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Abstract: Antibiotic resistance is an increasing public health concern around the world. Rapid 

increase in the emergence of multidrug-resistant bacteria has been the target of extensive research 

efforts to develop a novel class of antibiotics. Antimicrobial peptides (AMPs) are small cationic 

amphiphilic peptides, which play an important role in the defense against bacterial infections 

through disruption of their membranes. They have been regarded as a potential source of future 

antibiotics, owing to a remarkable set of advantageous properties such as broad-spectrum activity, 

and they do not readily induce drug-resistance. However, AMPs have some intrinsic drawbacks, 

such as susceptibility to enzymatic degradation, toxicity, and high production cost. Currently, 

a new class of AMPs termed “peptidomimetics” have been developed, which can mimic the 

bactericidal mechanism of AMPs, while being stable to enzymatic degradation and displaying 

potent activity against multidrug-resistant bacteria. This review will focus on current findings of 

antimicrobial peptidomimetics. The potential future directions in the development of more potent 

analogs of peptidomimetics as a new generation of antimicrobial agents are also presented.
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Introduction
The growing resistance of pathogens is one of the biggest public problems worldwide.1 

Multidrug-resistant bacterial strains can cause severe infections as they are no longer 

responsive to most conventional antibiotics.2,3 To combat these pathogens, efforts 

have been extended to develop a new generation of antibiotics. Antimicrobial peptides 

(AMPs), also termed “host defense peptides” for their immunomodulatory properties, 

are cationic amphiphilic peptides, which are the first line of defense to protect organ-

isms from microbial infection.4–8

It has been demonstrated that naturally occurring or synthetic AMPs can be a new 

functional class of antibiotics.9,10 AMPs are antimicrobial agents based on their activity 

against the prokaryotic membrane. These agents adopt globally amphipathic conforma-

tions upon initial contact with bacterial membranes rich in anionic phospholipids. The 

conformations, which resemble detergent-induced micelle formation, result in total 

membrane disintegration in which their cationic and hydrophobic side groups segregate 

into distinct regions. This finding indicates that AMPs are potential antibiotic agents 

with a different antimicrobial mechanism, and that this activity mainly depends on their 

physical mechanism.11 The structural and sequence diversity of AMPs include amphip-

athic α-helices (eg, cathelicidins), β-sheets with 2–4 disulfide bridges (β defensins and 

protegrins), extended conformation (indolicidin), and beta-loop peptides (brevinin).12–15 

Among the AMPs, human defensins and cathelicidins play an important role, linking 

In
fe

ct
io

n 
an

d 
D

ru
g 

R
es

is
ta

nc
e 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IDR.S49229
mailto:pmendezs@encb.ipn.mx


Infection and Drug Resistance 2014:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

230

Méndez-Samperio

innate and acquired immunities (Figure 1).8 Importantly, 

AMPs are therapeutic agents with a lower tendency to elicit 

antibiotic resistance than conventional antibiotics.

Currently, the main reasons for the limited practical 

application of AMPs include their very high susceptibility 

to proteolytic degradation by microbial enzymes, toxicity 

due to high amounts of drug needed for therapy, relatively 

short half-life, and their high production cost.16 The design 

and synthesis of peptide mimics (peptidomimetics) have 

been developed to mimic the structure, function, and mode 

of action of host-defense AMPs, which act on bacterial cell 

walls or membranes and can potentially circumvent those 

obstacles. Antimicrobial peptidomimetics display antibacte-

rial activity against a broad-spectrum of bacteria, including 

drug-resistant strains, and are less susceptible to resistance 

development in bacteria. A number of antimicrobial pepti-

domimetics have been developed in the last decade, such as 

β-peptides,17–19 peptoids,20–25 arylamide oligomers,26,27 and 

β-turn mimetics.28,29 Recently, a new class of antimicrobial 

peptidomimetics termed “AApeptides” because they contain 

N-acylated-N-aminoethyl amino acid units derived from 

chiral peptide nucleic acid backbones have been developed. 

They are highly resistant to proteolytic degradation and 

their amphipathic structures can mimic the bactericidal 

mechanism of AMPs.30–32 Currently, different antimicrobial 

AApeptides have been developed, such as α-AApeptides 

and γ-AApeptides.33,34

This review aims to describe recent progress in the dis-

covery of peptidomimetics as new generation antimicrobial 

agents and discusses future directions for antimicrobial 

peptidomimetics in the emergence of multidrug-resistant 

bacteria.

Molecular design and antibiotic 
activity of antimicrobial 
peptidomimetics
To improve the antimicrobial activity of peptidomimet-

ics, the relationship between the structure and function 

of these peptides must be considered. Interestingly, anti-

microbial peptidomimetics may be designed by joining 

amphiphilic peptide building blocks. In this regard, a potent 

and broad-spectrum antimicrobial activity can be fine-tuned 

by changing the ratio of cationic/hydrophobic groups via 

the introduction of hydrophobic building blocks, suggest-

ing that the structure–activity relationships in antimicrobial 

peptidomimetics indicate the balance of forces required 

Human alpha defensin 1 Human beta defensin 1

Human cathelicidin LL-37

2

1

Figure 1 Three-dimensional structures of human antimicrobial peptides.
Notes: The Protein Data Bank identification for these structures are 3GNY for dimeric crystal structure of human α-defensin 1 (or human neutrophil peptide-1); 1E4S for 
human beta defensin 1; and 2K6O for human cathelicidin LL-37 in complex with sodium dodecyl sulfate micelles. Structural coordinates were obtained from the Research 
Collaboratory for Structural Bioinformatics Protein Databank (http://www.rcsb.org). The significance of ‘1’ and ‘2’is for dimeric crystal structure of human α-defensin 1 (two 
peptides: ‘1’ and ‘2’, together).
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for bactericidal activity.35–38 To date, peptidomimetics have 

been designed by cyclization of linear peptides or coupling 

of stable unnatural amino acids. In addition, Hu et al,30 and 

Niu et al31,32 reported the development of a new class of 

peptidomimetics termed “AApeptides”, and depending on 

the position of the side chain (connected to either the α-C or 

γ-C in relation to the carbonyl group), two subclasses of these 

peptides (α-AApeptides and γ-AApeptides, respectively) 

have been designed (Figure 2). Previous studies have indi-

cated that focused libraries of linear AApeptide (including 

both α-AApeptides and γ-AApeptides) sequences have been 

developed so that these sequences might mimic natural linear 

AMPs and adopt globally amphipathic conformations upon 

initial contact with bacterial membranes.39,40 Moreover, it 

has been reported that the antimicrobial activity of some 

AApeptides is still generally comparable, or even supe-

rior, to the AMP magainin as well as a previously reported 

linear α-AApeptide α1 against several bacterial strains.31 

Interestingly, Padhee et al39 reported that a focused library 

of different linear α-AApeptide sequences such as α1 and 

α2 has been prepared to minimize the hemolytic activity, but 

with a potent and broad-spectrum antimicrobial activity to 

arrest the growth of both Gram-positive and Gram-negative 

bacterial pathogens. In addition, these authors showed that 

α1 and α2 are the most potent antimicrobial α-AApeptide 

peptidomimetics with broad-spectrum activity, especially 

toward clinically relevant strains including the multidrug-

resistant strains vancomycin-resistant Enterococcus faecalis 

and methicillin-resistant Staphylococcus aureus (MRSA).39 

Furthermore, a focused library of linear γ-AApeptide 

sequences containing γ-1, γ-2, γ-3, and γ-4 has been 

prepared.40 In this context, it has also been demonstrated 

that compared with γ-1, γ-2 and γ-3, γ-4 contains enhanced 

bactericidal activity against Gram-positive strains, indicat-

ing that some γ-AApeptides are very potent and supporting 

their potential development as antimicrobial agents to treat 

Gram-positive bacterial infections.40 However, they are quite 

toxic to blood cells as well as other mammalian cells. In 

fact, the antimicrobial activity of γ-AApeptides is likely to 

be enhanced if the overall hydrophobicity increases, which 

at the same time also leads to increased hemolytic activity 

and cytotoxicity. Interestingly, the hemolytic activity and 

cytotoxicity can be minimized by introducing more cationic 

residues.

On the other hand, focused libraries of lipo AApeptides 

(including both α-AApeptides and γ-AApeptides) sequences 

have been developed, and the lipid tails of these lipo-

peptides are important for biological activity to facilitate 

bacterial membrane interaction, giving them broad-spectrum 

activity against both Gram-positive and Gram-negative 

bacteria.30,31 A focused library of lipo antimicrobial 

α-AApeptides sequences has been prepared, including α3 and 

α4.32 Interestingly, the development of cyclic γ-AApeptides 

that mimic function of AMPs has been reported.41 These 

cyclic peptides have enhanced antimicrobial activity 

compared with their linear antimicrobial AApeptides, as 

their structures adopt a semirigid backbone conformation, 

resulting in a more stable amphipathic structure. Structure–

activity relationships of cyclic antimicrobial γ-AApeptides 

incorporating a global distribution of cationic and hydro-

phobic residues are in development. In this context, group 

amphiphilic building blocks can be joined, and the resulting 

oligomers are cyclized.42

Since peptidomimetics interact nonspecifically with their 

target membranes, the addition of a positive charge by adding 

arginine, lysine, or histidine residues to the peptide sequence 

is required for initial electrostatic attraction with negatively 

charged bacterial membranes, whereas hydrophobic bulk 

guides insertion into the bacterial membrane. In addition, 

increasing hydrophobicity may increase antimicrobial 

activity. Recent developments in peptidomimetics that are 

formed through insertion into the amino acid backbone or 

heteroatom replacement indicate that several peptidomimet-

ics form structural designs such as helices, sheets, turns, and 

loops via noncovalent interactions. To prepare AApeptides, 

the current literature indicates that different approaches have 

been developed.32,43 Originally, the synthesis of these peptides 

was achieved using the building block strategy (Figure 3).30–32 

In this approach, 9-fluorenylmethyloxycarbonyl-protected 

peptide building blocks were prepared and then assembled on 

a solid support to provide the desired peptide sequences.44–47 

Another approach termed “submonomeric” has been devel-

oped to prepare γ-AApeptides. This approach is a solid-phase 

synthesis of the peptides, which eliminates the need of build-

ing block preparation; thus, chemically diverse functional 

groups can be conveniently introduced into the desired 

peptide sequences.43
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Figure 2 Representative structures of α-AA and γ-AApeptides.
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At present, it has also been reported that preorganized 

secondary structures including helical or sheet-like con-

formations within peptidomimetics are unnecessary in the 

antibacterial activities of these peptides.39,40,48–50 In contrast, 

the presence of backbones with certain flexibility can lead 

to a potent and broad-spectrum antimicrobial activity, indi-

cating the importance of the conformational rigidity in the 

molecular design of antimicrobial peptidomimetics.51–53 In 

this context, peptidomimetics have more dihedral angles 

compared to canonical peptides, and this molecular design 

induces high flexibility.

Previous studies have indicated that in the molecu-

lar design of the amphipathic helical 21-mer peptide 

([KAAKKAA]
3
; amino acid sequence: K A A K K A A 

K A A K K A A K A A K K A A), the peptide’s cytotoxic 

activity is highly dependent upon the spatial positions of 

tryptophan and cationic residues within the hydrophobic 

sector of an α-helix.54 More recently, the synthesis of enzy-

matically resistant versions of AMPs by partial substitution 

of L-residues with nonnatural D- or B-residues has been 

developed. In this regard, McGrath et  al55 synthesized a 

lysine-leucine or klotho peptide known as (KLAKLAK)2, 

which had low toxicity toward mammalian cells, with high 

antimicrobial activity. Furthermore, these authors demon-

strated that D(KLAKLAK)2, a variant of this molecule, is 

bactericidal against several Gram-negative species, including 

Escherichia coli, Klebsiella pneumoniae, and Acinetobacter 

baumannii. Interestingly, a strain of K. pneumoniae, which 

was resistant to conventional antibiotics, was susceptible 

to this peptide with the minimal inhibitory concentration 

of 75 µg/mL. In addition, this peptide has stronger fungi-

cidal activity.55

In the remainder of this review, the discussion will high-

light the discoveries that have led to our current understanding 

of the development of peptidomimetics in the context of their 

use as therapeutic agents.

Therapeutic potential  
of antimicrobial peptidomimetics
Peptidomimetics represent an important field in pharmacol-

ogy as they circumvent the limitations of AMPs used in 

therapy. Therapeutic applications of antimicrobial peptido-

mimetics have also been considered in regard to their high 

resistance against enzymatic degradation.56–59 Regarding 

antimicrobial peptidomimetics which are currently in Phase II 

clinical trials, Choi et  al60 have designed small arylamide 

foldamers that mimic AMPs. Importantly, these authors 

also demonstrated that hydrogen-bonded restraints in the 

structure of arylamide increase activity toward S. aureus and 

E. coli. On the other hand, the pharmaceutical company Lytix 

Biopharma AS (Tromsø, Norway) has recently commenced 

Phase I/IIa clinical trials with another antimicrobial peptido-

mimetic known as Lytixar TM (also known as LTX-109) for 

nasal decolonization of MRSA (http://www.lytixbiopharma.

com). This peptidomimetic, containing a modified trypto-

phan derivate as lipophilic bulk, displayed a combination 

of high antibacterial activity against methicillin-resistant 

Staphylococci and staphylococcal biofilms.57 Another 

antimicrobial peptidomimetic, which is currently in Phase II 

clinical trials for the broad spectrum treatment of MRSA 
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Figure 3 General building block strategy for the synthesis of AApeptides.
Notes: Each coupling cycle includes an Fmoc deprotection using 20% piperidine in DMF and coupling of α-AA or γ-AApeptides building blocks onto resin in the presence of 
DIC/ODhbt in DMF. After desired sequences are assembled, they are cleaved.
Abbreviations: DIC, diisopropylcarbodiimide; DMF, dimethyl fluoride; Fmoc, 9- fluorenylmethyloxycarbonyl; ODhbt, 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine; 
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infections, is brilacidin (also known as PMX-30063).61 This 

peptidomimetic was synthesized by PolyMedix (Radnor, PA, 

USA) and was then acquired by Cellceutix (Beverly, MA, 

USA) in September 2013. It is important to consider that this 

peptide is a potent bactericidal with broad-spectrum activity, 

not only against Gram-positive bacteria such as S. aureus and 

Enterococcus faecium but also against Gram-negative species 

such as E. coli. Interestingly, in a Phase II study involving 

patients with acute skin infections, 215 patients were treated 

with three different doses of brilacidin, and brilacidin’s favor-

able profile was noted in 65%–87% of patients.61 Another 

antimicrobial peptidomimetic known as POL7080 has also 

been developed. POL7080 is active in the nanomolar range 

against Gram-negative Pseudomonas spp. Researchers at 

the University of Zurich and Polyphor Ltd (Allschwill, 

Switzerland) have developed this peptidomimetic by means 

of a novel approach to peptide preparation named protein 

epitope mimetic technology. This peptidomimetic specifically 

targets Pseudomonas aeruginosa through a mode of action 

that is different from the membrane-disrupting activity of the 

parent compound.29 Currently, POL7080 is being prepared 

by the company Polyphor, and in preclinical studies, this 

antimicrobial peptidomimetic was highly active on a broad 

panel of clinical isolates, including multidrug resistant 

Pseudomonas bacteria, with a potent bactericidal activity in a 

mouse septicemia infection model. P. aeruginosa is an oppor-

tunistic bacteria which causes serious infections in patients 

with reduced immune systems (eg, those having acquired 

immunodeficiency syndrome or cancer). At present, Phase I 

clinical studies29 of the peptidomimetic POL7080 have been 

completed in healthy individuals in Europe, demonstrating 

the clinical safety and tolerability of this peptide (http://www.

polyphor.com/products/pol7080). 

Regarding an important role of antimicrobial peptidomi-

metics in the prevention of virus infections and the treatment 

of cancer metastasis, antimicrobial peptidomimetics that 

inhibit virus replication as well as possess antitumor activ-

ity against different cancer cell lines have been designed. 

Importantly, the structure of these peptidomimetics has been 

explored by using a peptidomimetic library in order to obtain 

higher plasma and metabolic stabilities. Furthermore, the 

use of nanotechnology as delivery tool for both classes of 

peptides will be presented later in the review. As shown in 

previous reports, some γ-AApeptides are effective in arrest-

ing the growth of both Gram-positive and Gram-negative 

drug-resistant bacterial pathogens.50 In addition, it has been 

demonstrated that γ-AApeptides can mimic the human 

immunodeficiency virus (HIV) Tat peptide by binding to 

HIV-1 RNA with a high affinity, comparable to their peptide 

counterparts.44,46 Moreover, it is well known that the CXC 

chemokine receptor 4 (CXCR4) is a coreceptor of HIV-1 

infection in human cells.62,63 In this context, development of 

peptidomimetic ligands for CXCR4 as therapeutic agents 

for HIV-1 infection and cancer has been reported.64–66 In 

fact, the peptidomimetic Arg(*)-Arg-Nal(2)-Cys(1x)-Tyr-

Gln-Lys-(d-Pro)-Pro-Tyr-Arg-Cit-Cys(1x)-Arg-Gly-(d-Pro)

(*) (POL3026) is a novel specific beta-hairpin mimetic 

CXCR4 antagonist, with potent anti-HIV activity.67 This 

peptide has a ten-fold increase in potency, with a good bio-

availability profile following subcutaneous administration.67 

Interestingly, ligand binding site mapping using a panel of 

CXCR4 mutants demonstrated that the new analog D(1-10)-

vMIP-II-(9-68)-SDF-1 (RCP222) share the interactive 

amino acids on CXCR4 with HIV-1 glycoprotein 120.68,69 

To date, peptidomimetic ligands have served as inhibitors of 

stromal cell-derived factor-1 since these peptidomimetics are 

involved in the interactions of HIV-1 envelope glycoprotein 

and stromal cell-derived factor-1 with membrane ligands of 

CD4+ human cells.70–74 Another peptide with anti-HIV activ-

ity is ALX40-4C. The structure of this peptide was designed 

from the basic HIV-1 transactivation domain for the inhibition 

of Tat–TAR interaction.75 The anti-HIV effects of this peptide 

are elicited through selective binding to CXCR4.76 In addi-

tion, Zhou et al77 reported that the human APJ, a G protein-

coupled seven-transmembrane receptor, is essential for its 

coreceptor activity for HIV-1; thus, it is an alternative target 

of ALX40-4C to block HIV glycoprotein 120 from binding 

to the cellular membrane. On the other hand, regarding the 

development and improvement of nanoparticles for stabiliza-

tion and delivery of antiviral peptides, a nanoformulation of 

the amphiphatic α-helical peptide p41 (a positively-charged 

analog of C5A peptide, derived from the hepatitis C virus 

protein) has been designed to treat HIV/hepatitis C virus 

coinfection, indicating the potential of this nanoformulation 

for stabilization and delivery of antiviral peptides, while 

maintaining their functional activity.78

Currently, cancer is a major concern in relation to human 

mortality, and all types of cancer are characterized by irregu-

lar cell growth. Antitumor drugs are subject to differences 

in target tissue and absorption, which can be particular to 

each patient. In addition, acquired drug resistance is con-

sidered the widespread cause for tumor recurrence.79 At 

present, some radiolabeled γ-AApeptides have been used 

as tracers for positron emission tomography, indicating a 

therapeutic application as anticancer agents.45 In addition, 

peptidomimetics have been the basis for a number of studies 
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performed to discover new novel anticancer agents.79,80 In 

this regard, the in vivo inhibitory effects on the growth of 

tumor cell xenografts in nude mice by the cyclic pentapeptide 

FC092 ([D-Arg2]-FC131), a CXCR4 antagonist, have been 

reported.81,82 The intrinsic relationship between its structure 

and its high specificity to tumor cells is likely playing the 

key role in the cytotoxicity of peptidomimetics. These char-

acteristics allow the peptidomimetics to bind to cancer cells 

and disrupt the negatively-charged tumor cell membrane, 

which is derived from a greater than normal expression of 

anionic molecules such as sialic acid-rich glycoproteins or 

phosphatidylserine.83 Importantly, these chemical differences 

aid the electrostatic interaction of the positively-charged 

peptide and the negatively-charged tumor cell membranes.80 

Studies have reported of AMPs that are effective against 

bacteria and cancer cells but not against normal mammalian 

cells such as cecropins from insects and magainins from 

amphibians.84,85 On the other hand, signal transducer and 

activator of transcription (STAT) proteins are a family of 

cytoplasmic transcription factors. Phosphorylation induces 

their homo- or heterodimerization, and an important func-

tion of these dimers is to control gene expression. STAT3 is 

frequently activated in many human cancer cell lines and is 

involved in cancer development and progression. Importantly, 

dysregulation of STAT3 can lead to increase in its activity 

and contribute to tumorigenesis. Currently, peptidomimet-

ics have been utilized to directly target STAT3 signaling. 

In this regard, it has been reported that an oxazole-based 

small-molecule STAT3 inhibitor, which modulates STAT3 

stability, induces significant antitumor cellular effects.86 

One primary goal of drug delivery for cancer therapy is to 

increase the amount of drug delivered to the tumor site and 

decrease its exposure to healthy tissues.87 Recent advances in 

microencapsulation technologies have been used to enhance 

drug protectivity, availability, and distribution by employing 

different biodegradable delivery platforms like liposomes, 

dendrimers, nanoemulsions, polymeric nanocarriers, and 

nanoparticles. These nanoformulations can be used to control 

drug/molecule release and enhance targeted delivery and 

effectiveness.88 In this regard, Wang and Zhang89 encapsu-

lated a polypeptide isolated from the unicellular green algae 

Chlorella pyrenoidosa, which exhibited the highest inhibitory 

activity on human liver HepG2 cancer cells (49%), and they 

named the polypeptide Chlorella pyrenoidosa antitumor 

polypeptide. The main mechanism of action of this peptido-

mimetic is condensation/fragmentation of nuclear chroma-

tin.89 The in vitro release of this peptide against gastric cancer 

cells provided a basis for the development of encapsulated 

antitumor peptides. The peptidomimetics KLAKLAKKLAK-

LAK and the isoAsp-Gly-Arg (or isoDGR) peptides serve 

as potent tools for developing new antitumor peptides. They 

can selectively kill CD13−/α
v
β

3+ breast cancer cells in both in 

vitro and in vivo experiments by inhibiting angiogenesis by 

binding to α
v
β

3+, which is increased on tumor cells.90 Cur-

rently, the antitumor role of the analgesic-antitumor peptide 

(AGAP) isolated from the scorpion Buthus martensii has been 

reported. This protein, consisting of a small ubiquitin-related 

modifier linked with a hexahistidine tag from E. coli, was 

used as an antitumor peptide, and the main mechanism of 

action of this peptidomimetic is through cell cycle arrest.91 

The recombinant system AGAP showed considerable inhibi-

tion of lymphoma and glioma propagation.91 Interestingly, 

using SW480 human colon cancer cells, it was proposed that 

recombinant AGAP induces cell cycle arrest in the G0/G1 

phase, attended by the decrease in the S phase without sig-

nificant change in the G2/M phase.91 Together, these studies 

strongly suggest that the use of peptidomimetics is a potent 

tool for developing new antitumor peptides. The main limita-

tions in the use of these peptides are their poor bioavailability 

due to insolubility related to their intrinsic physicochemical 

properties, potential toxicity to host cells, tissue distribution, 

and poor pharmacokinetic issues. Despite these disadvan-

tages, antitumor peptidomimetics have potential due to their 

high potency and specificity against malignant cells.

It is important to consider that further studies are needed 

to investigate the cost of large scale production of peptidomi-

metics and the transition of these peptides from the laboratory 

to the clinic to confirm that they provide an effective new 

class of therapeutic agents. However, the combination of the 

therapeutic use of peptidomimetics and conventional therapy 

against cancer (eg, chemotherapy, radiotherapy, or surgical 

procedures) can help in overcoming drug resistance in cancer 

cells. Increased funding and innovative research approaches 

to prepare peptidomimetics are required for practical use of 

these peptides as therapeutic agents.

Future directions for 
peptidomimetics research as a new 
generation of antimicrobial agents
Substantial progress has been achieved in the past decade 

with respect to the development of antimicrobial peptido-

mimetics that mimic the bactericidal activity and mode of 

action of AMPs. Since several classes of peptidomimetics 

have great potential as a new generation of antimicrobial 

agents due to their low immunogenicity and enhanced sta-

bility compared with AMPs, in the near future, it will be 
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important to resolve issues of hemolytic activity and cyto-

toxicity of some antimicrobial peptidomimetics. Elucidating 

these concerns will ensure their future application in vivo. 

In this regard, the use of more cationic charges is likely to 

decrease toxicity. It will also be possible to gain further 

insight into the development of molecular design in pepti-

domimetics and to explore its medical and pharmacological 

applications. In fact, fine-tuning the biological activity of 

peptidomimetics may be readily achieved with the introduc-

tion of a variety of additional hydrophobic building blocks. 

In addition, mechanistic studies are needed to evaluate the 

possibility for antimicrobial peptidomimetics to induce 

drug resistance in bacteria, and research will be focused on 

the development of antimicrobial peptidomimetics against 

Gram-negative bacteria, as they are generally more difficult 

to kill than Gram-positive bacteria. Finally, an important chal-

lenge over the next decade will be to develop new potential 

drug delivery systems for peptidomimetics. In this context, 

nanoformulation approaches have emerged as an important 

tool to improve the delivery and stability of antimicrobial 

peptidomimetics.

In conclusion, peptidomimetics possess significant prop-

erties that support their inclusion in the generation of new 

antimicrobial agents. These antimicrobial molecules show 

potent bactericidal activity against drug-resistant bacterial 

strains. Moreover, antimicrobial peptidomimetics have 

several advantages over AMPs, including enhanced stabil-

ity, cell specificity, and better tolerability. Furthermore, the 

synthetic flexibility of these molecules allows fast structure 

modifications to create novel antimicrobial peptidomimet-

ics, having particular pharmacological properties. Finally, 

structure–activity relationships clear the way to establish 

peptidomimetic libraries, which can lead to the development 

of novel antimicrobial agents. A better understanding of the 

structural properties of peptidomimetics will potentially 

facilitate the practical use of these peptides as important 

therapeutic agents.
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