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Abstract: The cytoprotective effects of erythropoietin (EPO) and an EPO-related nonery-

thropoietic analog, pyroglutamate helix B surface peptide (pHBSP), were investigated in an in 

vitro model of bovine aortic endothelial cell injury under normoxic (21% O
2
) and hypoxic (1% 

O
2
) conditions. The potential molecular mechanisms of these effects were also explored. Using 

a model of endothelial injury (the scratch assay), we found that, under hypoxic conditions, 

EPO and pHBSP enhanced scratch closure by promoting cell migration and proliferation, but 

did not show any effect under normoxic conditions. Furthermore, EPO protected bovine aortic 

endothelial cells from staurosporine-induced apoptosis under hypoxic conditions. The priming 

effect of hypoxia was associated with stabilization of hypoxia inducible factor-1α, EPO recep-

tor upregulation, and decreased Ser-1177 phosphorylation of endothelial nitric oxide synthase 

(NOS); the effect of hypoxia on the latter was rescued by EPO. Hypoxia was associated with 

a reduction in nitric oxide (NO) production as assessed by its oxidation products, nitrite and 

nitrate, consistent with the oxygen requirement for endogenous production of NO by endothelial 

NOS. However, while EPO did not affect NO formation in normoxia, it markedly increased 

NO production, in a manner sensitive to NOS inhibition, under hypoxic conditions. These data 

are consistent with the notion that the tissue-protective actions of EPO-related cytokines in 

pathophysiological settings associated with poor oxygenation are mediated by NO. These find-

ings may be particularly relevant to atherogenesis and postangioplasty restenosis.

Keywords: erythropoietin, pyroglutamate helix B surface peptide, scratch assay, proliferation, 

migration, apoptosis

Introduction
Inflammation and hypoxia are often associated with tissue injury and are involved in 

wound repair and atherogenesis.1,2 We have previously reported that the reparative effects 

of erythropoietin (EPO) on endothelial cells is more evident under 5% oxygen (O
2
) 

compared to atmospheric oxygen concentrations (21%).3 However, 5% O
2
 is close to 

physiological tissue oxygen concentrations, while persistent, more severe hypoxia (,1% 

O
2
), such as following ischemia, can be deleterious and is associated with endothelial 

injury due to effects on a variety of cellular processes.4 Hypoxia induces the expression 

of several cytokines such as vascular endothelial growth factor (VEGF) and EPO, which, 

in turn, help orchestrate the chronic adaptation to hypoxia. While the principal effect 

of EPO is to increase the number of red blood cells and thus improve oxygenation, it is 

also tissue protective and prevents ischemic injury of the vascular endothelium.5–7 These 

protective effects of EPO may be mediated in part by its stimulation of endothelial cell 

proliferation and migration (in cases of endothelial damage), inhibition of apoptosis 
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and inflammation, and induction of angiogenesis.8–10 These 

effects are mediated by a tissue-protective receptor, which 

is distinct from the canonical homodimeric EPO receptor 

(EPOR) mediating its erythropoietic effects, and comprises a 

heterodimeric complex composed of EPOR and the common 

β-subunit of receptors for granulocyte-macrophage colony-

stimulating factor, interleukin-3, and interleukin-5 (βCR, also 

known as CD131).

Nonerythropoietic analogs of EPO that are tissue protec-

tive but not erythropoietic may represent a potentially safer 

and more effective intervention for the treatment of vascular 

disease, as they lack the erythropoietic properties of EPO that 

may lead to some of its adverse vascular complications.5,11,12 

EPO and its nonerythropoietic analogs have been shown to 

promote wound healing13,14 and confer protection in models 

of cardiovascular injury.15,16 We have previously shown that 

these nonerythropoietic analogs (carbamylated EPO and 

the synthetic peptide pyroglutamate helix B surface peptide 

[pHBSP]) exhibit tissue-protective effects that are similar to 

EPO in an in vitro vascular cell injury model at a low oxygen 

tension (5% O
2
) but not in normoxia.3 The aim of the present 

investigation was to study the potentially protective effects 

of EPO and its novel nonerythropoietic analog pHBSP under 

conditions in which the hypoxia was more pronounced (1% 

O
2
) and to determine the putative molecular mechanisms by 

which these two entities confer protection. For this purpose, 

we used an in vitro model of wound healing (the “scratch 

assay”) in bovine aortic endothelial cells (BAECs). The effects 

of EPO and pHBSP on cellular migration, proliferation, and 

apoptosis were studied and related to the formation of nitric 

oxide (NO) by measuring NO production and testing the effect 

of specific enzyme inhibitors and NO scavengers.

Materials and methods
All chemicals were from Sigma-Aldrich Co. (St Louis, MO, 

USA), unless otherwise stated. The peptide (pHBSP, or 

ARA290; pyroglu-EQLERALNSS) and the scrambled peptide 

(scr-pHBSP; pyroglu-LSEARNQSEL) used as a control peptide 

for our experiments were provided by Araim Pharmaceuticals 

(Tarrytown, NY, USA). Typically, 100× stock solutions were 

prepared fresh in phosphate-buffered saline (PBS) and sterile-

filtered before addition to cells; 2-phenyl-4,4,5,5-tetramethylim-

idazoline-1-oxyl 3-oxide (PTIO) and staurosporine were kept 

frozen as 1,000× aliquots in dimethyl sulfoxide.

Cell culture
BAECs were obtained from European Collection of Authen-

ticated Cell Cultures (ECACC) (Salisbury, UK) and used 

between passages 4 and 12. The cells were cultured in 

Dulbecco’s Modified Eagle’s medium supplemented with 

10% fetal bovine serum and penicillin/streptomycin (final 

concentration 100 IU/mL) and were cultured, prior to our 

experiments, at 37°C in a humidified atmosphere contain-

ing 5% CO
2
 and 21% O

2
 (corresponding to an effective O

2
 

concentration of 18.6%).17 When indicated, hypoxic experi-

ments were performed under 1% O
2
, 5% CO

2
, and 94% N

2
 

in an acrylic chamber where O
2
 was maintained at such a 

low level using a CO
2
 and O

2
 controller (ProOx model c21, 

BioSpherix, Ltd, New York, USA).

Scratch assay
The scratch assay was performed as previously described.3 The 

effects of EPO, its peptide analog (pHBSP), or a scrambled 

peptide (scr-pHBSP) as a control were investigated in either 

21% or 1% O
2
. A reproducible scratch was produced in the 

endothelial monolayer as previously described, and thereafter, 

either EPO or pHBSP or scr-pHBSP was added to the cells 

and subsequently incubated in a 21% or 1% O
2
 for 24 hours. 

Optimal concentrations for each agonist were established in 

earlier experiments (Figure S1A).3 The defined area of the 

scratch was photographed under an inverted microscope 

(Olympus CKX41; Olympus Corporation, Tokyo, Japan) 

at 10× magnification using a Micropix 5 megapixel color 

complementary metal-oxide semiconductor digital camera 

(Olympus Cooperation). The position of the wound image 

was standardized each time against a horizontal line drawn 

on the base of the plate passing through the center of each 

well. The scratch area was quantified using ImageJ software 

(National Institutes of Health, Bethesda, MD, USA).

In some experiments, either the nitric oxide synthase 

(NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME; 

300 µM) or l-NG-monomethyl-l-arginine (l-NMMA; 1 mM) 

was added 30 minutes prior to the addition of EPO. To test 

whether the effect observed was NO dependent regardless of 

its source, the NO scavenger PTIO (150 µM) was used and 

added 30 minutes prior to addition of EPO. l-NAME was 

freshly prepared for each experiment, while l-NMMA and 

PTIO were used from frozen stock solutions.

Cell viability assay
Cell viability was evaluated using the trypan blue exclusion 

test as previously described.3 Briefly, cells were seeded into 

96-well plates at a density of 1×104 cells/mL (0.15 mL/

well) in culture medium. After 24 hours, the supernatant was 

removed and replaced by 150 µL fresh medium containing 

EPO, pHBSP, or scr-pHBSP at a concentration of 1 ng/mL, 
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and the cells were incubated at 21% or 1% O
2
. After 24 hours, 

trypan blue was added and the cells that were stained (dead) 

and unstained (live) were counted. Results were expressed 

as viable cell count per milliliter. To test whether the effects 

of EPO or its analog were mediated by NO, in some experi-

ments, we used the NOS inhibitor l-NAME (300 µM).

Migration assay
A micro-Boyden chamber assay (NeuroProbe, Gaithersburg, 

MD, USA) was used to assess the effect of 1 ng/mL EPO, 

pHBSP, and scr-pHBSP on cell migration.18 Migrated cells 

were stained using Diff-Quick stain (Gamidor Technical 

Services Ltd, Didcot, UK) and counted under 40× magni-

fication. To investigate whether the effects of EPO and its 

analog were mediated by endothelial NOS (eNOS). Some 

experiments were performed in the presence of 300 µM of 

the NOS inhibitor l-NAME.

Apoptosis
Caspase-3 activity measurement assay
Caspase-3/7 activity was measured using the Caspase-Glo 

3/7 assay (Promega Corporation, Fitchburg, WI, USA). 

Cells were plated into 96-well plates at a seeding density 

of 5×104 cell/mL and cultured for 24 hours in 1% or 21% 

O
2
. Cells were then treated with either EPO (1 ng/mL) or 

vehicle (medium) for 3 hours, before apoptosis was induced 

by adding 500 nM staurosporine for 18 hours. Reconstituted 

Caspase-Glo 3/7 reagent was added to each well at a volume 

equal to that of the cell culture media (100 µL caspase-Glo 

reagent to 100 µL cell culture medium). Plates were mixed 

gently using a plate shaker at 300–500 rpm for 30 seconds 

and incubated at room temperature for 1 hour; 100 µL of 

each well was then transferred to a Corning Costar 96-well 

White Solid Plate (Thermo Fisher Scientific, Waltham, MA, 

USA) and luminescence was measured using a Synergy HTX 

plate reader (BioTek, Swindon, UK).

Deadend colorimetric TUNel assay
Terminal deoxynucleotidyl transferase dUTP (2’-deoxyuri-

dine 5’-triphosphate) nick end labeling (TUNEL) assay was 

also used to measure cell apoptosis. BAECs were cultured on 

poly l-ornithine coated cover slips until reaching confluence. 

Cells were then cultured under 21% or 1% O
2
 for 24 hours 

prior to treatment with EPO and staurosporine as described 

earlier. Thereafter, cells were washed with PBS and fixed with 

4% paraformaldehyde for 15 minutes at room temperature. 

Fixed cells were then washed with PBS and treated with 1% 

Triton X-100 in PBS (Sigma-Aldrich Co.) for 10 minutes at 

room temperature to permeabilize the plasma membrane. The 

proportion of apoptotic cells was then detected in the fixed 

permeabilized cells following a standard protocol (Promega 

Corporation).19 A light microscope (40× magnification) was 

used to quantify the staining.

Real-time quantitative polymerase chain 
reaction (qPCR)
Cells were seeded into 24-well plates and cultured until 

~80% confluent and were then exposed to 1% or 21% O
2
 

for 24 hours. The effect of 1 ng/mL EPO on gene expres-

sion was assessed at several time points (0, 0.5, 1, and 24 

hours). Cells were then lysed using TRIzol (Thermo Fisher 

Scientific), and RNA was extracted and purified as described 

previously.20 RNA quality and concentration were deter-

mined using NanoDrop ND-1000 (NanoDrop Technologies, 

Thermo Fisher Scientific, Waltham, MA, USA).20 Reverse 

transcription and real-time qPCR for EPOR, βCR, VEGF, 

and β2-microglobulin (a housekeeping gene not affected by 

changes in O
2
 levels) were carried out on RNA samples using 

Taqman gene expression assays (Thermo Fisher Scientific) 

as previously reported.20,21 For gene expression quantifica-

tion, the comparative threshold cycle (∆∆Ct) method was 

used following the guidelines of Thermo Fisher Scientific. 

Results were normalized to β2-microglobulin expression 

and expressed as arbitrary units using one of the normoxic 

samples as a calibrator as specified in the figure legend 

(Figure 4). VEGF, a hypoxia-induced gene, was measured 

as a positive control to validate the method and conditions 

used for the experiment.

Western blot
BAECs were seeded into 24-well plates at a seeding den-

sity of 1×105 cell/mL and cultured until 80% confluency, 

and were then exposed for a further 24 hours under 1% or 

21% O
2
. Cells were then lysed and their protein quantified 

as previously described.3 Thirty micrograms of cellular 

proteins was separated on 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis and transferred onto 

a nitrocellulose membrane (GE Healthcare UK Ltd, Little 

Chalfont, UK). After blocking with 5% skimmed milk (for 

EPOR and hypoxia inducible factor-1α [HIF-1α] detection) 

or 5% bovine serum albumin (for βCR, phosphorylated 

eNOS [p-eNOS], and Glyceraldehyde 3-phosphate dehydro-

genase (GAPDH) detection) for 1 hour, the membranes were 

incubated with the appropriate primary antibody overnight, 

followed by horseradish peroxidase-conjugated secondary 

antibodies for 1 hour at room temperature. βCR, p-eNOS, 
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and GAPDH (loading control) were detected using rabbit 

anti-βCR (N-20; Santa Cruz Biotechnology Inc., Dallas, 

TX, USA), rabbit anti-p-eNOS (9571S; New England 

Biolabs Ltd, UK), and rabbit anti-GAPDH (14C10; New 

England Biolabs Ltd, Hertfordshire, UK) at a dilution of 

1:200, 1:2,000, and 1:1,000, respectively, and an antirabbit 

secondary antibody (A0545; Sigma-Aldrich Co.) at 1:5,000 

dilution for βCR and 1:20,000 dilution for p-eNOS and 

GAPDH. EPOR was detected using goat anti-EPOR (W-20; 

Santa Cruz Biotechnology Inc.) at 1:200 dilution and an 

anti-goat secondary antibody (A8919, Sigma-Aldrich Co.) 

at 1:10,000 dilution. HIF-1α was detected using mouse anti-

HIF-1α (NB 100-105, R&D systems, Abingdon, UK) at 

1:500 dilution and an antimouse secondary antibody (ADI-

SAB-100; Enzo Life Sciences Ltd, Exeter, UK) at 1:5,000 

dilution. Protein bands were visualized by exposing the 

membranes developed with the Enhanced Chemilumines-

cence (ECL) reagent to chemiluminescence film (Hyperfilm 

ECL, GE Healthcare UK Ltd). Bands were quantified using 

ImageJ software (National Institutes of Health).

Measurement of NO
NO production in BAECs was quantitatively measured in 

the form of its stable oxidation products, nitrite (NO
2

−) and 

nitrate (NO
3

−), as previously described.22 Briefly, BAECs 

were seeded in six-well plates at a seeding density of 1×106 

cells/mL. Cells were then either left untreated or treated 

with 1 ng/mL EPO, 1 mM l-NMMA, or a combination of 

EPO and l-NMMA and incubated at either 1% or 21% O
2
. 

After 24 hours, the cell culture medium was collected, snap 

frozen in liquid N
2
, and stored at −80°C for later analysis of 

extracellular nitrite and nitrate release, replace by; a measure 

of NOS activity. In addition, intracellular nitrite and nitrate 

levels were measured as follows. After removal of the super-

natant, the treated BAECs were washed twice with PBS to 

minimize contamination with extracellular nitrite/nitrate 

and subjected to three successive freeze/thaw cycles in the 

presence of a limited volume (250 µL) of PBS. The fractured 

cells and cell lysates from each well were collected using a 

rubber policeman, quantitatively transferred to a prewashed 

Eppendorf vial, followed by methanol precipitation (1:1 v/v) 

of proteins and centrifugation at 11,000 ×g. The supernatant 

was transferred to a prewashed cryovial, snap frozen, and 

stored at −80°C for up to 1 week before analysis. Nitrite 

and nitrate were quantified simultaneously using a specific 

and sensitive high-performance liquid chromatography 

technique that employs ion chromatography with online 

reduction of nitrate to nitrite and subsequent postcolumn 

derivatization with Griess reagent (ENO-20; EiCom, Kyoto, 

Japan).22 Calibration curves for nitrite and nitrate standards 

(0.01–50 µM in PBS) were constructed daily, and an internal 

quality control was run after every ten samples; using a 20 µL 

injection loop, the detection limit was 25 nM for each anion. 

Cell culture medium without the cells being treated under 

otherwise identical conditions or PBS served as control. All 

values reported are corrected for the corresponding blanks.

Statistical analysis
All data were analyzed using GraphPad Prism 4 software 

(GraphPad Software, Inc., La Jolla, CA, USA). Differences 

in treatment (with or without EPO or its analogs) were tested 

for significance using one-way analysis of variance followed 

by a Bonferroni correction for multiple comparisons post hoc 

test. The t-test was used to compare the expression of EPOR 

or βCR under different O
2
 levels.

Results
Hypoxia stimulates reparative effects of 
EPO and its analogs
As shown in Figure 1A, EPO and pHBSP significantly 

enhanced scratch closure, 24 hours after treatment, in BAECs 

cultured under conditions of acute hypoxia (1% O
2
). However, 

EPO and its peptide analog did not significantly improve 

wound closure in cells maintained in 21% O
2
. No significant 

effect was observed after treatment with the scrambled pep-

tide (scr-pHBSP) under either 21% or 1% O
2
.

The eNOS inhibitor, l-NAME was used at the concentra-

tion giving optimum inhibition as verified by a concentration 

response curve on wound closure (300 µM) (Figure S1B). 

l-NAME inhibited wound closure significantly when added 

to endothelial cells kept at 21% O
2
 but showed no effect on 

untreated cells under 1% O
2
. l-NAME also inhibited wound 

closure in the presence of concomitant treatment with EPO 

or pHBSP at both 21% O
2
 and 1% O

2
 (Figure 1B).

EPO and pHBSP induce proliferation 
and migration of BAECs under hypoxic 
conditions
EPO and pHBSP had little effect on cell proliferation at 

21% O
2
 but stimulated proliferation to a comparable extent 

in hypoxia (Figure 2A). Treatment with scr-pHBSP did 

not affect proliferation under either 21% or 1% O
2
. NOS 

inhibition by l-NAME had a significant inhibitory effect on 

proliferation of BAECs under 21% O
2
 (Figure 2B), but this 

effect was not observed under 1% O
2
. The EPO-induced 

enhancement of cell proliferation in hypoxia was completely 

inhibited by l-NAME (Figure 2B). Similar findings were 

observed on cell migration (Figure 2C and D).
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Antiapoptotic effect of EPO is stimulated 
under hypoxic conditions
To investigate the potential antiapoptotic effects of EPO 

and its nonerythropoietic analog, apoptosis was induced 

by exposing BAECs to 500 nM staurosporine for 18 hours. 

Both EPO and pHBSP had a significant antiapoptotic 

effect under 1% O
2
, but not under 21% O

2.
 EPO inhibited 

staurosporine-induced apoptosis by approximately 50% 
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on using either the TUNEL (Figure 3A and B) or caspase 

assay (Figure 3C).

Hypoxia regulates different EPO-related 
downstream signaling pathways
qPCR and Western blot were used to study the effect of EPO 

on both the mRNA and protein expression, respectively, of 

selected genes and proteins. The effect of EPO on EPOR and 

βCR mRNA levels is shown in Figure 4; EPOR mRNA levels 

were significantly increased by nearly twofold in 1% O
2
. In 

contrast, the expression of βCR did not change significantly 

under the same conditions. Addition of EPO did not appear 

to affect either EPOR or βCR expression under hypoxic con-

ditions at the time points investigated. VEGF was used as a 

positive control (representative hypoxia-inducible gene) and 

was found to increase fourfold to sixfold in 1% O
2
.

We also studied some of the EPO-related signaling 

pathways that might play a role in its reparative action. For 

this purpose, we measured the protein expression of EPOR, 

βCR, HIF-1α, and p-eNOS by Western blot. Consistent 

with the mRNA measurements by PCR, EPOR expression 

was increased in 1% O
2
 compared to 21% O

2
 while the 

expression of βCR was unaltered. Expression of p-eNOS, 

on the other hand, decreased significantly under hypoxic 

conditions, but this effect was offset by treatment with 

EPO (Figure 5). Moreover, hypoxia was found to increase 

inducible NOS (iNOS) expression and EPO to suppress this 

response, but unsurprisingly, overall levels of expression 

of this NOS isoform are extremely low when compared to 

eNOS (Figure S2). Taken together, both Western blot and 

PCR showed that hypoxia affects the regulation of several 

downstream pathways. Under our experimental conditions, 

this regulation did not appear to be affected by EPO, with 

the notable exception of eNOS phosphorylation at Ser-1177. 

The latter may be of relevance in determining NO output of 

endothelial cells as phosphorylation at Ser-1177 is known 

Figure 3 Antiapoptotic effects of EPO and pHBSP under hypoxic, but not normoxic conditions. Apoptosis was induced in BAECs by treatment with 500 nM staurosporine 
for 18 hours after incubation with or without EPO or pHBSP for 3 hours.
Notes: (A) representative micrographs of the TUNel staining under 20x magnification. (B) Quantification of TUNel staining. ePO caused a decrease in apoptosis-
stimulated cells under 1% O2 (***P,0.001) but not under 21% O2 (ns, P0.05) (C) Caspase-3/7 activity where EPO and pHBSP showed anti-apoptotic effect under 1% 
O2 (*P,0.05) but not under 21% O2 (ns P0.05). Each data point represents mean ± SEM (n=3). statistical analysis was carried out using one-way aNOVa followed by 
Bonferroni posthoc test.
Abbreviations: Baec, bovine aortic endothelial cell; ePO, erythropoietin; ns, non-significant; pHBsP, pyroglutamate helix B surface peptide; seM, standard error of the 
mean; TUNel, terminal deoxynucleotidyl transferase dUTP nick end labeling.
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to be associated with enhanced NOS activity.23 Although 

likely to be of minor importance, we cannot exclude that 

iNOS may also contribute to NO production under hypoxic 

conditions.

ePO stimulates NO production in 
hypoxia, but not in normoxia
NO production by BAECs was assessed by the formation of 

nitrate and nitrite, and both their extracellular and intracellular 
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concentrations were determined. In general, endothelial NO 

production was significantly lower in cells incubated in 1% 

O
2
 compared to those incubated in 21% O

2
, as evidenced 

by decreases in both intracellular and extracellular nitrite 

and nitrate concentrations. In these experiments, l-NMMA 

was used as a NOS inhibitor instead of l-NAME because 

l-NAME metabolites were found to interfere with the deter-

mination of trace levels of nitrite by high-performance liquid 

chromatography and l-NMMA produced similar responses 

to l-NAME in the scratch assay (Figure S3). As shown in 

Figure 6A–D, EPO caused an increase in NO production in 

hypoxic cells compared to untreated cells. This effect was 

not observed in normoxia.

l-NMMA not only decreased basal cellular NO pro-

duction in normoxia but also partially counteracted the 

stimulatory effects of EPO on NO production in hypoxia 

(Figure 6A–D). We also tried to correlate the production 

of NO in the various experimental conditions reported in 

Figures 1, 2, and 6A–D. Association analyses reported in 

Figure 6E–H show that both cell migration and repair cor-

relate with NO production, possibly suggesting that NO is 

important for the reparative effects of EPO in this model.

To confirm this assumption, we performed additional 

experiments with the NO scavenger PTIO, which showed that, 

irrespective of its source of formation (ie, whether it is gener-

ated through a NOS-dependent or -independent pathway), NO 

is essential for the cellular wound healing process, regard-

less of the prevailing oxygen tension (Figure 7). PTIO also 

inhibited the stimulated reparative effects of EPO and pHBSP 

under hypoxic condition (Figure 7). This action of PTIO was 

not due to an effect on cell viability as confirmed using the 

trypan blue exclusion method. Cell viability in the presence 

and absence of PTIO was 89.8%±4.2% in untreated cells 

versus 87.1%±4.7% in PTIO-treated cells under normoxia 

(n=3) and 87.2%±3.4% in untreated cells versus 84.8%±9.1% 

in PTIO-treated cells under hypoxic condition (n=3).

Taken together, our findings demonstrate that hypoxia 

is an important determinant of the response to EPO and 

its analogs and that NO formation may be involved in the 

downstream signaling pathways.

Discussion
We have previously shown that EPO and its nonerythro-

poietic analogs enhance the regrowth of an endothelial 

monolayer following a scratch injury under low oxygen 

tension (5% O
2
), but not under normoxia (21% O

2
). The 

partial pressure of oxygen varies within the normal artery 

wall, even in health,24 and areas of profound hypoxia (,1% 

O
2
) may prevail in regions of diseased artery, for example, 

in macrophage-rich regions of atheroma.25 Furthermore, 

5% O
2
 is not true hypoxia and is, in fact, a normal oxygen 

concentration for many tissues. In this present study, we 

demonstrated a priming effect of profound hypoxia on the 

reparative action of EPO and pHBSP. Hypoxia promotes a 

set of signaling pathways that directly affect vascular cell 

proliferation and survival, or act indirectly to influence 

the response to locally produced growth factors.26 These 

responses are largely mediated by the activation of the tran-

scriptional factor, HIF-1, which controls the transcription 

of DNA to mRNA of more than a hundred target genes.27 

There is increasing evidence that HIF-1 plays a critical role 

in mediating the protective effects of hypoxic episodes by 

inducing cytoprotective molecules such as EPO.28 In our 

experiments, we measured HIF-1α as a marker of cellular 

responses to hypoxia.

The expression of EPOR determines the responsiveness 

of cells to EPO.28 We have previously shown that at normal 

O
2
 tension (21%), BAECs express EPOR at low levels, lead-

ing to low EPO activity, and that at a lower O
2
 tension (5%), 

there is an increase in EPOR expression, priming endothelial 

cells to the reparative activity of EPO.29 This repair process 

appears to be due to the well-characterized ability of EPO and 

its analogs to promote cell proliferation and migration.26,30 We 

found in this study that these effects were also observed at 

1% O
2
. As shown by others earlier, these effects may involve 

activation of PI3K/AKT phosphorylation, JAK2/STAT5, 

RAS/MAPK, and the antiapoptotic pathway involving Bcl-2 

and Bcl-XL,28,31 but the proximal trigger for these changes 

has not been unequivocally identified.
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treated cells (*P,0.05).
Note: Each data point represents the mean value ± SEM (n=3). Statistical analysis 
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The eNOS-mediated production of NO is a key regulator 

of vascular tone and blood flow.32 It is also involved in regulat-

ing endothelial permeability, platelet aggregation, leukocyte 

adhesion, and cell migration.32,33 Recent studies have sug-

gested that eNOS has an essential role in the cytoprotective 

and tissue-protective effect of EPO.34,35 Wound repair in vivo 

is also modulated by NO, affecting several pathophysiological 

processes including inflammation, chemotaxis, antibacterial 

defenses, collagen production, and angiogenesis.36

Oxygen tension may influence NO signaling by 

affecting NOS-dependent NO production, a process that 

requires O
2
. At low O

2
 tension, eNOS expression and 

activity is thought to be reduced, and NO production by 

alternative, NOS-independent pathways, for example, the 

reduction of nitrite to NO, may occur.37,38 This notion is 

supported by the lack of l-NAME effect on the migra-

tion, proliferation, and wound closure of hypoxic cells 

compared to normoxic cells. In the present study, we found 

little evidence for the involvement of NOS-independent 

pathways in mediating the effects of EPO on BAEC pro-

liferation, migration, and apoptosis under hypoxic condi-

tions, since all of these reparative effects were reduced 

substantially by NOS inhibition. Therefore, under hypoxic 

conditions, it is possible that NO-mediated wound healing 

is decreased to a large degree by a combination of two 

effects, l-NAME inhibition of eNOS and the reduction of 

eNOS expression and activity by hypoxia. This does not 

rule out other, NOS-independent, pathways; however, our 

findings suggest that, at least in this experimental model, 

they may not play a major role.

Earlier experiments have shown that EPO stimulates NO 

production in endothelial cells and that this effect is more 

marked in hypoxia.39 This effect of EPO could occur through 

an upregulation of eNOS phosphorylation at Ser-1177, which 

activates the enzyme, and our current experiments show that 

EPO restores eNOS phosphorylation under hypoxic condi-

tions. The lower activity and expression of activated NOS in 

endothelial cells under hypoxic conditions could explain why 

wound healing is delayed in hypoxia. We further extend our 

earlier observations on the stimulation of NO production by 

EPO by demonstrating that the reparative effects of EPO and 

pHBSP are abrogated not only by NOS inhibition but also 

by the presence of an NO scavenger. Moreover, we showed 

for the first time that the extent of NO stimulation by EPO 

correlates with the magnitude of its biological effects under 

all experimental conditions, providing additional support 

for a crucial role of NO in mediating the action of EPO and 

its analogs.

We also studied the possible involvement of iNOS as 

a source of NO. As expected, in normoxic cells, we could 

only find a very faint band for iNOS by Western blot, but its 

expression was clearly increased under hypoxic conditions. 

This effect was partially inhibited when cells were treated 

with EPO. Due to the complexity of the system and possibil-

ity of multiple sources of NO production, the quantitative 

analysis of nitrite and nitrate was essential to determine the 

involvement of NO under different oxygen tensions.

Altogether, we found that hypoxia enhances the repara-

tive effect of EPO (and its analogs), and this may explain 

the protective effects observed when these molecules are 

adminis tered in several models of ischemic injury. Under-

standing the mechanisms responsible for these effects on 

the vascular endothelium could provide novel regenerative 

therapeutics in the treatment of cardiovascular disease, spe-

cifically in restenosis following angioplasty. Our findings 

strongly support the role of NO in mediating the reparative 

effects of EPO and its analogs under hypoxic conditions, 

corroborating and extending observations from other groups 

in different model systems.40

Conclusion
In this study, the reparative effects of EPO and its nonery-

thropoietic analog p-HBSP were assessed in cultured BAECs 

under hypoxic and normoxic conditions. We have shown 

that hypoxia primes the reparative cellular effects of EPO 

and p-HBSP and that these are largely mediated by eNOS 

activation and enhanced cellular NO production. Further 

work should be directed at disentangling the precise nature of 

this interaction and its possible relationship to cellular redox 

status and some of the signaling events downstream of the 

emerging EPO/EPOR/NO axis, underpinning its beneficial 

biological effects.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a compre-

hensive review of studies in mice. Cardiovasc Res. 2008;79(3):360–376.
2. Silvestre JS, Mallat Z, Tedgui A, Levy BI. Post-ischaemic neovasculari-

zation and inflammation. Cardiovasc Res. 2008;78(2):242–249.
3. Heikal L, Ghezzi P, Mengozzi M, Ferns G. Low oxygen tension primes 

aortic endothelial cells to the reparative effect of tissue-protective cytoki-
nes. Mol Med. 2015;21:709–716.

4. Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor – HIF-1 alpha 
in VEGF gene activation. Implications for angiogenesis and tissue injury 
healing. Curr Med Chem. 2012;19(1):90–97.

5. Sanchis-Gomar F, Perez-Quilis C, Lippi G. Erythropoietin receptor 
(EpoR) agonism is used to treat a wide range of disease. Mol Med. 
2013;19:62–64.

130

Heikal et al

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Hypoxia 2016:4 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

 6. Martinez-Estrada OM, Rodriguez-Millan E, Gonzalez-de Vicente E, 
Reina M, Vilaro S, Fabre M. Erythropoietin protects the in vitro blood-
brain barrier against VEGF-induced permeability. Eur J Neurosci. 
2003;18(9):2538–2544.

 7. Chong ZZ, Kang JQ, Maiese K. Angiogenesis and plasticity: role 
of erythropoietin in vascular systems. J Hematother Stem Cell Res. 
2002;11(6):863–871.

 8. Anagnostou A, Liu ZY, Steiner M, et al. Erythropoietin receptor 
messenger-RNA expression in human endothelial cells. Proc Natl Acad 
Sci U S A. 1994;91(9):3974–3978.

 9. Noguchi CT, Wang L, Rogers HM, Teng R, Jia Y. Survival and prolifera-
tive roles of erythropoietin beyond the erythroid lineage. Expert Rev 
Mol Med. 2008;10:1–23.

 10. Bahlmann FH, de Groot K, Spandau JM, et al. Erythropoietin regulates 
endothelial progenitor cells. Blood. 2004;103(3):921–926.

 11. Coleman TR, Westenfelder C, Togel FE, et al. Cytoprotective doses of 
erythropoietin or carbamylated erythropoietin have markedly differ-
ent procoagulant and vasoactive activities. Proc Natl Acad Sci U S A. 
2006;103(15):5965–5970.

 12. Bohr S, Patel SJ, Vasko R, et al. Modulation of cellular stress 
response via the erythropoietin/CD131 heteroreceptor complex in 
mouse mesenchymal-derived cells. J Mol Med (Berl). 2015;93(2): 
199–210.

 13. Brines M, Patel NSA, Villa P, et al. Nonerythropoietic, tissue-protective 
peptides derived from the tertiary structure of erythropoietin. Proc Natl 
Acad Sci U S A. 2008;105(31):10925–10930.

 14. Erbayraktar Z, Erbayraktar S, Yilmaz O, Cerami A, Coleman T, Brines M. 
Nonerythropoietic tissue protective compounds are highly effective 
facilitators of wound healing. Mol Med. 2009;15(7–8):235–241.

 15. Fiordaliso F, Chimenti S, Staszewsky L, et al. A nonerythro-
poietic derivative of erythropoietin protects the myocardium 
from ischemia- reperfusion injury. Proc Natl Acad Sci U S A. 
2005;102(6):2046–2051.

 16. Ueba H, Shiomi M, Brines M, et al. Suppression of coronary ath-
erosclerosis by helix B surface peptide, a nonerythropoietic, tissue-
protective compound derived from erythropoietin. Mol Med. 2013;19: 
195–202.

 17. Wenger R, Kurtcuoglu V, Scholz C, Marti H, Hoogewijs D. Frequently 
asked questions in hypoxia research. Hypoxia. 2015;3:35–43.

 18. Zwezdaryk KJ, Coffelt SB, Figuero YG, et al. Erythropoietin, a 
hypoxia-regulated factor, elicits a pro-angiogenic program in human 
mesenchymal stem cells. Exp Hematol. 2007;35(4):640–652.

 19. Chen Z-Y, Wang L, Asavaritkrai P, Noguchi CT. Up-regulation of eryth-
ropoietin receptor by nitric oxide mediates hypoxia preconditioning. 
J Neurosci Res. 2010;88(14):3180–3188.

 20. Mengozzi M, Cervellini I, Villa P, et al. Erythropoietin-induced 
changes in brain gene expression reveal induction of synaptic 
plasticity genes in experimental stroke. Proc Natl Acad Sci U S A. 
2012;109(24):9617–9622.

 21. Cervellini I, Annenkov A, Brenton T, Chernajovsky Y, Ghezzi P, 
Mengozzi M. Erythropoietin (EPO) increases myelin gene expression 
in CG4 oligodendrocyte cells through the classical EPO receptor. Mol 
Med. 2013;19:223–229.

 22. Rassaf T, Bryan NS, Kelm M, Feelisch M. Concomitant presence of 
N-nitroso and S-nitroso proteins in human plasma. Free Radic Biol 
Med. 2002;33(11):1590–1596.

 23. Chen C-A, Druhan LJ, Varadharaj S, Chen Y-R, Zweier JL. Phosphoryla-
tion of endothelial nitric-oxide synthase regulates superoxide generation 
from the enzyme. J Biol Chem. 2008;283(40):27038–27047.

 24. Bjornheden T, Levin M, Evaldsson M, Wiklund O. Evidence of hypoxic 
areas within the arterial wall in vivo. Arterioscler Thromb Vasc Biol. 
1999;19(4):870–876.

 25. Buscombe JR. Exploring the nature of atheroma and cardiovascular 
inflammation in vivo using positron emission tomography (PET). Br J 
Radiol. 2015;88(1053):20140648.

 26. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia 
enhances vascular cell proliferation and angiogenesis in vitro via 
rapamycin (mTOR)-dependent signaling (vol 16, pg 771, 2002). 
FASEB J. 2006;20(9):1573–1573.

 27. Marsch E, Sluimer JC, Daemen MJAP. Hypoxia in atherosclerosis and 
inflammation. Curr Opin Lipidol. 2013;24(5):393–400.

 28. Marzo F, Lavorgna A, Coluzzi G, et al. Erythropoietin in heart and 
vessels: focus on transcription and signalling pathways. J Thromb 
Thrombolysis. 2008;26(3):183–187.

 29. Beleslin-Cokic BB, Cokic VP, Yu XB, Weksler BB, Schechter AN, 
Noguchi CT. Erythropoietin and hypoxia stimulate erythropoie tin 
receptor and nitric oxide production by endothelial cells. Blood. 
2004;104(7):2073–2080.

 30. Trincavelli ML, Da Pozzo E, Ciampi O, et al. Regulation of 
erythropoietin receptor activity in endothelial cells by different 
erythropoietin (EPO) derivatives: an in vitro study. Int J Mol Sci. 
2013;14(2):2258–2281.

 31. Lester RD, Jo M, Campana WM, Gonias SL. Erythropoietin pro-
motes MCF-7 breast cancer cell migration by an ERK/mitogen-
activated protein kinase-dependent pathway and is primarily 
responsible for the increase in migration observed in hypoxia. J Biol 
Chem. 2005;280(47):39273–39277.

 32. Atochin DN, Huang PL. Endothelial nitric oxide synthase 
transgenic models of endothelial dysfunction. Pflugers Arch. 
2010;460(6):965–974.

 33. Murohara T, Witzenbichler B, Spyridopoulos I, et al. Role of endothelial 
nitric oxide synthase in endothelial cell migration. Arterioscler Thromb 
Vasc Biol. 1999;19(5):1156–1161.

 34. Burger D, Lei M, Geoghegan-Morphet N, Lu X, Xenocostas A, 
Feng Q. Erythropoietin protects cardiomyocytes from apoptosis via 
up-regulation of endothelial nitric oxide synthase. Cardiovasc Res. 
2006;72(1):51–59.

 35. d’Uscio LV, Smith LA, Santhanam AV, Richardson D, Nath KA, 
Katusic ZS. Essential role of endothelial nitric oxide synthase in vascular 
effects of erythropoietin. Hypertension. 2007;49(5):1142–1148.

 36. Madigan MC, McEnaney RM, Shukla AJ, et al. Xanthine 
oxidoreductase function contributes to normal wound healing. Mol 
Med. 2015;21:313–322.

 37. Hickok JR, Vasudevan D, Jablonski K, Thomas DD. Oxygen dependence 
of nitric oxide-mediated signaling. Redox Biol. 2013;1(1):203–209.

 38. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric 
oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 
2008;7(2):156–167.

 39. Cokic BBB, Cokic VP, Suresh S, Wirt S, Noguchi CT. Nitric oxide 
and hypoxia stimulate erythropoietin receptor via MAPK kinase in 
endothelial cells. Microvasc Res. 2014;92:34–40.

 40. Zhang Y, Wang L, Dey S, et al. Erythropoietin action in stress 
response, tissue maintenance and metabolism. Int J Mol Sci. 
2014;15(6):10296–10333.

131

Hypoxia enhances tissue-protective effect of erythropoietin

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Hypoxia 2016:4submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

80

100

A BpHBSP L-NAME

60

40

%
 w

o
u

n
d

 h
ea

lin
g

 a
ft

er
24

 h
o

u
rs

%
 w

o
u

n
d

 h
ea

lin
g

 a
ft

er
24

 h
o

u
rs

20

0

80

100

60

40

20

0
21% O2

0 µM
0 µM

0.1 µM

1 µM
5 µM
10 µM
50 µM
100 µM

100 µM
50 µM

200 µM
500 µM
1,000 µM

0.5 µM

* *

1% O2 21% O2 1% O2

***

Figure S1 Effect of different concentrations of (A) pHBSP (0–100 µM) and (B) l-NaMe (0–1,000 µM) on wound closure in BAECs under 21% or 1% O2.
Note: Each data point represents mean ± SEM (n=4). statistical analysis was carried out using one-way aNOVa followed by Bonferroni post-hoc test where *P,0.05, 
**P,0.01.
Abbreviations: Baecs, bovine aortic endothelial cells; l-NaMe, NG-nitro-l-arginine methyl ester; pHBsP, pyroglutamate helix B surface peptide; seM, standard error of 
the mean.
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Figure S2 iNOs expression increased under hypoxic conditions 
Notes: (A) Western blot analysis of BAECs cultured under 21% O2 and 1% O2 for 24 hours in the absence (−) and presence (+) of ePO, showing the expression of iNOs (130 
kDa). GAPDH (37 kDa) was used as loading control for the samples. (B) Densitometric quantification following normalization against gaPDH. each data point represents 
mean ± SEM of three independent experiments (n=3). Statistical analysis was carried out using t-test (*P,0.05).
Abbreviations: Baecs, bovine aortic endothelial cells; ePO, erythropoietin; iNOs, inducible nitric oxide synthase; seM, standard error of the mean.
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