. 

Various pharmacological and nonpharmacological interventions have been shown to reduce 

hyperinflation and delay the onset of ventilatory limitation in patients with COPD. The aim of 

this review is to address the more recent literature regarding the pathogenesis, assessment, and 

management of both static and dynamic lung hyperinflation in patients with COPD. We also 

address the influence of biological sex and obesity and new developments in our understand-

ing of hyperinflation in patients with mild COPD and its evolution during progression of the 

disease.

Keywords: chronic obstructive pulmonary disease, hyperinflation, expiratory flow limitation, 

operational lung volumes

Introduction
Chronic obstructive pulmonary disease (COPD) is a preventable and treatable lung 

disease characterized by airflow limitation that is not fully reversible.1 COPD is 

a leading cause of mortality and morbidity worldwide, even if it remains largely 

underdiagnosed.2,3 Currently, the prevalence of the disease is estimated to be 

around 10% in the population aged .40 years4 and could reach around 20%–30%5,6 

when including milder patients (Global initiative for chronic Obstructive Lung 

Disease [GOLD] stage 1).1

In a significant proportion of patients with COPD, reduced lung elastic recoil 

combined with expiratory flow limitation eventually leads to lung hyperinflation dur-

ing the course of the disease.7 In patients with COPD, the lung can be hyperinflated 

at rest (static hyperinflation) and/or during exercise (dynamic hyperinflation) when 

ventilatory requirements are increased and expiratory time is shortened. Hyperinflation 

is clinically relevant for patients with COPD mainly because it contributes to the 

dyspnea8 and morbidity associated with the disease.9 In fact, although measurement 

of expiratory flows is a prerequisite for the diagnosis and staging of COPD, the effects 

In
te

rn
at

io
na

l J
ou

rn
al

 o
f C

hr
on

ic
 O

bs
tr

uc
tiv

e 
P

ul
m

on
ar

y 
D

is
ea

se
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/COPD.S38934
mailto:didier.saey@rea.ulaval.ca


International Journal of COPD 2014:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

188

Gagnon et al

of the disease on static and dynamic lung volumes correlate 

better with patient symptoms and impairment in functional 

capacity than spirometric indices of the disease.10 Moreover, 

dynamic lung hyperinflation is related to reduced daily physi-

cal activity in COPD,11 which is an important component of 

quality of life.12

Despite the difficulties in establishing a cause-effect 

relationship, exercise intolerance and lung hyperinflation are 

closely interrelated in COPD.13,14 While exercise intolerance 

in patients with COPD is complex and multifactorial,15–17 

dynamic hyperinflation remains a major contributor to exercise 

limitation that is consistently observed in this disease.18 Dur-

ing exercise, hyperinflation may impede cardiac19,20 and respi-

ratory muscle function and increase the work of breathing.21 

Finally, this phenomenon can also occur in patients with mild 

disease,22–24 a category of individuals likely representing a 

great portion of patients diagnosed with COPD.5

This review addresses the more recent literature regard-

ing the pathogenesis of both static and dynamic lung 

hyperinflation. The pathophysiology and physiological con-

sequences of lung hyperinflation are summarized, as well as 

management, pharmacological treatment, and the impact of 

pulmonary rehabilitation on hyperinflation. We also address 

the influence of biological sex and obesity and new develop-

ments in our understanding of hyperinflation in mild COPD 

patients and its evolution during progression of the disease. 

The review is based on literature available on the PubMed 

database, irrespective of the year of publication.

Pathophysiology of hyperinflation
Lung volumes can be divided into several compartments 

defined by the normal cycle of tidal breathing and the maxi-

mum capacity to inhale and exhale (Figure 1A). In health, 

during relaxed tidal breathing, the lungs tend to return to a 

basal level of inflation, which is termed functional residual 

capacity (FRC) or end-expiratory lung volume (EELV). 

During the hyperpnea of exercise, both tidal volume (V
T
) 

and respiratory rate increase to meet the increased ventila-
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tory requirements. Therefore, maintenance of stable lung 

volumes requires that expiratory muscles must be recruited 

to elevate pleural and alveolar pressure, increase expiratory 

flow, and force the increased V
T
 to be completely exhaled 

before the next inhalation.25

Hyperinflation, defined as an increased volume of air 

remaining in the lung at the end of spontaneous expira-

tions, is present when resting FRC or EELV is increased 

above normal.26 Two types of hyperinflation can be distin-

guished, ie, static and dynamic hyperinflation. A significant 

proportion of patients with COPD have some degree of 

lung hyperinflation, which often remains undetected in 

the absence of detailed physiological analysis (see sec-

tion on assessment). Both static and dynamic effects of 

breathing contribute differently to lung hyperinflation 

in COPD.

Static and dynamic hyperinflation
Static hyperinflation
Under normal physiological conditions, for a given change 

in pleural pressure generated by the respiratory muscles, the 

attainable end-inspiratory lung volume (EILV) and EELV 

are determined by the passive pressure–volume relationship 

of the respiratory system (Figure 2).26,27 In healthy subjects, 

elastic recoil pressure of the respiratory system decreases 

progressively during exhalation, reaching zero at FRC or 

EELV and the elastic work of breathing is minimized by 

maintaining V
T
 within 20%–80% of the vital capacity range. 

With advancing age, damage to the connective tissue of 

the lung occurs, resulting in a reduction of the lung elastic 

recoil pressure.28 The equilibrium point (FRC or EELV) 

therefore occurs at a higher lung volume than in younger 

subjects, with a consequence of an increased volume of air 
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December 2006 15:61–67; doi:10.1183/09059180.00010002.26 Copyright © remains with European Respiratory Society.
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remaining in the lung at the end of spontaneous expirations. 

This is referred to as static hyperinflation, which exists at 

rest.28 In COPD with emphysema, the lung recoil pressure is 

further reduced by a reduced elastic load related to smoking 

or α1-antitrypsin deficiency.29 Therefore, the elastic recoil 

pressure of the respiratory system falls to zero at a larger 

FRC or EELV, resulting in more static hyperinflation.

Dynamic hyperinflation
Dynamic lung hyperinflation refers to the temporary increase 

in EELV above the resting value during periods of increased 

ventilatory needs (eg, exercise). It is dependent on operational 

lung volumes and expiratory time, and is thus a key mecha-

nistic consequence of expiratory flow limitation.14

During exercise, respiratory rate increases and V
T
 expands 

to accommodate increased respiratory demands. The hyper-

pnea induces phasic activity of expiratory muscles in both 

healthy individuals and in those with COPD.30,31 In healthy 

individuals, the increased expiratory effort progressively 

decreases EELV and expiratory airflows are sufficient to allow 

complete exhalation of the inhaled V
T
 before the next inhala-

tion, even when breathing approaches maximal ventilation. 

In contrast, the combined effects of decreased lung elastic 

recoil pressure and increased airways resistance in patients 

with COPD results in an increased mechanical time con-

stant for lung emptying in many alveolar units. Thus, as the 

respiratory rate and expiratory flow increases, the expiratory 

time available for exhalation can become insufficient and 

complete exhalation of V
T
 to the relaxation volume becomes 

increasingly compromised, and EELV usually increases with 

hyperpnea.32 In addition, similar to healthy subjects, patients 

with COPD recruit expiratory muscles to increase their pleu-

ral and alveolar pressures, in an effort to increase expiratory 

flow. However, in these patients, the airways typically collapse 

when the pleural pressure becomes positive, thereby prevent-

ing increased expiratory flow.33 As a result, exhalation may 

not be completed prior to the onset of the next breath, caus-

ing an increase in operational lung volumes and progressive 

air retention called “air trapping”.13,26,34 This is referred to 

as dynamic hyperinflation, which can occur independently 

of static hyperinflation. Usually observed during exercise, 

the onset of dynamic hyperinflation will also occur at lower 

minute ventilations as disease severity limiting exhalation 

worsens, and may even occur during quiet breathing in severe 

patients or during an acute exacerbation.14,35

Natural history of hyperinflation
Development of hyperinflation during the course of COPD 

is insidious. In early COPD, the forced expiratory volume 

in one second (FEV
1
) may not be the optimal indicator of 

small airways obstruction.36 In fact, considering the extent 

of small airway inflammation reported in patients with mild 

COPD,37 it is conceivable that substantial structural dam-

ages could have taken place before marked expiratory flow 

limitation is objectively measured via FEV
1
.38 Early changes 

observed in pulmonary function of heavy smokers without 

COPD likely imply increased total lung capacity (TLC) and 

residual volume because of the loss of elastic recoil.39 These 

early changes reflecting lung hyperinflation are observed 

without any apparent reduction in FEV
1
.39 In mild COPD, 

measures of TLC, FRC, and residual volume were found to 

be significantly above predicted values while vital capacity 

and inspiratory capacity (IC) were preserved.40 Throughout 

the continuum of hyperinflation from mild to more severe 

COPD, vital capacity and IC decrease linearly with the pro-

gression of airflow obstruction (FEV
1
 decline). On the other 

hand, the progressive increase in TLC, FRC, and residual 

volume appears to be exponential with the worsening airflow 

limitation during the course of COPD.40

During exercise, some studies report that dynamic hyper-

inflation is already present in patients with mild disease 

(GOLD stage 1), even when resting hyperinflation is slightly 

present22,23 or absent.24,41–43 Even if patients with mild COPD 

usually have preserved resting IC, they still exhibit dynamic 

hyperinflation and abnormal ventilatory mechanics during 

exercise when compared with healthy controls.22,44 At peak 

exercise, notwithstanding the severity of the disease, patients 

seem to show a consistent fall of approximately 20% of their 

resting IC at peak exercise.22–24,45–48

In patients with moderate-to-severe COPD, the level of 

dynamic hyperinflation is poorly related to FEV
1
.49 How-

ever, when comparing two patients with similar FEV
1
, the 

one presenting with a reduced diffusion capacity, more 

severe small airway obstruction, and a higher ventilatory 

response to exercise will tend to develop more dynamic 

hyperinflation early during exercise.13 Moderate levels of 

dynamic hyperinflation can even be observed in healthy 

elderly individuals aged .70 years without any pulmonary 

disease following normal aging of the lung parenchyma.50–52 

Likewise, the ventilatory response during exercise of a 

healthy elderly subject could be similar to that of a patient 

with GOLD stage 1 COPD.53

Physiological and sensory 
consequence of lung hyperinflation
Dyspnea
The interrelation between hyperinflation and dyspnea 

has been evaluated indirectly using regression analysis. 
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O’Donnell and Webb54 evaluated 23 patients with severe 

COPD and found that the change in EILV from baseline 

was the strongest predictor of the change in Borg dysp-

nea ratings (r=0.63, P,0.001). In this study, EELV and 

V
T
 (both components of EILV) combined with breathing 

frequency accounted for 61% of the variance in dyspnea 

intensity. A subsequent study in a larger cohort of COPD 

patients (n=105) demonstrated that the V
T
/IC ratio, an index 

of EILV and V
T
 constraint, was the strongest predictor 

of exertional dyspnea based on multiple linear regression 

analysis.13 Moreover, interventions that deflate the lungs (ie, 

reduce EILV and EELV) and delay the onset of critical V
T
 

constraints consistently reduce dyspnea intensity in patients 

with COPD during exercise.45,46,55,56

Although dynamic hyperinflation is a cardinal feature of 

COPD with important physiological consequences, a small 

proportion of patients (∼15%–20%) do not dynamically 

hyperinflate during exercise even though they still experi-

ence intolerable dyspnea.13,42,57 Guenette et  al42 recently 

evaluated the effects of dynamic hyperinflation on dyspnea 

by comparing a group of well characterized COPD patients 

who did not acutely increase their EELV during exercise 

(nonhyperinflators, n=65) with those that did increase their 

EELV (hyperinflators, n=65). Despite being well matched 

for age, sex, body mass index, and baseline airflow obstruc-

tion, the authors were not able to show that the hyperinfla-

tors experienced more dyspnea than the nonhyperinflators. 

The authors concluded that perhaps the regulation of EILV 

provides a better index of critical constraints to ventilation 

(and therefore dyspnea) during exercise than the behavior 

of dynamic EELV per se. This finding does not necessar-

ily diminish the physiological and sensory significance of 

dynamic hyperinflation, but rather shows that some indi-

viduals with airflow obstruction can still experience similar 

critical V
T
 constraints (and thus similar dyspnea ratings), 

regardless of how they regulate EELV.

Respiratory and limb muscle function
Respiratory muscles
Static lung hyperinflation alters the geometry of the thorax 

and shortens the diaphragm,58 thereby placing the diaphragm 

in a suboptimal contractile position to generate pressure. 

This mechanical disadvantage reduces the force-generating 

capacity of the inspiratory muscles and is likely to become fur-

ther exaggerated in patients who dynamically hyperinflate.59 

Indeed, the ability of the respiratory muscles to generate 

pressure decreases at high lung volumes in humans.58,60 These 

functionally weakened respiratory muscles coupled with the 

increased elastic and threshold loading of the inspiratory 

muscles61 results in a substantial increase in the work and 

oxygen cost of breathing.21,62

Despite the known deleterious effects of static and 

dynamic hyperinflation on respiratory muscle function, 

some have postulated that respiratory muscle strength and 

function may actually be preserved in some patients with 

COPD.58,63,64 Chronic exposure to lung hyperinflation may 

result in physiological adaptations to preserve inspiratory 

muscle strength and perhaps obviate the development of 

diaphragmatic fatigue.65 Some of the documented adaptations 

include: an increase in the relative fraction of fatigue-resistant 

slow-twitch (type I) muscle fibers66 that can occur even in 

mild-to-moderate COPD;67 a reduction in sarcomere length 

which permits an increase in pressure production at higher 

lung volumes;68 increased mitochondrial density;68 and/or an 

improvement in mitochondrial respiratory chain capacity.69

Limb muscles
A direct link between dynamic hyperinflation and peripheral 

muscle function has not been fully established. Studies in 

healthy subjects suggest that high levels of respiratory muscle 

work may result in a sympathetically mediated metaboreflex 

which causes redistribution of blood flow from the locomotor 

muscles to the respiratory muscles.70–72 A reduction in loco-

motor muscle blood flow could result in an accelerated rate 

of development of limb muscle fatigue during exercise. This 

contention is supported by studies that show reduced limb 

muscle fatigue and corresponding improvements in perceived 

leg discomfort when the work of breathing is mechanically 

unloaded during exercise in healthy humans73 and in patients 

with COPD.74 In theory, dynamic hyperinflation and the 

associated increase in work and oxygen cost of breathing may 

compromise blood flow to the periphery, leading to compro-

mised oxygen delivery and therefore causing increased leg 

fatigue. Indeed, studies that have unloaded the respiratory 

muscles of hyperinflated patients with bronchodilators or 

heliox resulted in an improvement in indices of limb muscle 

fractional oxygen extraction.75,76 For example, Louvaris et al77 

recently demonstrated that improving operating lung volumes 

in hyperinflated COPD patients with heliox enhanced oxygen 

delivery to the quadriceps muscles during exercise by increas-

ing arterial oxygen content and blood flow to the quadriceps 

muscles. The authors speculated that this was likely due to 

blood flow redistribution from the respiratory muscles since 

cardiac output was similar between heliox and room air.

Cardiac function
Lung hyperinflation has been shown to adversely affect 

cardiovascular function in patients with COPD. Lung 
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hyperinflation reduces right ventricular preload and venous 

return at rest and during exercise.78–81 Left ventricular 

afterload may also increase due to the high intrathoracic 

pressure swings needed to overcome the high elastic and 

resistive loads encountered by patients with COPD during 

exercise.80 In addition, right ventricular afterload increases 

during exercise because there is an increase in pulmonary 

vascular resistance resulting from patients breathing at a high 

EILV.82,83 There is also indirect evidence to suggest that lung 

hyperinflation is associated with pulmonary hypertension. 

A number of mechanisms have been proposed to explain 

this association as recently described,84 including increased 

intrathoracic pressures, cardiovascular effects, increased 

lung volume, altered gas exchange, pulmonary vascular 

remodeling, and endothelial dysfunction. Collectively, these 

cardiovascular consequences of lung hyperinflation likely 

contribute, in highly variable combinations, to the reduced 

cardiac performance observed in some COPD patients during 

exercise.20,85 However, it should be acknowledged that not all 

studies have been able to demonstrate a direct link between 

dynamic hyperinflation and cardiac performance during exer-

cise. For example, Stark-Leyva et al86 found that voluntary 

hyperinflation in healthy subjects did not adversely affect 

cardiac output during exercise. It remains to be determined 

if these findings in a healthy model can be extrapolated to 

patients with both static and dynamic hyperinflation, such 

as those with COPD.

Exercise tolerance
The mechanisms of exercise intolerance in COPD are 

complex and multifactorial and have been the subject of 

rigorous scientific debate.16–18 Potential mechanisms include 

abnormal ventilatory mechanics, limb muscle dysfunction, 

and impaired cardiac function, among other factors.87 All 

of these mechanisms are related, at least in part, to lung 

hyperinflation as previously described. Thus, it is difficult 

to directly demonstrate a cause–effect relationship between 

hyperinflation and exercise performance because interven-

tions that reduce hyperinflation may also improve any one 

or a combination of these contributory factors to varying 

degrees. Nevertheless, correlative evidence indicates that 

there is a link between exercise performance and indices of 

lung hyperinflation. For example, peak V
T
 relative to pre-

dicted vital capacity was found to be the best predictor of 

peak aerobic capacity (r=0.68, P,0.0005) in 105 patients 

with COPD.13 Work from other groups supports these results 

by showing a significant correlation between resting IC 

and peak work rate and peak oxygen uptake, particularly 

in patients with demonstrable expiratory flow limitation at 

rest.88 The notion that lung hyperinflation is inversely related 

to exercise tolerance is also supported, albeit indirectly, by 

studies showing statistically significant correlations between 

improvements in resting and exercise IC and improvements 

in peak oxygen uptake and cycle endurance time following 

different interventions.46,56,89,90

Influence of comorbidities  
and sex on hyperinflation
Obesity
Obesity is an abnormal or excessive fat accumulation that 

may impair health.91 Added weight on the thorax and abdo-

men (and also the neck), can significantly affect static and 

dynamic lung volumes along with respiratory mechanics,92–112 

usually in a dose-response fashion. While several studies have 

addressed this issue, significant variability has been observed 

when evaluating the effects of obesity on lung volumes. These 

discrepancies may arise from heterogeneity in the severity of 

obesity and/or fat distribution, the precision of its measure-

ment, or other confounding factors, such as underlying lung 

disease or sex differences. These uncertainties may well be 

exaggerated when the respiratory effects of obesity are studied 

alongside another heterogeneous disease such as COPD. As 

such, caution is recommended in drawing conclusions.

Total respiratory system compliance is usually reduced in 

obese patients. Obesity alone appears to have a “deflationary” 

effect. Obese patients consistently have a reduced expiratory 

reserve volume (or FRC) proportional to the magnitude of 

obesity.99,108,110,113–120 Total lung capacity is usually not affected 

(ie, it remains within the lower limits of normal values), 

although some studies report decreases in cases of very 

severe obesity (body mass index .45 kg/m2).110,112,121 Obesity 

is associated with a small decrease in FEV
1
 and forced vital 

capacity (although they remain within normal values)108,122,123 

and the FEV
1
/forced vital capacity ratio is preserved.124 The 

physiological consequences of a combination of obesity and 

COPD are not well known and could theoretically provide 

advantages and disadvantages. On the one hand, both of these 

pathologies may have opposing effects in terms of lung vol-

umes, COPD being primarily hyperinflating and obesity being 

deflating. This could provide an advantage to patients with 

COPD who are obese by reducing the deleterious effects of 

dynamic hyperinflation. On the other hand, this combination 

could increase mechanical loading and airway closure,125 and 

thus worsen trapping of air in the lung.

While very few studies have addressed the impact of the 

combination of obesity and COPD on lung volumes, available 
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results suggest that compared with normal weight patients, 

obese patients with COPD have reduced TLC and FRC126–129 

and that lower lung volumes are maintained throughout exer-

cise.126,128,129 Obese patients with COPD still hyperinflate to a 

similar degree (Δ IC from rest to peak exercise capacity) than 

their normal weight counterparts.126,128,129 Obesity in COPD 

appears to have a deflating effect at rest, and as a consequence, 

even if patients hyperinflate at a similar rate, they remain at 

lower volumes during exercise. Therefore, these studies all 

report that obese patients with COPD have either preserved or 

increased exercise capacity,126–129 except when walking is the 

testing modality.127 Mechanistic data126 showed that the elastic 

properties of the lung were better preserved and that diaphrag-

matic function appeared not to be better in obese patients 

with COPD. Also, the increased metabolic load induced by 

obesity appeared to be compensated by an increased ventila-

tory efficiency (ie, lower ventilatory equivalent for CO
2
) in 

these patients. The precise mechanisms by which obesity and 

COPD interact to affect lung volumes are presently not well 

known. They are likely influenced by several factors, such as 

COPD phenotype42 and fat distribution.96

Sex
Respiratory volumes and flows are significantly different 

between the sexes, as shown by the reference equations for 

lung function.130,131 These differences (mainly smaller lungs and 

maximal flow rates in women) may also affect dynamic volumes 

because fit women may suffer from expiratory flow limitation 

that induces an increase in EELV.132–134 It is therefore possible 

that COPD affects women differently than men. Women with 

COPD appear to be more susceptible to resting hyperinflation, 

despite lower tobacco use and younger age.135 When restricted to 

emphysema, women also present a different pattern of disease 

compared with men, ie, smaller airway lumen and thicker air-

way walls.136,137 During constant work rate cycle exercise testing 

at the same relative intensity, women with COPD hyperinflated 

at a rate similar to that in men (Δ IC).138 However, considering 

their smaller lung volumes, they reached a critical inspiratory 

reserve volume sooner than men and thus stopped exercise ear-

lier than men. Similar results were obtained in another sample 

of COPD patients.139 It would appear that women may be more 

susceptible to the deleterious effects of COPD because of their 

smaller respiratory systems compared with men.

Assessment of hyperinflation
Static assessments
In order to calculate lung hyperinflation at baseline, two 

subdivisions of the vital capacity must be measured. These 

are the IC and the expiratory reserve volume (Figure 1B).140 

Methods used for assessment of these parameters in COPD 

are body plethysmography, nitrogen washout, and helium 

dilution techniques.141 Body plethysmography is considered 

the gold standard. This test is performed in a body plethys-

mograph allowing measurement of intrathoracic gas while 

airflow is occluded. Based on Boyle’s law,142 changes in 

thoracic volumes caused by a compression or decompres-

sion of the gas in the lungs during respiratory maneuvers can 

be computed. FRC is thus obtained and constitutes the key 

measurement of static hyperinflation. A minimum of three 

values must be obtained, and the difference between the low-

est and the highest FRC must be within 5% to be considered 

reliable. The mean value is then reported. In elderly healthy 

subjects, residual volume and FRC represent 30% and 55% of 

TLC, respectively.130 In COPD, these values can be increased 

to 70% and 85% of the TLC for residual volume and FRC, 

respectively.143 Usually, lung volumes/capacities exceeding 

120%–130% of the predicted value are considered to be 

clinically relevant in COPD, but this remains arbitrary given 

that no consensus about the definition or severity of lung 

hyperinflation is available.131,141 It seems that the FRC cal-

culated by body plethysmography is overestimated because 

it includes both ventilated and nonventilated lung compart-

ments.130,142 In contrast, nitrogen washout and helium dilution 

techniques underestimate FRC in the presence of severe air-

flow obstruction or emphysema.32,140 Complete details about 

these three techniques are available in the latest American 

Thoracic Society/European Respiratory Society task force 

document.141 Finally, because of a lack of standardization, 

radiographic techniques144–147 are not commonly used clini-

cally to measure static hyperinflation in COPD.32 In fact, lung 

volumes calculated from radiographic techniques are based 

on the volume of gas within the outline of the thoracic cage 

and thus include the volume of tissue as well as the lung gas 

volume.140 This method is usually reserved for patients with 

a limited ability to correctly perform the other techniques. 

Nevertheless, high-resolution computed tomography might 

constitute a useful upcoming technique to assess hyperinfla-

tion in COPD.32

Dynamic assessments
Dynamic hyperinflation is determined from assessment of 

EELV (Figure 1B). This volume can be used interchangeably 

with FRC, although it is usually more appropriate to use it 

during exercise because this value is temporarily increased. 

EELV is commonly measured during exercise or any condi-

tion increasing minute ventilation by assessment of serial 
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IC measurements as recently described by Guenette et al.41 

As for the resting EELV, a minimum of three IC maneuvers 

must be performed at rest. Values within 10% or 150 mL of 

the largest acceptable IC are usually considered reproducible. 

During exercise, patients are asked to take a deep inspira-

tion after a normal expiration at specific intervals ranging 

from 1 to 3 minutes as well as at symptom limitation and 

during recovery. Because TLC remains stable during exer-

cise,148,149 a temporary decrease in IC reflects a temporary 

increase in EELV (Figure 1B and D). More than 80% of 

patients with moderate-to-severe COPD showed significant 

increases in EELV during exercise.11,13,46,150 This volume has 

been shown to be reliably measurable and is responsive to 

treatment in COPD.57,89 Moreover, inspiratory-to-total lung 

capacity ratio ,25% has also been used as a prognostic 

tool in COPD.151 A recent study showed that reduction of 

the inspiratory reserve volume (IC – V
T
 , Figure 1A and B) 

reflecting “room to breathe” was even more related to exercise 

dyspnea than EELV42 (Figure 1B). Finally, other methods 

such as optoelectronic plethysmography152 and respiratory 

inductance plethysmography153 are available for the assess-

ment of dynamic hyperinflation, but they are still mainly used 

for research purposes in COPD.

Management and treatment  
of hyperinflation
Bronchodilator therapy
Pharmacological interventions that reduce operating lung 

volumes and delay the onset of ventilatory limitation 

consistently reduce the intensity of dyspnea during exercise 

in patients with COPD.46,55,56 It should be noted, however, that 

the rates of increase in EELV (dynamic hyperinflation) and 

dyspnea symptoms during exercise are not modified after 

administration of bronchodilators. Rather, pharmacotherapy 

delays the development of restrictive ventilatory mechanics 

during exercise by deflating the lungs and decreasing EELV 

at rest. The resulting increase in resting IC causes a parallel 

downward shift in operating lung volumes during exercise 

in comparison with exercise performed without bronchodila-

tion (Figure 3).41,150 Thus, for any given exercise intensity or 

ventilation, patients breathe on the more linear portion of the 

respiratory system pressure–volume curve, with attendant 

improvements in neuromechanical coupling and, by exten-

sion, dyspnea. However, the absolute magnitude of dynamic 

hyperinflation does not change, and may even increase during 

peak exercise, reflecting the higher levels of ventilation that 

can be achieved following pharmacotherapy.10,45,90

Nonpharmacological interventions
Ventilatory support
The use of noninvasive ventilatory support consistently 

increases endurance time and reduces perception of dys-

pnea during constant load cycling tasks in patients with 

COPD.154,155 However, assisting ventilation by continuous 

positive airway pressure or pressure support will not affect 

EELV at rest or the increase in EELV during exercise.156 

The use of ventilatory support techniques will therefore not 

directly impact either static or dynamic lung hyperinflation. 
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The effects of these interventions on dyspnea are probably 

mostly related to unloading of the inspiratory muscles dur-

ing exercise.155,157–160 Respiratory muscle function is often 

impaired in patients with COPD.161 As previously described, 

these muscles have to overcome higher elastic and threshold 

loads during exercise which increases the work and oxygen 

cost of breathing in comparison with healthy subjects.26,162 

Optimal continuous positive airway pressure reduces the elas-

tic work of breathing throughout inspiration, counterbalances 

intrinsic positive end expiratory pressure, and takes away 

the threshold load on the inspiratory muscles while pressure 

support provides variable resistive and elastic unloading of 

the ventilatory muscles.156,163

Unloading respiratory muscles by proportional assisted 

ventilation improved leg blood flow and exercise perfor-

mance during sustained high intensity exercise in healthy 

trained cyclists, indicating a competition for blood flow 

between respiratory and limb muscles.164,165 One study has so 

far investigated these mechanisms in patients with moderate-

to-severe COPD.166 These authors found positive effects of 

respiratory muscle unloading by proportional assisted ven-

tilation during a relatively short (average of 4–5 minutes) 

constant load cycling task on endurance time, leg muscle 

oxygenation, and dyspnea and leg fatigue symptoms.166

Oxygen/heliox administration
Supplemental oxygen during exercise consistently improves 

endurance and maximal exercise capacity and reduces 

ventilation and dyspnea at isotime during endurance exer-

cise testing in COPD patients with and without resting 

hypoxemia.167 Oxygen supplementation during exercise 

delays the attainment of ventilatory limitation and accom-

panying intolerable symptoms of dyspnea during exercise by 

reducing ventilatory demand.168,169 Oxygen supplementation 

will however not affect EELV and IC at rest and will also 

not change EELV for a given level of ventilation during 

exercise.168,170 The improvements observed at a given level 

of exertion are therefore not caused by a direct effect on 

static or dynamic hyperinflation. Both improved oxygen 

delivery to the peripheral muscles (resulting in less reli-

ance on anaerobic metabolism), and attenuated peripheral 

chemoreceptor stimulation have been proposed as possible 

explanations for the reduction in ventilatory demand for a 

given level of exertion.168,169

Heliox is a low density gas mixture (79% helium, 21% 

oxygen) that has been used in patients with COPD to reduce 

airflow resistance with increasing ventilatory requirements 

during exercise.171 Heliox supplementation has been shown 

to improve exercise intensity and endurance in patients with 

COPD in comparison with room air breathing.172 Effects on 

dyspnea are likely but less clearly documented in the cur-

rent literature.172 Two papers evaluating dyspnea at isotime 

during an endurance cycling task however consistently 

showed significant reductions in perception of dyspnea.171,173 

Heliox breathing increases the size of the maximal resting 

flow–volume envelope and seems to actually slow down the 

increase in EELV during exercise by decreasing airflow resis-

tance, thereby directly altering dynamic hyperinflation.170,171 

The response with regard to exercise capacity seems to be 

correlated with the magnitude of change in EELV during 

exercise.171 In three studies, the responses to hyperoxic 

helium (60%–70% helium, 30%–40% oxygen) and oxygen 

supplementation alone were compared during a constant load 

cycling task in patients with moderate (nonhypoxemic),173 

severe,174 and very severe (on long-term oxygen therapy) 

symptoms.175 These studies all found significant differences in 

endurance time in favor of the hyperoxic helium group.173–175 

They further demonstrated reductions in the resistive work 

of breathing,173 and reductions in exercise-induced dynamic 

hyperinflation (increases in EELV)174,175 in comparison with 

hyperoxia alone.

Lung volume reduction surgery
In selected patients, lung volume reduction surgery 

decreases static and dynamic hyperinflation, and improves 

neuromechanical coupling, respiratory muscle function, 

exertional dyspnea, and exercise performance.176–179 Lung 

volume reduction surgery increases maximal ventilatory 

capacity as evidenced by increases in both maximal vol-

untary ventilation and maximal minute ventilation at peak 

exercise.176–178,180–182 The positive effects of this interven-

tion on airflow obstruction have been ascribed to increases 

in lung elastic recoil or to reductions in TLC and residual 

volume leading to an increased vital capacity and improve-

ments in respiratory muscle function.183,184 However, the 

understanding of the exact mechanisms of improvement in 

lung function remains incomplete and needs to be improved 

to select the optimal patients for this procedure.183,184 Besides 

the effects on static hyperinflation, it seems that the inter-

vention also exerts a direct effect on dynamic hyperinfla-

tion during exercise.176–178 While minute ventilation has 

been reported to be stable at comparable work rates after 

lung volume reduction surgery, decreases in EELV have 

been observed, with reductions in breathing frequency and 

increases in V
T
.183 Thus, lung volume reduction surgery 

improves airway conductance and lung emptying both at 
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rest (comparable with bronchodilators) and during exercise 

(comparable with heliox breathing).

Exercise
The improvements in dyspnea and exercise capacity during 

constant load cycling tasks after properly conducted exercise 

training programs are larger than those observed with any of 

the previously described interventions.185,186 Several physio

logical and psychological factors, including a reduction in 

dynamic hyperinflation, have been proposed to explain these 

improvements.187–189 It is generally accepted that exercise 

training, unlike bronchodilators, does not have an impact 

on resting pulmonary mechanics.190 From the available data, 

it also appears that, unlike heliox breathing or lung volume 

reduction surgery, exercise training does not have a direct 

effect on the rate of increase in EELV (dynamic hyperinfla-

tion) during exercise.170 Similar to the acute effects of oxy-

gen supplementation, exercise training reduces ventilatory 

needs for a given level of exertion.170,190,191 This decrease in 

ventilatory needs is probably related to improvements in limb 

muscle function after training with an accompanying reduced 

reliance on anaerobic metabolism during exercise.187,189 Less 

ventilation will allow patients to reduce their respiratory 

rate, increase V
T
, and reduce EELV for a given workload 

and will eventually result in reduced symptoms of dyspnea 

and improved exercise endurance.187,189 For a given level of 

ventilation, EELV seems, however, not to be altered after 

exercise training.187–189

Breathing techniques
Pursed lip breathing is used spontaneously by some 

patients with severe dyspnea, airflow obstruction, and lung 

hyperinflation.192 Therapeutically, it has been applied to 

reduce breathing frequency and increasing V
T
 during exercise 

in several small studies, with mixed results in terms of dys-

pnea reduction and improvements in exercise capacity.192–194 

Spahija et al192 observed that during constant work bicycle 

exercise, a reduction in dyspnea during application of pursed 

lip breathing was related to changes in EELV and pressure 

generation of the inspiratory muscles. Even though the evi-

dence base is limited, pursed lip breathing might be used on 

a trial-and-error basis in individual patients. A recent study 

by Collins et al195 used a computerized ventilation feedback 

intervention aimed at slowing respiratory rate in combination 

with an exercise training program and showed reductions in 

respiratory rate, ventilation, and dynamic hyperinflation at 

isotime during a constant load cycling task. Feasibility of 

this approach on a larger scale needs to be addressed.

Inspiratory muscle training
Strengthening inspiratory muscles by specific training 

programs has been applied frequently in patients with 

COPD with the aim to alleviate dyspnea and improve 

exercise capacity. Reduced contractile muscle effort has 

been proposed as an important dyspnea relieving mecha-

nism in studies that used ventilatory support to unload 

these muscles during exercise.157–160 Inspiratory muscle 

training aims to increase the capacity of these muscles to 

allow them to function at a lower fraction of their maximal 

capacity during exercise. Strong evidence supports effects 

of inspiratory muscle training to improve inspiratory muscle 

function (strength and endurance) and to reduce dyspnea 

and improve exercise capacity when applied as a stand-

alone intervention.196 Positive effects of inspiratory muscle 

training on operational lung volumes and breathing patterns 

during exercise have so far only been demonstrated in a 

single study.197 More research into the mechanisms linking 

inspiratory muscle training to reduction of dyspnea during 

daily activities is warranted.

Summary
Although measurement of FEV

1
 is mandatory to establish a 

diagnosis of COPD, research in recent years has clearly dem-

onstrated that hyperinflation, at rest and/or during exercise, 

is more closely associated with important clinical outcomes 

such as dyspnea and exercise intolerance than with expira-

tory flow indices. Hyperinflation has become an important 

endpoint in several clinical trials evaluating the efficacy 

of pharmacological and nonpharmacological therapeutic 

approaches to COPD. These trials have shown that measuring 

hyperinflation at rest and/or during exercise in the context of 

a multicenter randomized trial is feasible and valid. These 

trials have also confirmed that reducing hyperinflation in 

patients with COPD is a realistic therapeutic objective and 

is associated with relevant clinical benefits.
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