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Abstract: Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes 

the metabolism of a great number of therapeutic drugs. Up to now, 100 allelic variants of 

CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese popula-

tion in these variants. The purpose of this study was to examine the enzymatic activity of the 

variants toward the CYP2D6 substrate carvedilol in vitro. The CYP2D6 proteins, including 

CYP2D6.1 (wild type), CYP2D6.2, CYP2D6.10, and 22 other novel CYP2D6 variants, were 

expressed from insect microsomes and incubated with carvedilol ranging from 1.0 μM to 

50 μM at 37°C for 30 minutes. After termination, the carvedilol metabolites were extracted 

and detected using ultra-performance liquid chromatography tandem mass-spectrometry. 

Among the 24 CYP2D6 variants, CYP2D6.92 and CYP2D6.96 were catalytically inactive and 

the remaining 22 variants exhibited significantly decreased intrinsic clearance values (ranging 

from ~25% to 95%) compared with CYP2D6.1. The present data in vitro suggest that the newly 

found variants significantly reduced catalytic activities compared with CYP2D6.1. Given that 

CYP2D6 protein activities could affect carvedilol plasma levels, these findings are greatly 

relevant to personalized medicine.

Keywords: CYP2D6, carvedilol, allelic variant, catalytic activity

Introduction
Carvedilol is a β1-, β2-, and α1-adrenoreceptor blocker drug with antioxidant and 

antiproliferative effects. It was indicated for the treatment of hypertension, stable 

angina pectoris, and congestive heart failure.1,2 Cytochrome P450 2D6 (CYP2D6) 

is considered as a key component of carvedilol elimination through hydroxylation 

in the liver.3 Two hydroxy metabolites were primarily metabolized from carvedilol: 

O-desmethyl metabolite (CYP3A4) and hydroxyphenyl carvedilol (CYP2D6), 

including 4′-hydroxyphenyl carvedilol (4′-OHC) and 5′-hydroxyphenyl carvedilol 

(5′-OHC; Figure 1). 4′-OHC and 5′-OHC were the major metabolites, which were 

mainly metabolized by CYP2D6.3–6

CYP2D6, a highly polymorphic enzyme, constitutes only a small percentage of 

the CYP450 proteins (2%); however, it is involved in the metabolism of ~25% 

of clinical therapeutic drugs, including antidepressants, antitussives, β-adrenergic  

antagonists, antipsychotic agents, opioid drugs, and antiarrhythmic agents.7–11 CYP2D6 

has extensive genetic polymorphisms with at least 105 allelic variants (http://www.

cypalleles.ki.se/cyp2d6.htm). Such variability may lead to failure of treatment in car-

riers of alleles that results in high CYP2D6 activity. Conversely, high risk of toxicity 

may be associated with low-activity genotypes.12,13 Thus, the CYP2D6 polymor-

phism is an important determinant of carvedilol metabolism. Meanwhile, according 
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to the activity of CYP2D6 protein in the allelic variation, 

it could distinguish categories of carvedilol metabolizers 

into four phenotypically: ultrarapid metabolizers, extensive 

metabolizers, intermediate metabolizers, and poor metabo-

lizers (PMs).3,14 Poor CYP2D6 activity in PMs significantly 

decreases the metabolism of carvedilol, leading to higher 

carvedilol plasma exposure and sequentially causing high 

risk of toxicity.15 As mentioned in the previous report, the 

healthy PM subjects exerted significantly lower systolic 

blood pressure in the treatment of carvedilol compared with 

the wild type subjects.3

Previously, 22 novel nonsynonymous mutated sites 

among the Chinese population were found. However, the 

functional effects of these mutations on the metabolism of 

carvedilol are unclear. In the present study, we determined 

the two metabolites of carvedilol generated by CYP2D6 

enzyme among CYP2D6.1, CYP2D6.2, CYP2D6.10, and 22 

novel variants in the microsomes expressed in the insect cell 

and analyzed the catalytic activities of the allelic variants. 

And we hope this result can provide valuable information 

relevant to CYP2D6 genetic polymorphisms in carvedilol 

metabolism and the personalized oral dosing for further 

studies in clinic.

Materials and methods
Materials
Baculosomes coexpressing human CYP2D6 and NADPH-

cytochrome P450 oxidoreductase (OR) or cytochrome b5 and 

OR were purchased from BD Gentest (Woburn, MA, USA). 

Carvedilol, 4′-OHC, 5′-OHC, metoprolol, and NADPH were 

obtained from Sigma-Aldrich Co. (St Louis, MO, USA). 

High-pressure liquid chromatography grade was obtained 

from Thermo Fisher Scientific (Waltham, MA, USA). 

Other reagents and solvents used were of analytical grade or 

the highest commercially available grade.

Methods
expression of cYP2D6 variants in insect cell 
microsomes
Baculosomes coexpressing human CYP2D6 enzyme and 

NADPH-CYP450 OR were prepared and determined using 

methods previously described.16 Briefly, dual expression 

vector pFastBac-OR-CYP2D6 was packaged into baculovirus 

according to the manufacturer’s procedure. Then, the virus 

was used for the infection of Sf21 insect cells to coexpress the 

CYP2D6 variants and OR protein simultaneously. Three days 

after infection, the cells were sonicated and centrifuged to get 

the microsomes containing CYP2D6 variants. To quantify 

and clarify the correct expression of CYP2D6 variants, the 

recombinant CYP2D6 baculosome reagent purchased from 

BD Gentest was used as the microsomal protein standard in 

the immunoblotting analysis.16

incubation procedure and analysis of cYP2D6 
enzyme activity
Incubation mixtures were prepared in a total volume of 

200 μL as follows: 5 pmol CYP2D6.1 or 10 pmol other 

variants, 5 pmol purified cytochrome b5, 10 mM phosphate-

buffered saline (pH 7.4), 1 mM NADPH, and carvedilol 

final concentration ranging from 1 μM to 50 μM. The total 

concentration of methanol was 0.4%. In all, 20 μL of 

10 mM NADPH was added to start the reaction at 37°C in a 

final volume of 200 μL. There was a 5-minute preincubation 

period at 37°C before the 30-minute reaction was initiated 

′

′

Figure 1 structure of the analytes and metabolic pathway of carvedilol.
Abbreviations: cYP2D6, cytochrome P450 2D6; cYP2c9, cytochrome P450 2c9.
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by adding the NADPH. Incubations were terminated by the 

addition of 400 μL cold acetonitrile and 40 μL metoprolol 

(2 μg/mL in methanol solution) as an internal standard. After 

being vortexed for 2 minutes, the samples were centrifuged 

at 10,000× g for 10 minutes. Then 2 μL of the supernatants 

was subjected to ultra-performance liquid chromatography 

tandem mass-spectrometry (UPLC-MS/MS) assay. The 

incubations were completed in triplicate, and the data are 

expressed as the mean ± SD of three experiments.

chromatographic and mass detection conditions
Quantitative analysis was conducted with a Waters Acquity 

UPLC System (Waters Corp., Milford, MA, USA) equipped 

with Xevo TQD triple quadrupole mass spectrometer (Waters 

Corp.) and electrospray ionization in the positive ionization 

mode. The separation of analytes was performed on an UPLC 

BEH C18 column (100×2.1 mm, 1.7 μm; Waters Corp.).

The mobile phase consisted of 0.1% formic acid in 

water (solvent A) and acetonitrile (solvent B) at an isocratic 

flow rate of 0.4 mL/min with the following gradient: 

25% B (0–0.3 minutes), 25%–36% B (0.3–3 minutes), 

36%–95% B (3–3.5 minutes), 95% B (3.5–4.5 minutes), and 

95%–25% B (4.5–4.6 minutes). Before the next injection, 

re-equilibration was performed for a subsequent time of 

1.0 minutes. The injection volume was 2 μL. Under these 

conditions, the retention times of metoprolol, 4′-OHC, 

5′-OHC, and carvedilol were 1.28 minutes, 2.24 minutes, 

2.39 minutes, and 3.73 minutes, respectively.

The precursors to product ion transitions were moni-

tored at m/z 407.1→99.2, 423.03→99.73, 423.1→99.73, 

and 268.09→115.92 for carvedilol, 4′-OHC, 5′-OHC, and 

metoprolol, respectively. The optimal mass parameters for 

the analytes and internal standards were as follows: capillary 

voltage, 2.5 kV; source temperature, 150°C; and desolvation 

temperature, 350°C. The pressure of argon used as collision 

activation dissociation gas was 0.137 Pa. The optimum 

values for compound-dependent parameters such as cone 

voltage and collision energy were set at 40 V and 16 eV for 

carvedilol, 50 V and 30 eV for 4′-OHC, 50 V and 30 eV for 

5′-OHC, and 40 V and 16 eV for metoprolol, respectively. 

Quadrupoles 1 and 3 were maintained at unit mass resolution, 

and the dwell time was set at 100 ms. MassLynx Software 

Version 4.1 (Waters Corp., Milford, MA, USA) was used to 

control all parameters of UPLC-MS/MS.

statistical analysis
Michaelis–Menten analysis was estimated by nonlinear 

regression curve fitting utilizing GraphPad Prism Version 5 

(GraphPad Software, Inc., La Jolla, CA, USA). All kinetic 

data were expressed as the mean ± SD of three microsomal 

preparations. Statistical analyses were analyzed with IBM 

SPSS Statistics (Version 19.0; IBM Corporation, Armonk, 

NY, USA). The statistical analyses were evaluated by one-

way analysis of variance for intergroup comparison. Dunnet’s 

multiple-range test was used for the catalytic activity data 

between CYP2D6.1 and other variants. P-value 0.05 was 

considered to be statistically significant.

Results
Michaelis–Menten plots of 4′-hydroxylation and 5′- 
hydroxylation for each of the CYP2D6 variants are shown in 

Figures 2 and 3, respectively, and the corresponding kinetic 

parameters of 4′-hydroxylation and 5′-hydroxylation for 

carvedilol are summarized in Tables 1 and 2, respectively. 

The values of intrinsic clearance (V
max

/K
m
) for carvedilol 

4′-hydroxylation and 5′-hydroxylation were significantly 

decreased in all the tested allelic variants.

CYP2D6.92 and CYP2D6.96 did not show any enzyme 

activity toward carvedilol 4′-hydroxylation. CYP2D6.89, 

E215K, and R440C exhibited the V
max

 values, which were 

2.24-, 1.68-, and 1.35-fold higher than CYP2D6.1, respec-

tively; however, K
m
 values of the three variants increased 

more apparently than V
max

 values (3.01-, 7.42-, and 2.94-

fold higher than CYP2D6.1, respectively). Therefore, 

CYP2D6.89, E215K, and R440C showed intrinsic clearance 

1.34-, 4.41-, and 2.17-fold lower compared with that of 

CYP2D6.1, respectively.

Nine of the 24 defective alleles (CYP2D6.87, CYP2D6.91, 

CYP2D6.95, CYP2D6.97, R25Q, E215K, V327M, V342M, 

and R497C) exerted similar values of intrinsic clearance to 

the typical defective allele CYP2D6.2 (Table 1). CYP2D6.93 

showed comparable values to another typical defective allele 

CYP2D6.10 that presented 22.94-fold lower intrinsic clearance 

value than that of CYP2D6.1. The remaining ten variants 

(CYP2D6.88, CYP2D6.89, CYP2D6.90, CYP2D6.94, 

CYP2D6.98, F164L, F219S, D336N, R344Q, and R440C) 

also exhibited significantly reduced intrinsic clearance values 

compared with CYP2D6.1.

The values of intrinsic clearance (V
max

/K
m
) for carve-

dilol 4′-hydroxylation were significantly decreased in 

all the allelic variants in the present research. Carvedilol 

5′-hydroxylation exhibited similar results to that of carve-

dilol 4′-hydroxylation. Michaelis–Menten curves for each 

of the CYP2D6 variants are shown in Figure 3, and the 

kinetic parameters of each CYP2D6 enzymatic activity are 

summarized in Table 2.
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Discussion
CYP2D6, an important enzyme of CYP450 subfamily in 

clinic, metabolized a certain number of medicines. CYP2D6 

was primarily responsible for carvedilol metabolism, and 

the polymorphisms play an important role in the wide inter-

individual variation in the plasma levels.17 In this study, 

we observed the functional alterations in CYP2D6 allelic 

variants toward carvedilol hydroxylation. To identify the 

effects of 24 CYP2D6 variants on carvedilol hydroxylation, 

the catalytic activities of CYP2D6.1 and 24 other CYP2D6 

variant proteins expressed in insect cells were analyzed. 

All the 24 allelic variants exhibited significantly reduced 

intrinsic clearance values compared with the CYP2D6.1.

The CYP2D6.2 and CYP2D6.10, two typical defec-

tive genotypes, undergo the most research concerning  

their frequencies and catalytic activities. In this study, 

CYP2D6.2 exhibited lower catalytic activity than CYP2D6.1 

in carvedilol 4′-hydroxylation (69.59% of CYP2D6.1) and 

′′

′′

′′

Figure 2 Michaelis–Menten curves of the carvedilol 4′-hydroxylation activities of the recombinant wild-type cYP2D6 protein and the 24 variants toward carvedilol.
Note: each point represents the mean ± sD of three separate experiments.
Abbreviations: cYP2D6, cytochrome P450 2D6; min, minute.
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5′-hydroxylation (73.20% of CYP2D6.1), respectively. 

CYP2D6.10, occurring in ~50% of individuals in oriental 

populations, was one of the most widely studied CYPs in rela-

tion to its genetic polymorphisms.18,19 This variant contains 

C⁄T 188 and G⁄C 4268 mutations and results in the crucial 

amino acid substitutions of Pro34Ser and Ser486Thr.11,20  

A previous report indicated that the intrinsic clearance 

value of CYP2D6.10 in clinical medicine was signifi-

cantly decreased, including bufuralol, dextromethorphan, 

debrisoquine, atomoxetine, tramadol, and codeine.3 In the 

present research, CYP2D6.10 was associated with smaller 

values of V
max

 in carvedilol 4′-hydroxylation (4.36% of 

CYP2D6.1) and 5′-hydroxylation (3.56% of CYP2D6.1), 

and thus caused lower clearance value compared with 

CYP2D6.1. This observation indicates that the metabolism 

in CYP2D6.10 allele carriers may be saturated even at low 

dose compared with the noncarriers. Similar to CYP2D6.10, 

CYP2D6.93 exhibited low clearance value in carvedilol 

′
′

′

′
′

′

Figure 3 Michaelis–Menten curves of the carvedilol 5′-hydroxylation activities of the recombinant wild-type cYP2D6 protein and the 24 variants toward carvedilol.
Note: each point represents the mean ± sD of three separate experiments.
Abbreviations: cYP2D6, cytochrome P450 2D6; min, minute.
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Table 1 Kinetic parameters for carvedilol 4′-hydroxylation activities of recombinant wild-type and mutant cYP2D6 proteins

Allelic protein Vmax (pmol/min/nmol  
of P450)

Km (μM) Clearance (Vmax/Km) Relative clearance/ 
CYP2D6.1 (%)

cYP2D6.1 1.1610±0.0469 1.531±0.207 0.7583±0.0731 100.00
cYP2D6.2 0.7694±0.0357# 3.336±0.745# 0.2306±0.0372# 30.41
cYP2D6.10 0.0380±0.0003# 1.151±0.073 0.0330±0.0019# 4.36
cYP2D6.87 0.5603±0.0089# 2.085±0.202 0.2687±0.0215# 35.44
cYP2D6.88 0.9571±0.0191# 2.234±0.119 0.4284±0.0141# 56.50
cYP2D6.89 2.6020±0.0279# 4.606±0.240# 0.5649±0.0236# 74.50
cYP2D6.90 0.9708±0.0161# 2.336±0.147# 0.4156±0.0190# 54.80
cYP2D6.91 0.5181±0.0328# 1.981±0.408 0.2615±0.0400# 34.49
cYP2D6.92 – – – –
cYP2D6.93 0.1177±0.0062# 2.158±0.275 0.0545±0.0042# 7.19
cYP2D6.94 0.8660±0.0155# 2.026±0.067 0.4274±0.0077# 56.37
cYP2D6.95 0.5968±0.0165# 3.538±0.158# 0.1687±0.0029# 22.24
cYP2D6.96 – – – –
cYP2D6.97 1.1690±0.0655 4.845±0.728# 0.2413±0.0231# 31.82
cYP2D6.98 0.8055±0.0004# 2.405±0.196# 0.3349±0.0270# 44.17
r25Q 0.4278±0.0081# 2.323±0.077 0.1842±0.0076# 24.29
F164l 0.4960±0.0183# 1.536±0.098 0.3229±0.0089# 42.58
e215K 1.9540±0.0218# 11.36±0.687# 0.1720±0.0084# 22.68
F219s 0.6253±0.0133# 2.023±0.044 0.3091±0.0132# 40.76
V327M 0.4018±0.0042# 1.965±0.054 0.2045±0.0069# 26.97
D336n 0.7949±0.0045# 2.126±0.031# 0.3739±0.0033# 49.31
r344Q 0.5502±0.0020# 1.437±0.108 0.3829±0.0301# 50.49
V342M 0.8545±0.0165# 3.287±0.304# 0.2600±0.0191# 34.28
r440c 1.5730±0.0070# 4.504±0.227 0.3492±0.0178# 46.06
r497c 0.3113±0.0025# 1.329±0.041 0.2342±0.0070# 30.89

Notes: Data are presented as the mean ± sD of three different expression experiments. #P0.05 versus wild-type cYP2D6.1.
Abbreviations: cYP2D6, cytochrome P450 2D6; Km, michaelis-menten constant; Vmax, maximum initial velocity of the enzyme.

Table 2 Kinetic parameters for carvedilol 5′-hydroxylation activities of recombinant wild-type and mutant cYP2D6 proteins

Allelic protein Vmax (pmol/min/nmol  
of P450)

Km (μM) Clearance (Vmax/Km) Relative clearance/ 
CYP2D6.1 (%)

cYP2D6.1 1.0870±0.1008 1.966±0.428 0.5529±0.0649 100.00
cYP2D6.2 0.6574±0.0423# 4.436±1.030# 0.1482±0.0245# 26.80
cYP2D6.10 0.0336±0.0008# 1.709±0.010 0.0197±0.0005# 3.56
cYP2D6.87 0.5641±0.0175# 3.491±0.291# 0.1616±0.0103# 29.23
cYP2D6.88 1.0760±0.0203 3.684±0.270# 0.2921±0.0166# 52.83
cYP2D6.89 2.0490±0.1043# 5.995±0.411# 0.3418±0.0070# 61.82
cYP2D6.90 0.8683±0.0183# 3.312±0.324# 0.2622±0.0200# 47.42
cYP2D6.91 0.5592±0.0405# 3.03±0.472 0.1846±0.0164# 33.38
cYP2D6.92 – – – –
cYP2D6.93 0.0787±0.0042# 2.599±0.307 0.0303±0.0019# 5.48
cYP2D6.94 0.8343±0.0329# 3.055±0.284 0.2731±0.0144# 49.39
cYP2D6.95 0.5848±0.0234# 5.486±0.351# 0.1066±0.0025# 19.28
cYP2D6.96 – – – –
cYP2D6.97 1.0600±0.0745 6.556±1.058# 0.1617±0.0152# 29.24
cYP2D6.98 0.7920±0.0119# 3.194±0.113# 0.2480±0.0117# 44.85
r25Q 0.4787±0.0208# 3.505±0.386# 0.1366±0.0093# 24.70
F164l 0.5679±0.0112# 2.251±0.023 0.2523±0.0072# 45.63
e215K 1.088±0.0411 6.929±0.214# 0.157±0.0014# 28.40
F219s 0.6914±0.0256# 3.31±0.009# 0.2089±0.0072# 37.78
V327M 0.4303±0.0066# 2.935±0.071 0.1466±0.0054# 26.52
D336n 0.7285±0.0100# 3.21±0.129# 0.2269±0.0060# 41.05
r344Q 0.5110±0.0019# 2.081±0.108 0.2456±0.0131# 44.41
V342M 0.7932±0.0209# 4.784±0.606# 0.1658±0.0178# 29.99
r440c 0.9315±0.0287# 5.859±0.740# 0.1590±0.0149# 28.75
r497c 0.2981±0.0046# 2.061±0.194 0.1446±0.0117# 26.16

Notes: Data are presented as the mean ± sD of three different expression experiments. #P0.05 versus wild-type cYP2D6.1.
Abbreviation: cYP2D6, cytochrome P450 2D6.
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4′-hydroxylation (7.19% of CYP2D6.1) and 5′-hydroxylation 

(5.48% of CYP2D6.1) with significant alteration in V
max

.

CYP2D6.92 (218Frameshift) and CYP2D6.96 (Gln424-

STOP) did not show any catalytic activities even at the 

substrate concentration of 50 μM. Therefore, the two inactive 

variants can be classified as poor metabolism phenotypes. 

Similarly, CYP2D6.20 (211Frameshift) and CYP2D6.8 

(Gly169STOP) also did not exhibit any catalytic activity. 

It is perhaps reasonable to infer that enzymatic function abol-

ished may be associated with the frameshift or the premature 

termination in the protein translation process.15

The Glu216 residue was located in the F helix, which 

was essential for the active site cavity.21,22 Its replace-

ment with a neutral or basic residue could significantly 

decrease the binding of amine substrates and sequentially 

caused reduction or abolishment in enzymatic activity.23 

The present result further showed that E215K and F219S 

displayed low activity similar to that of CYP2D6.2. Fur-

thermore, the results reinforce previous observations show-

ing that mutations 1984GA (p.E215K) and 1997TC 

(p.F219S) located in the F helix would affect the activity 

of CYP2D6.22

Meanwhile, the new allelic isoform R25Q also decreased 

significantly in catalytic activity toward carvedilol. 

A previous study showed that CYP2D6.47, which contains 

R25W, P34S, and S486T substitutions, reveals poor enzy-

matic activities similar to that of CYP2D6.10 (P34S and 

S486T).10 Thus, it could be inferred that Arg25 plays role 

in halting the transfer signal and involves direct decrease of 

the enzyme activity.10

In the previous functional prediction of the 22 novel 

variants, CYP2D6 protein activity might be reduced in 

eight variants (L142S, C161S, F219S, T249P, 424STOP, 

R440C, H463D, and R497C).22 In the present study, T249P 

(CYP2D6.93) showed decreased catalytic activity that was 

similar to CYP2D6.10. Meanwhile, C161S (CYP2D6.91) 

and R497C exerted decreased catalytic activity that was 

similar to CYP2D6.2. 424STOP (CYP2D6.96) exhibited a 

deficiency of metabolic activity. The other variants (L142S 

(CYP2D6.89), F219S, R440C, and H463D (CYP2D6.98)) 

exhibited lower catalytic activity compared with CYP2D6.1, 

but higher to CYP2D6.2. It provided the evidence that an 

amino acid substitution will impact on the structure and 

function and subsequently affect the activity of CYP2D6 

enzyme. Meanwhile, single nucleotide polymorphisms could 

be primarily responsible for the function of CYP2D6 enzyme 

activity. For example, 100CT and 1039CT (CYP2D6.94) 

and 2850CA (CYP2D6.91) existed in the 5′ and 3′ ends of 

the CYP2D6 gene, respectively.22

In the present study, CYP2D6.1 and 24 other CYP2D6 

alleles were functionally assessed, including 22 recently 

detected nonsynonymous mutations found in Chinese Han 

populations. Importantly, the results in this study demon-

strated that all the variants tested significantly reduce the 

metabolic activities toward the substrate carvedilol. Further 

in vivo research should confirm whether defective allele 

carriers require low oral doses of carvedilol or other drugs 

metabolized on CYP2D6.
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