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Abstract: Tuberculosis (TB) is still a major global health problem. A third of the world’s 

population is infected with Mycobacterium tuberculosis. Only ∼10% of infected individuals 

develop TB but there are 9 million TB cases with 1.5 million deaths annually. The standard 

prophylactic treatment regimens for latent TB infection take 3–9 months, and new cases of 

TB require at least 6 months of treatment with multiple drugs. The management of latent TB 

infection and TB has become more challenging because of the spread of multidrug-resistant 

and extremely drug-resistant  TB. Intensified efforts to find new TB drugs and immunotherapies 

are needed. Immunotherapies could modulate the immune system in patients with latent TB 

infection or active disease, enabling better control of M. tuberculosis replication. This review 

describes several types of potential immunotherapies with a focus on those which have been 

tested in humans.
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Introduction
Tuberculosis (TB) remains a major global public health problem. It is estimated that 

a third of the world’s population is infected with Mycobacterium tuberculosis, the 

causative agent of TB. There are ∼9 million new cases of TB with 1.5 million deaths 

annually.1 Effective management of TB infection and TB disease requires treatment 

for at least 6 months. This long treatment duration, coupled with side effects of anti-

TB drugs, leads to noncompliance resulting in the emergence of drug-resistant TB. 

Of note, drug-resistant TB is more difficult to treat and significantly increases TB 

control program costs in high TB endemic countries which have meager resources 

to begin with.2

The World Health Organization reports that several countries have increasing  numbers 

of patients with multidrug-resistant (MDR)-TB, TB caused by M.  tuberculosis resistant to 

at least isoniazid and rifampin.1 To make the situation worse, only 20% of MDR-TB cases 

were started on appropriate drugs, with ,50% successful treatment outcome.1 Further-

more, the number of MDR-TB cases increased three-fold between 2009 and 2013, mainly 

due to lack of effective treatment.1 In addition, several countries with high prevalence 

of MDR-TB also suffer from increasing numbers of cases of extensively drug-resistant 

(XDR)-TB with resistance to isoniazid, rifampin, fluoroquinolones, and aminoglycosides. 

The treatment of XDR-TB is even more  difficult and the outcome unpredictable.1,3 Thus, 

MDR- and XDR-TB are major global public health problems because of the lack of 

effective treatment, the need for a much longer  duration of treatment with second line 
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or experimental drugs, and the risk of further spread locally 

and more widely through immigration. Enhanced efforts to 

develop new TB therapeutics are urgently needed. The progress 

in TB drug development has been slow and none of the new 

drugs tested so far have allowed standard treatment regimen 

shortening.4 Host-directed therapy using immunomodulators 

is a promising approach which must be explored for better 

control of TB. This paper reviews the strategies and prospects 

for TB host-directed therapy immunotherapeutics.

TB latency, host immunity, and 
M. tuberculosis adaptation
A better understanding of the nature of host–pathogen interac-

tions is required for the development of immunotherapeutics 

and to predict the roles of new immunotherapeutics for the  

management of TB infection and/or disease. It is interesting  

to note that only ∼10% of M. tuberculosis-infected individuals 

develop TB, but how the majority of infected people control 

or clear the infection is not fully known. Until recently, it 

was believed that latent TB infection (LTBI) is a state of 

mycobacterial dormancy during which the immune system 

contains virtually all persisting M. tuberculosis organisms in 

a static state within granulomas.5–8 An emerging consensus 

resulting in a paradigm shift in the field maintains that both 

active TB and LTBI represent dynamic spectra with variable 

levels of actively replicating and inactive bacilli in different 

granulomas present in the same infected individual.9,10

The immune response can greatly alter the proportions 

and absolute numbers of actively replicating M. tuberculosis 

in infected persons with concomitant changes in TB disease 

risks. Because the infection is largely intracellular during 

paucibacillary LTBI and early reactivation disease, T-cell 

responses are critically important for protective immunity. 

CD4+, Th1, and CD8+ T-cell responses are involved in 

the control of M. tuberculosis replication in vivo, as are 

the cytokines they produce (eg, interferon [IFN-γ], tumor 

necrosis factor [TNF]-α, and interlukin [IL]-2).11–13 How-

ever, these responses alone appear insufficient for bacterial 

clearance as these T-cell subsets peak during active TB dis-

ease and decrease after spontaneous immunologic control 

without eradication of TB infection. Other immune subsets 

which tend to accumulate in mucosal tissues, including γδ 

T-cells,14,15 CD1 restricted T-cells,16 and mucosa-associated 

invariant T-cells,17,18 can impact on the levels of protective 

responses. Figure 1 summarizes protective and counter-

productive immune responses in TB.

M. tuberculosis has an incredible capacity to adapt 

in vivo to a variety of stressful conditions. Pathogenic 

M.  tuberculosis can replicate intracellularly in professional 

mononuclear phagocytes despite numerous mechanisms 

available to kill intracellular bacilli. The pathogen switches 

from predominant glucose metabolism when replicating at 

high rates extracellularly to lipid-based metabolism after 

uptake in phagosomes of mononuclear phagocytes. The 

organism thrives in aerobic conditions reaching its highest 

levels of replication, but can also survive prolonged periods of 

microaerophilic and even anaerobic conditions. Certain gene 

sets or regulons are activated intracellularly (eg, DosR) and 

are thought to be involved in persistence of M.  tuberculosis 

during LTBI.19 In addition, other genes associated with 

reactivation of LTBI have been identified (eg, resuscitation-

promoting factors).20–22 Although previous data suggest that 

TB immunity is predominantly directed against antigens pro-

duced by replicating M. tuberculosis, there is a growing body 

of evidence that latency-specific antigens are targeted as well. 

M. tuberculosis mediates multiple immune evasion strategies, 

including blockade of major histocompatibility complex 

expression,23–25 prevention of phagolysosomal fusion,26–28 and 

inhibition of IFN-γ signaling.29–34 However, the majority of 

Potentially protective:
CD4+ Th1

CD4+ Treg
exhausted T-cells
M∅: subtypes M2/AAM/

                IL-10
PMN: predominant

     type I IFN
  induced

CD4+ Th17
CD8+ T-cells

MAIT cells
Antibody
responses

γ9δ2 T-cells

Counterproductive
responses:

Figure 1 Tuberculosis (TB)-specific mucosal immune responses are important 
for protection against latent TB infection (LTBI) reactivation. Th1 CD4+ and Th17 
CD4+ T-cells, CD8+ T-cells, γ9δ2 T-cells, mucosa-associated invariant T (MAIT) cells, 
and sIgA/IgG antibody responses are potentially protective against LTBI reactivation 
which could reduce both TB disease and TB transmission.
Notes: All of these T-cell responses will be considered major targets for 
immunotherapy in this project because they can recognize intracellular Mycobacterium 
tuberculosis, the major pathogen reservoir during LTBI. Mucosal antibody responses 
also could protect against initial infection and transmission, and are being studied 
in other funded work by our consortium of investigators. CD4+ regulatory T-cell, 
T-cell exhaustion, alternatively activated macrophages unable to kill intracellular 
M. tuberculosis and type I IFN-induced polymorphonuclear (PMN) leukocytes can 
negatively regulate protective immunity in the lung.
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persons infected with TB never develop  disease, indicating 

that the host–pathogen balance can be tipped in favor of the 

host leading to protective immunity.

Most primary and reactivation TB disease occurs in the 

lung, and this is the main source of TB transmission. These 

clinical facts combined with the accumulated knowledge in 

this area indicate that an optimally effective immunotherapy 

will need to target mucosal immunity in the lung.

TB immunotherapeutics
Immunotherapies ideally should modulate the immune 

system in a way that helps the host control or eliminate 

M. tuberculosis. Whole mycobacteria,35,36 mycobacterial 

products,37–39 cytokines, and drugs have been considered 

as possible immunomodulators. Table 1 summarizes host-

directed immunotherapeutics which have been tested for the 

treatment of TB in humans.

M. vaccae and other atypical mycobacteria
There are some controversies on the benefits of Mycobacterium 

vaccae-based immunotherapy. A single injection enhanced 

sputum culture conversion at 1 month and led to marked 

radiographic improvement at 6 months,40 but these promising 

findings were not reproducibly found in other  studies.41 None-

theless, meta-analysis of 54 studies using intradermal injection 

of M. vaccae reported that immunotherapy based on M. vaccae 

could enhance sputum conversion and improve radiographic 

changes.36 Similarly, oral administration of M. vaccae enhanced 

sputum conversion in newly treated TB patients.42 Other envi-

ronmental mycobacteria, such as M. indicus pranii, also have 

shown promising results in animal models.43

RUTI®
RUTI is a therapeutic vaccine made of detoxified cellular 

fragments of M. tuberculosis, delivered in liposomes. It is pre-

pared by mechanically disrupting colonies of M.  tuberculosis 

in phosphate-buffered saline with 4% TritonX114, heating at 

65°C for 40 minutes followed by lyophilization and encapsu-

lation in liposomes made of phosphatidyl choline.44 In mice 

and guinea pigs, this therapeutic vaccine was found to have 

potential for both prophylaxis and immunotherapy.45 So far, 

it has been shown in Phase I and II clinical trials involving 

healthy volunteers and cases with LTBI that this vaccine is 

safe and immunogenic.46,47

Table 1 Immunomodulating host-directed therapies for treatment of TB in humans

Therapeutics Composition No. of patients TB type (outcome) Refs

Mycobacterium  
vaccae

Killed, intradermal NA Meta-analysis of 54 studies on newly diagnosed pulmonary TB  
(improved sputum conversion and X-ray changes)

36

Capsule 41 (two arms)Φ Faster smear conversion 42

RUTI® Detoxified cellular fragments  
of Mycobacterium tuberculosis

NA Phase I and II clinical trials on LTBI cases or healthy volunteers  
(immunogenic, reasonable tolerability)

46,47

Autologous MSC MSC 30 MDR or XDR patients (21/30 with radiologic improvement) 54

v5 immunitor Inactivated pooled blood 55 (two arms) Re-treatment or proven MDR (higher rate of sputum conversion) 62

Cytokines and  
cytokine inhibitor

IL-2 50 (two arms)¥ 
23 (three arms) 
 
110 (two arms)¥

MDR-TB patients (better sputum conversion rate) 
MDR-TB patients (decrease AFB smear counts with daily IL-2  
compared to control or pulse IL-2) 
New TB patients (significant delays in culture conversion)

73 
71 
 
72

IFN-γ 5 
7 
6

MDR-TB patients (all smear negative/improved) 
MDR-TB cases (no marked microbiologic effect) 
MDR-TB cases (no marked microbiologic effect)

67 
68 
69

etanercept 16§ HIv-positive TB cases (more rapid culture conversion compared  
to historical control)

76

Drugs/compounds High dose steroid 187 (two arms)§ HIv-positive TB cases (increased culture conversion at 1 month) 79
Levamisole 50§ Newly diagnosed pulmonary TB patients (improved radiology  

but no effect on smear conversion)
82

Albendazole 135 (two arms)§ New pulmonary TB patients (no effect on clinical, radiologic, and 
microbiologic outcome)

83

Thalidomide 15 (two arms)¥ 
30 (two arms)§

9/15 HIv-positive (clinical improvement) 
HIv-positive (no clinical difference)

102 
103

Notes: Φ, different groups including drug-susceptible and drug-resistant cases; ¥, newly diagnosed pulmonary TB with drug-resistant or MDR-TB as exclusion criteria; 
§, newly diagnosed pulmonary TB and no drug susceptibility data reported. All TB cases were treated with multidrug-treatment regimen.
Abbreviations: AFB, acid-fast bacilli; HIV, human immunodeficiency virus; IFN, interferon; IL, interleukin; LTBI, latent TB infection; MDR, multidrug-resistant; MSC, 
mesenchymal stem cells; NA, not applicable; XDR, extensively drug-resistant; TB, tuberculosis.
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DNA vaccines
A number of DNA vaccines expressing relevant M. tubercu-

losis genes, Hsp65, ESAT-6, and Ag85A, have demonstrated 

activity in M. tuberculosis-infected mice resulting in a one 

to three log improvement in M. tuberculosis clearance.48–51 

More interestingly, an intramuscular DNA vaccine contain-

ing Hsp65 and IL-12 genes improved the survival of mice 

infected with MDR-/XDR-TB.52 This particular vaccine 

uses plasmid cDNA3.1 as a vector expressing Hsp65 and 

IL-12 incorporated into virus-free envelopes derived from 

the hemagglutinating virus of Japan. Furthermore, this same 

DNA vaccine provided a 40% improvement in survival of 

M. tuberculosis-infected primates.52 These encouraging 

results suggest that some DNA vaccines may advance into 

human clinical trials as adjuncts to chemotherapy.

Autologous MSC
Mesenchymal stem cells (MSC) are progenitor cells constitut-

ing a small proportion (0.01%) of the bone marrow.53,54 MSC 

are present in various tissues and organs, including lungs,55,56 

and are involved in the repair of damaged tissues.57,58 These 

cells have been tested for their potential to transform chronic 

tissue inflammation into an environment capable of induc-

ing robust pathogen-specific immune responses. A recent 

review describes the interaction of MSC with different cells 

of the immune system.59 Immunomodulatory functions of 

MSC are mediated by both cell-to-cell contact and release of 

soluble mediators, such as tumor growth factor (TGF)-β and 

prostaglandin E2.59 A Phase I study with MSC given to 30 

MDR- or XDR-TB patients demonstrated that administration 

of MSC within 4 weeks of initiation of anti-TB drugs was 

safe and improved radiological changes.54

v5 immunitor
V5 immunitor, derived from chemical- and heat-inactivated 

pooled blood from hepatitis B and C virus-positive blood 

donors, was originally developed for the management of 

chronic hepatitis B and C.60 The exact contents and how this 

product modulates the immune system remain to be inves-

tigated. It has been assumed that some of the blood donors 

had LTBI and may have circulating M. tuberculosis antigens 

which may stimulate immune responses.61 It is also possible 

that circulating cytokines and/or chemokines in the pooled 

blood, if they are not inactivated during chemical/heat treat-

ment, enhance T-cell responses to M. tuberculosis antigens 

in TB patients. Alternatively, other unknown components 

present could have adjuvant properties. In a Phase I  clinical 

trial, V5 immunitor oral therapy resulted in a markedly 

 better sputum smear conversion at 1 month after initiation 

of treatment.62,63

Cytokines and inhibitors
M. tuberculosis is an intracellular organism residing mainly 

in monocytes/macrophages.64 This makes cellular immune 

responses essential for inhibiting intracellular growth and 

limiting dissemination. M. tuberculosis-specific T-cells 

 produce cytokines and effector molecules, such as  perforin, 

granzymes, and granulysin.65,66 Thus, cytokines which 

enhance the expansion of T-cells and activation/ differentiation 

of antigen presenting cells may help control infection. To this 

effect, IL-2, IFN-γ, IL-12, and anti-TNF-α have been tried 

in small numbers of clinical cases. Although it is  difficult 

to develop definitive conclusions from limited, and in most 

cases nonrandomized trials, the adjunct use of cytokines 

or anticytokines has shown some promise. Moreover, host 

inflammatory response mediated by Th1 cytokines can 

cause substantial morbidity; therefore, the doses and timing 

of administration of cytokines may affect the outcome. The 

adjunct use of IFN-γ and IL-12 in some cases of MDR-TB 

resulted in favorable outcomes.67–69 Adjunct aerosolized 

IFN-γ administered at a dose of 500 µg three times a week for 

a total of 4 weeks to five MDR-TB patients was well tolerated 

and led to smear conversion in all cases.67 A similar study on 

six MDR-TB patients using aerosolized IFN-γ at a dose of 

2 million units three times a week for 6 months showed that 

all patients reverted back or remained culture positive at the 

end of treatment.69 This may also indicate that the response 

to IFN-γ may vary from patient to patient. In murine TB 

models, IFN-γ administered with intranasal IgA resulted in 

decreases in M. tuberculosis load in the lungs.70 Despite some 

controversial results regarding the effects of IL-2 tested in 

new TB cases,71,72 intradermal injection of 500,000 IU of IL-2 

every other day at the first, third, fifth, and seventh months 

of drug treatment of 25 MDR-TB patients led to a higher 

rate of sputum conversion compared to controls receiving 

only drug-treatment.73 IL-2 also enhanced the activities of a 

pyrophosphate to enhance γδ T-cell responses and decrease 

residual M. tuberculosis in the lungs of infected monkeys.74 

Anti-TNF-α antibodies which are commonly used for treat-

ment of severe rheumatological disorders increase the risk 

of reactivation of TB.75 However, in active TB, anti-TNF-α 

may enhance culture conversion when combined with TB 

multidrug therapy,76 probably by delaying the formation of 

the so-called “persister” forms of tubercle bacilli, leading 

to increased susceptibility to drug-mediated bactericidal 

activity. Etanercept, an anti-TNF-α, administered at a dose 
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of 25 mg subcutaneously twice a week was tested on new 

 pulmonary TB cases who were human immunodeficiency 

virus (HIV)-positive with a CD4 count .200/µL. The 

trial included age- and sex-matched controls and showed 

that  sputum culture conversion was slightly more rapid in 

 etanercept treated patients.76 The role of etanercept admin-

istered in the continuation phase of treatment to shorten the 

duration of treatment may need to be studied. Similarly, 

inhibitors of IL-4 and TGF-β were shown to enhance Th1 

type immunity and help reduce M. tuberculosis bacterial load 

in the lungs of infected mice.77,78

Antibodies
M. tuberculosis infection induces both celI-mediated and 

antibody responses. It has been shown that B-cell-deficiency 

leads to higher bacterial burden and worse outcome following 

M. tuberculosis infection.79,80 Monoclonal antibodies against 

specific M. tuberculosis antigens have shown some conflict-

ing results.81–83 This could be partly because of differences in 

types of antibodies and routes of administration. Using sera 

from bacillus Calmette-Guerin (BCG)-vaccinated individu-

als, we had shown that antibodies enhance internalization 

of mycobacteria by phagocytic cells.84 Interestingly, these 

antibodies from vaccinated individuals significantly increased 

the ability of macrophages to kill intracellular mycobacteria 

and led to marked increase in M. tuberculosis-specific cell-

mediated immunity.84 Further works to identify the combi-

nations of monoclonal antibodies, routes, and frequency of 

administration in animal models may be needed before M. 

tuberculosis-specific antibodies are tested in clinical trials.

Drugs
Certain host-directed therapies focus on drugs as immuno-

modulators to facilitate M. tuberculosis clearance. Steroids, 

levamisole, and vitamin D have been tried in humans. High 

dose steroids have been tried in HIV-positive TB patients.85 

Although steroid-enhanced culture conversions at 1 month 

have been observed, the side effects appeared to outweigh 

the benefits. The antihelminthic drugs, levamisole and 

albendazole, have been tested in combination with standard 

anti-TB drugs in new cases of pulmonary TB. Helminth 

infections induce Th2 predominant immune responses.86 

Moreover, helminth coinfection leads to Th2 and regulatory 

T-cell dominant immune responses impairing TB-protective 

Th1 responses.86,87 Therefore, treatment of helminth infec-

tions may modulate the immune response, inducing subsets 

more able to limit the progression of disease. Unfortunately, 

the results with antihelminthic drugs have not been very 

encouraging so far. Levamisole given to new TB patients 

resulted in improvements in radiological findings but no 

change in smear conversion rate.88 Recently, a randomized 

clinical trial with albendazole for 3 days in combination with 

standard anti-TB drugs in patients with pulmonary TB and 

helminth coinfection demonstrated no difference in clinical 

score, smear conversion, and imaging changes compared to 

placebo.89 The roles of nutritional status, degree of immu-

nosuppression from TB disease, and HIV coinfection on the 

outcomes of the adjunct use of antihelminthic drugs need to 

be studied further. The use of vitamin D for TB predates TB 

chemotherapy. Vitamin D activates macrophages via toll-like 

receptor signaling pathway leading to increased production 

of mycobactericidal peptides, cathelicidin, and its active 

form LL-37.90 Unfortunately, clinical trials with vitamin D 

supplements have resulted in controversial results.91

Other drugs targeting tyrosine kinases and phagosomal 

acidification, autophagy, hydrolysis of cyclic adenosine 

monophosphate and cyclic guanosine monophosphate, 

inflammation, angiogenesis, and epidermal growth factor 

receptor have shown encouraging results in murine TB 

 models. Imatinib is an inhibitor of Abelson tyrosine kinase 

used mainly in the treatment of Philadelphia chromosome-

positive chronic myelogenous leukemia. Because Abelson 

tyrosine kinase is important for the regulation of lyso-

somal pH in macrophages, inhibition of its function decreases 

lysosomal pH and enhances the ability of macrophages to kill 

M. tuberculosis.92 Furthermore, the use of imatinib alone or 

in combination with rifampin has been found to decrease the 

bacterial load in the lungs of M. tuberculosis-infected mice.93 

This drug appears to be generally safe although there are case 

reports of interstitial lung disease associated with imatinib 

and nilotinib, a second generation tyrosine kinase inhibi-

tor.94,95 Metformin, an antidiabetic agent, is an autophagy 

inducer via activation of adenosine monophosphate-activated 

protein kinase. Metformin inhibited the intracellular growth 

of M. tuberculosis, restricted disease immunopathology, 

and enhanced the efficacy of conventional anti-TB drugs 

in mice.96 Moreover, in a retrospective study of TB patients 

with diabetes mellitus, it was found that patients who were 

on metformin had fewer pulmonary cavities and significantly 

better survival.96 Similarly, other autophagy inducers, such 

as statins (simvastatin, rosuvastatin) and gefitinib (an inhibi-

tor of epidermal growth factor receptor), were shown to 

decrease bacterial load in M. tuberculosis-infected mice.97,98 

The safety and efficacy of imatinib, metformin, and statin 

in murine TB studies make them potential candidates for 

human clinical trials.
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Treatment with the anti-inflammatory drug, ibuprofen, 

resulted in decreases in the size and number of lung lesions, 

decreases in bacillary load, and improvement in survival of 

M. tuberculosis-infected C3HeB/FeJ mice.99 Ibuprofen also 

enhances the anti-TB activities of the anti-TB drug, pyrazi-

namide, during the initial phase of treatment.100 Similarly, 

other drugs which may reduce inflammation, prostaglandin 

E2 and zileuton (a leukotriene inhibitor), decrease lung 

colony forming units and improve survival in mice infected 

with M.  tuberculosis.101 Phosphodiesterase inhibitors, such 

as sildenafil and cilostazole, likely by interfering with the 

breakdown of cyclic adenosine monophosphate and cyclic 

guanosine monophosphate and interfering with downstream 

signaling events, shorten the duration of TB treatment in 

mice.102 CC-3052, a new phosphodiesterase-4 inhibitor and 

thalidomide analogue, decreased lung pathology and  bacterial 

load significantly when combined with isoniazid in a rabbit 

TB model.103

Knowledge gaps and novel strategies
Most of the studies on immunotherapy so far have focused on 

TB treatment. This may help shorten standard treatments or 

improve the management of MDR/XDR-TB. Because a third 

of the population is infected with M. tuberculosis, immuno-

therapeutics which enhance the eradication of latent infection 

could have a major impact on TB control. The effects of new 

immunotherapeutics/vaccines on the progression or reactiva-

tion of LTBI in humans remain to be studied.

Because most cases of TB are pulmonary, immunothera-

peutics may give a better outcome if they modulate mucosal 

immune responses. Lessons from TB vaccine studies should 

be applied to new immunotherapeutics. Numerous animal 

and human studies demonstrate that in general, mucosal 

vaccinations induce more effective mucosal immunity than 

systemic vaccinations. With regard to TB mucosal immu-

nity, murine studies with BCG and new TB vaccines clearly 

demonstrated that mucosal vaccination via the intranasal 

route induced superior protection against subsequent aerosol 

challenges with M. tuberculosis.104–106 It was further shown 

that mucosal T-cells present in the lung airways of mice post-

vaccination were the best predictors of protective immunity, 

and when transferred intratracheally these cells alone could 

protect against M. tuberculosis aerosolized challenges.105,107 

Therefore, approaches which facilitate the recruitment of 

relevant M. tuberculosis-specific T-cells to the lung and limit 

nonspecific inflammation should be studied. Host-directed 

therapy potentially could provide exciting new avenues for 

the management of LTBI and TB disease, providing hope 

of shortening standard LTBI and TB treatments as well as 

improving treatment of MDR/XDR-TB.
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