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Abstract: Parkinson’s disease (PD) is one of the common neurodegenerative diseases. Besides 

the symptomatic therapies, the increasing numbers of neurorestorative therapies have shown 

the potential therapeutic value of reversing the neurodegenerative process and improving the 

patient’s quality of life. Currrently available novel clinical neurorestorative strategies include 

pharmacological managements (glial cell-line derived neurotrophic factor, selegiline, recom-

binant human erythropoietin), neuromodulation intervention (deep brain stimulation, repetitive 

transcranial magnetic stimulation, transcranial direct current stimulation), tissue and cell trans-

plantation (fetal ventral mesencephalic tissue, sympathetic neurons, carotid body cells, bone 

marrow stromal cells, retinal pigment epithelium cells), gene therapy, and neurorehabilitative 

therapy. Herein, we briefly review the progress in this field and describe the neurorestorative 

mechanisms of the above-mentioned therapies for PD.

Keywords: Parkinson’s disease, clinical study, neurorestorative treatment, cell transplantation, 

neuromodulation

Introduction
Parkinson’s disease (PD) is the second most common neurodegenerative disorder world-

wide, with main symptoms of stiffness, slowing of movement, and postural instability.1 

Dementia commonly occurs in the advanced stages of the disease, whereas depression 

is the most common psychiatric symptom. PD affects approximately seven million 

people globally and one million people in the USA.2 The prevalence of PD is about 

0.3% in the whole population of industrialized countries. PD is more common in the 

elderly and prevalence rises from 1% in those .60 years of age to 4% in the popula-

tion aged .80 years.3

The main pathological characteristic of PD is cell death in the substantia nigra 

and, more specifically, the ventral (front) part of the pars compacta, affecting up to 

70% of the cells by the time death occurs.4 The occurrence of Lewy bodies is a key 

pathological feature of PD.5

The main families of drugs useful for treating motor symptoms are levodopa 

(usually combined with a l-3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibi-

tor or catechol-O-methyl transferase inhibitor), dopamine agonists, and monoamine 

oxidase-B inhibitors.6 Most patients with PD eventually need levodopa and later 

develop motor side effects. When medications are not enough to control symptoms, 

surgery and deep brain stimulation (DBS) can be of use.7 Several attempts have been 

made to stimulate the neurorestorative process for nigral and/or striatal dopaminergic 
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system by using pharmacological factors, gene expression, 

exercise, neuromodulation, and cell therapies.

Clinical neurorestorative progress
Medicines
Glial cell-line derived neurotrophic factor (GDNF), infused 

unilaterally into the putamen for 6  months, could exert 

significantly sustained bilateral benefits and improve the 

quality of life in patients with PD.8 Supplementation with 

antioxidants such as selegiline, which have been used as 

monotherapy in early PD or in combination with levodopa 

in more advanced disease, might prevent or reduce the rate 

of progression of PD.9 Recombinant human erythropoietin 

(rhEPO) had beneficial effects on nonmotor symptoms but 

not on motor function. Nonmotor symptoms, such as cardio-

vascular autonomic dysfunction and cognition, which were 

refractory to dopaminergic treatment, showed improvement 

after the administration of rhEPO.10

Neuromodulation
Deep brain stimulation
Deep brain stimulation is recommended for people who 

have PD with motor fluctuations and tremor inadequately 

controlled by medication and for those who are intolerant 

to medication.7 DBS was first used by implanting mul-

tiple electrodes into the subcortical structure for treating 

hyperkinesis,11 then into the thalamus to treat tremor due 

to advanced PD in 1987, and, from 1993 onward, into the 

subthalamic nucleus or the globus pallidus.12 Furthermore, 

another study showed that DBS significantly improved 

psychological conditions, including depression, somatiza-

tion, fear, anxiety, and psychosis, factors included in the 

symptoms checklist (SCL)-90, of patients with PD.13 After 

DBS treatment, levodopa dose was reduced by about 54.5%. 

In contrast, levodopa dose was increased by 20.5% in the 

36th month in the control group.14 Due to the poor survival 

of dopaminergic cells after transplantation, DBS might be 

combined with cell therapy to manage PD in the future.15 

A multitarget strategy aimed at improving symptoms with 

different pathogenetic mechanisms might be a promising 

approach in the near future.

Transcranial stimulation
Repetitive transcranial magnetic stimulation (rTMS) and 

transcranial direct current stimulation (tDCS) are noninvasive 

cortical stimulation methods that can benefit patients with 

PD and other movement disorders. Koch et  al16 reported 

that rTMS at 1  Hz could markedly reduce drug-induced 

dyskinesias, whereas 5-Hz rTMS induced a slight but not 

significant increase. However, a systematic review revealed 

that high-frequency rTMS showed effects on motor signs 

in PD, during assessment with the Unified PD Rating Scale 

(UPDRS), and that low-frequency rTMS had only limited 

effect.17 Combination of the two should be encouraged; 

some evidence showed that preconditioning 1-Hz rTMS 

over primary motor (M1) by anodal tDCS could improve 

hypokinetic gait in patients with PD.18 Combined with physi-

cal training19 or dance therapy,20 tDCS could improve gait and 

balance in patients with PD. An open-label study21 showed 

that high-frequency repetitive deep TMS (rDTMS) might be 

a safe treatment for PD motor symptoms. The researchers 

used H-coils, inducing deeper and wider magnetic fields, 

over 12 rDTMS sessions spanning a period of 4 weeks at 

excitatory (10  Hz) frequency over the M1 and bilateral 

prefrontal regions.21

Magnetic resonance-guided  
focused ultrasound surgery
The neuromodulation potential of ultrasonography was first 

described by Fry et al22 in the 1950s, and the work is still in a 

preliminary stage. The new technique of magnetic resonance-

guided focused ultrasound surgery (MRgFUS) was first used 

for cancer treatment.23 The method is currently the subject 

of many experimental and clinical trials, and it appears to 

be particularly promising in the ablation of tissues located 

deep in the brain and signifies the beginning of interventional 

neurology and an alternative to neurosurgery. The procedure 

does not require anesthesia and avoids the creation of a burr 

hole.24 The safety and effectiveness of this method have been 

observed in parkinsonian and essential tremors.25 More data 

and long-term follow-up will be required to learn whether 

ablative lesioning via FUS will lead to better outcomes with 

lower risks.

Neurorehabilitation
Rehabilitation as a complementary neurorestorative strategy 

can help patients with PD to maintain their quality of life. 

A randomized controlled trial showed that home-based, 

individualized occupational therapy led to an improve-

ment in self-perceived performance in daily activities.26 

Moderate-to-strong evidence exists for task-specific benefits 

of targeted physical activity training on motor performance, 

postural stability, and balance.27 Rhythmic auditory stimula-

tion as a neurorehabilitative strategy for gait training could 

improve gait velocity, stride length, and step cadence in 

patients with PD.28 Efficacy of a physical therapy in patients 
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with PD was confirmed by a randomized controlled trial.29 

Most recently, a 2-year follow-up study demonstrated that 

intensive exercise in the early stages of the disease might 

slow down the progression of motor decay and it might delay 

the need for increasing drug treatment.30 Today, exercise 

training is widely used for rehabilitation of patients with 

PD. The short-term benefits from physiotherapy in PD have 

been clearly known and there are no differences between the 

different types of physiotherapy interventions.31,32

Tissue graft and cell therapy
Backlund et al33 first reported the transplantation of autolo-

gous adrenal medullary tissue into the striatum in two patients 

with severe PD, which showed some beneficial effects. Cell 

or tissue transplantation can potentially restore neurosurgi-

cal functions in patients with PD. Since then, numerous cell 

or tissue replacement therapies have been developed and 

tested.

Fetal ventral mesencephalic tissue
Clinical use of fetal ventral mesencephalic tissue as a 

treatment to replace dopaminergic neurons in patients 

with PD was first done 30 years ago. Dopamine neurons 

were transplanted ectopically into the striatum. They 

could structurally compensate for lost cells, form synap-

tic contacts with host neurons, release dopamine, restore 

dopamine transmission, and positively moderate gradual 

improvements in motor function in patients with PD.34–37 

More important evidence that is accumulating shows that 

l-3,4-dihydroxy-6-[18F]fluoro-phenylalanine (18F-DOPA) 

uptake increased significantly in the grafted striatum during 

a decade of follow-up by positron emission tomography 

(PET) studies.34

Two major randomized, double-blind, sham surgery 

placebo-controlled trials with neural grafts in PD have been 

performed.38,39 Even these trials could not meet the primary 

endpoints, with 15%–50% graft-induced dyskinesias at the 

initial study stage; the outcome of each trial was differ-

ent from each other. Freed et al’s38 results were better than 

Olanow et al’s.39 Younger patients (#60 years of age) revealed 

significant improvement in the transplantation group as 

compared with the sham-surgery group by assessment with 

UPDRS and Schwab-and-England score;38 furthermore, after 

following up for 2–4 years after surgery, the grafts were effec-

tive at reducing the PD motor symptoms. At 2 years, clinical 

improvement was almost twice the level observed at 1 year 

and this was sustained at 4  years. Likewise, the increase 

of 18F-FDOPA uptake was evident at 2 years and 4 years, 

with significant clinical–PET correlations.40 This strongly 

suggests that this therapeutic strategy may need years to 

reach its full effect.

Another report showed similar results; two patients were 

followed up for 15 years and 18 years, respectively, after 

surgery. One patient gradually improved his motor perfor-

mance over the first 4 years posttransplantation. The other 

patient showed this effect until 2 years later. Importantly, they 

could stop their dopaminergic medication around 5 years 

postgraft, and motor benefits were still constant at their last 

assessment.41

Other cell therapies
Four patients with PD underwent transplantation with autolo-

gous sympathetic neurons in the unilateral intrastriatal zone 

and improved their performance status by reducing the time 

spent in the off phase.42 Thirteen patients with advanced PD 

underwent bilateral stereotactic implantation with carotid 

body cells into the striatum, and most of them showed func-

tional improvement 6–12 months after transplantation.43 Bone 

marrow stromal cells (BMSCs) transplanted into sublateral 

ventricular zone by stereotactic surgery were safe, with no 

serious adverse events in seven patients with PD during 

10–36 months of follow-up;44 in another study, eight PD 

and four PD-plus patients showed improvement after BMSC 

transplantation during a 12-month follow-up.45

Human retinal pigment epithelial (hRPE) cells were trans-

planted into the putamen and lateral ventricles in 17 patients 

with PD. Three months later, the majority of patients showed 

functional improvement (82.4% effect in the contralateral 

site and 64.7% in the ipsilateral site).46 In another study, 

hRPEs were implanted into the postcommissural putamen in 

12 patients with PD; eleven patients showed improvement in 

the primary outcome measure 3 months after transplantation 

and showed a peak at 12 months, which then declined dur-

ing the next 24 months. PET analysis showed a trend with 

increased dopamine release during the first 6 months.47 Even 

spheramine as hRPE cell microcarrier showed some effects in 

patients with PD in a 1-year, open-label, single-center study;48 

recently the result of its further application was negative in 

a double-blind, randomized, controlled trial.49

Hallett et  al50 examined the expression of dopamine 

transporters in human fetal midbrain cellular transplants. 

They found that dopamine transporters were robustly 

expressed in transplanted dopamine neuron terminals in the 

reinnervated host putamen and caudate for at least 14 years 

postimplantation. The transplanted dopamine neurons 

showed a healthy and nonatrophied morphology at all time 
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points. The vast majority of transplanted neurons remained 

consistently healthy, with clinical findings of maintenance 

of function for up to 15–18 years in patients.50

Gene therapy
Nine gene therapy clinical trials for PD have been initiated 

and completed.51 The first gene therapy trial, using glutamic 

acid decarboxylase gene with the adeno-associated virus 

vector, was conducted by unilateral subthalamic injection 

in 12 patients with PD in 2007. The procedure was safe 

and well tolerated by advanced patients with PD who had 

significant improvements in motor UPDRS scores 3 months 

after gene therapy and persisted up to 12 months.52 In 2008, 

low dose of the AAV–human aromatic l-amino acid decar-

boxylase (hAADC) vector was tested in five patients with 

moderate-to-advanced PD, who had a modest improvement 

with PET evidence of sustained gene expression.53 AAV 

serotype 2-neurturin (CERE-120) was delivered into the 

substantia nigraplus putamen in 12 patients with PD who 

had some functional improvements,54 and this method with 

long-term follow-up was still feasible and safe.55

Discussion
Neurorestorative mechanisms  
of cell therapy for PD
Fetal midbrain tissue
Fetal brain tissue containing dopamine neurons was trans-

planted into the striatum of a rat model of PD in 1979, show-

ing good survival and axonal outgrowth and significantly 

improving motor abnormalities.56 Different intrastriatal 

transplantation techniques might affect the result; intrastriatal 

transplantation of partial (tissue pieces) suspension by a metal 

cannula could have a higher survival rate of dopamine neu-

rons, a greater reduction in amphetamine-induced rotations 

(overcompensation), and more extensive fiber outgrowth.57

Adrenal chromaffin, carotid body cells,  
and retinal pigment epithelial cells
Transplants of chromaffin cells derived from adrenal 

medulla or carotid body cell aggregates were explored in the 

early 1980s.58 hRPE cells attached to gelatin microcarriers 

(Spheramine) were unilaterally transplanted into the puta-

men and improved behavioral scores were observed in PD 

models, with PET confirmation.59

Mesenchymal stromal cells
BMSCs were transplanted into the striatum, and this impro

ved abnormal rotational behavior in a rat model of PD.60 

Hypoxia can promote BMSC proliferation, dopaminergic 

neuronal differentiation, and then restore some functions after 

intrastriatal transplantation.61 In addition, allogeneic BMSC62 

or human amniotic fluid stromal cell transplantation63 could 

improve urodynamic pressure on voiding function in PD 

rats. Umbilical cord stromal cells could survive well after 

transplantation in a parkinsonian model64 and partially restore 

functions,65,66 as well as possessing the potential to transform 

into immature or mature neuron-like cells.67 The intrave-

nous route of cell therapy has been tried in models of PD;68 

umbilical cord blood CD34+ cells delivered by intravenous 

injection could ameliorate biochemical and histological motor 

deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-

induced parkinsonian mice and the strategy was even superior 

to levodopa in terms of its effect.69

Neural stem/progenitor cells, embryonic glial-
restricted precursor cells, or embryonic stem cells
Neural stem/progenitor cells or undifferentiated embryonic 

stem cells when transplanted into the striatum could differ-

entiate into neurons or dopaminergic neurons70 and restore 

some functions.71,72 Delayed transplantation of embryonic 

glial-restricted precursor cells by exposure to bone morpho-

genetic protein could restore tyrosine hydroxylase expres-

sion and promote behavioral recovery through rescuing, not 

preventing, pathological changes.73

Olfactory ensheathing cells
Olfactory ensheathing cells transplanted with ventral mesen-

cephalic cells could get better functional neurorestoration in 

a rat model of PD74 through increase in transplanted neural 

stem cell survival and functions75,76 or modulation of intrin-

sic apoptotic pathways in parkinsonian rats.77 Neural grafts 

combined with olfactory ensheathing cells can maintain 

the functional improvement in animals or patients with PD 

longer.75

Potential mechanisms  
of neuromodulation for PD
DBS in the subthalamic nucleus can significantly affect 

striatal dopaminergic metabolism and markedly reduce 

dopaminergic medication78 or consequently activate sub-

stantia nigra compacta neurons via inhibition of gamma-

aminobutyric acid-ergic substantia nigra reticulate neurons.79 

A recent study showed that high-frequency stimulation in 

the subthalamic nucleus could induce widespread anato-

mofunctional rearrangements through downregulation of 

Adrb1 protein.80
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Neurorestorative mechanisms  
of neurorehabilitation for PD
Al-Jarrah et al81 found that endurance exercise training could 

promote angiogenesis in a mouse model of PD. In addition, 

they found this training could decrease the expression of brain 

damage markers in the striatum,82 possibly by decreasing 

the level of neuronal nitric oxide.83 Strong evidence showed 

that long-term aerobic exercise could help functional motor 

and limbic circuits’ reorganization in a rat model of PD84 and 

that longer-duration vibration training could significantly 

increase the number of nigrostriatal dopaminergic neurons.85

Conclusion
Currently, effective approaches to relieve symptoms in 

patients with PD are available; however, when faced with 

this neurodegenerative disease, extreme pessimism and 

unrealistic expectations are not good for patients and their 

treatment. Ongoing cell-based comprehensive neurorestor-

ative therapies have made significant progress in clinical 

practice. The community needs to conduct more research 

into each promising strategy and optimize the benefits from 

current progress for patients with PD.
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