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Abstract: Theophylline is a natural compound present in tea. Because of its property to relax 

smooth muscle it is used in pharmacology for the treatment of airway diseases (ie, chronic 

obstructive pulmonary disease, asthma). However, this effect on smooth muscle is dose depen-

dent and it is related to the development of side effects. Recently, an increasing body of evidence 

suggests that theophylline, at low concentrations, also has anti-inflammatory effects related to the 

activation of histone deacetylases. In this study, we evaluated the effects of theophylline alone 

and in combination with corticosteroids on human bronchial epithelial cells under inflammatory 

stimuli. Theophylline administrated alone was not able to reduce growth-stimulating signal-

ing via extracellular signal-regulated kinases activation and matrix metalloproteases release, 

whereas it strongly counteracts this biochemical behavior when administered in the presence 

of corticosteroids. These data provide scientific evidence for supporting the rationale for the 

pharmacological use of theophylline and corticosteroid combined drug.

Keywords: human bronchial epithelial cells, theophylline, corticosteroids, signal transduction

Introduction
Asthma is characterized by activated mast cells, increased numbers of eosinophils, 

increased numbers of T helper 2 and T helper 17 lymphocytes, and increase in sensory 

neurogenic release.1 Allergens, some pathogens, and some diseases have been impli-

cated in the exacerbation of asthma in both animal models and humans.2–7 Theophylline 

is a natural compound present in tea. Because of its property to relax smooth muscle, 

oral theophylline has been administered to improve the bronchoconstriction in patients 

with severe asthma or chronic obstructive pulmonary disease (COPD). Theophylline 

has dose-dependent effects, and the therapeutic index of “high dose” theophylline is 

narrow. Therefore, its use at “high dose” (plasma levels 10–20 mg/L) as a broncho-

dilator, frequently, is related with the development of side effects.8

Recently, however, preclinical studies have demonstrated that theophylline at “low 

dose” (plasma levels 1–5 mg/L) has anti-inflammatory effects not related to the adenos-

ine receptor antagonism or phosphodiesterase (PDE) inhibition, which requires high 

dose.9 In fact, at “low dose”, theophylline inhibits phosphoinositide 3-kinase (PI3K);10 

PI3K generates lipid second messengers involved in airways inflammation.11 Moreover, 

To et al12 documented that low concentrations of theophylline restore corticosteroid 

sensitivity by the enhancement of histone deacetylase (HDAC)-2 activity through 

inhibition of the d-isoform of PI3K and that this is independent from PDE inhibition 

and adenosine antagonism. In agreement with these data, Sun et al,13 in an experimental 
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study documented that a treatment with theophylline at low 

dose might improve the anti-inflammatory effects of steroids 

by increasing HDAC-2 activity.

In patients with airways diseases, particularly with 

COPD, tumor necrosis factor-alpha (TNF-alpha) and inter-

leukin (IL)-1 blood levels correlate with COPD severity (the 

higher the levels of these inflammatory stimuli the more 

severe is COPD expression).14

Montaño et al15 documented increased plasma levels of 

matrix metalloproteinases (MMP-1, MMP-7, and MMP-9) in 

patients with COPD, compared to healthy subjects. In agree-

ment, more recently, Ostridge et al16 evaluating inflammatory 

cytokines in bronchoalveolar lavage from 24 COPD and eight 

control subjects documented higher levels of MMPs in lungs 

of subjects with COPD, suggesting that MMPs play a pivotal 

role in the development of COPD. Taken together, these stud-

ies documented that MMPs, ILs, and TNF-alpha may all be 

involved in the inflammatory pathways of COPD.

Moreover, inflammatory and structural cells, including neu-

trophils, macrophages, and epithelial cells, which are activated 

in the airways of patients with COPD release the oxidative 

stress that activates some transcription factors, for example, 

nuclear factor-κB (NF-κB) which switches on multiple inflam-

matory genes, resulting in amplification of the inflammatory 

response.17 NF-κB is regulated by complex signal transduc-

tion pathways mediated by mitogen-activated protein kinases 

(MAPKs). The ERK1/2 subgroup of MAPKs is activated by an 

MAPK named Raf (most commonly Raf-1), whose activation 

in turn requires the guanosine-5′-triphosphate-bound form of 

Ras family proteins.18 Once activated, Raf-1 phosphorylates 

the MAPKs MEK1 and MEK2, that finally stimulate ERK1 

and ERK2. Airborne pollutants and cigarette smoke can induce 

the bronchial epithelium to acquire a proinflammatory pheno-

type, characterized by an increased production of autacoids, 

cytokines, and chemokines.19 Oxidant-induced phenotypic 

changes may thus significantly contribute to the key pathogenic 

role played by bronchial epithelial cells in inflammatory airway 

disorders (eg, asthma and COPD).

Culpitt et al20 in an in vitro study documented that the 

release of TNF-alpha and MMP-9 from macrophages taken 

from healthy subjects and normal smokers is inhibited by 

corticosteroids, whereas they are relatively ineffective in 

macrophages from patients with COPD. The reasons for 

resistance to corticosteroids in patients with COPD might 

be the marked reduction in activity of HDAC-2, which is 

recruited to activated inflammatory genes by glucocorticoid 

receptors to switch off inflammatory genes.21 The decreased 

activity of HDAC-2 is related to both increased secretion 

of cytokines (eg, TNF-alpha) and reduced response to 

corticosteroids.17 However, a recent finding highlights that 

the theophylline by itself has the capability to restore corti-

costeroid sensitivity.22

With this knowledge, in this study, we evaluated the 

effects of theophylline alone and theophylline in combination 

with corticosteroids on primary cultures of human bronchial 

epithelial cells (HBECs) under inflammatory stimuli.

Methods
Reagents
Anti-phospho-ERK1/2, Anti-phospho-NF-κB, and monoclo-

nal antibodies were purchased from New England Biolabs 

(Beverly, MA, USA); an anti-(total)-ERK1/2 polyclonal 

antibody was commercially provided by Santa Cruz Bio-

technology, Inc. (Santa Cruz, CA, USA). All reagents and 

drugs needed for cell culture, protein extraction, and Western 

blotting were purchased from Sigma (St Louis, MO, USA). 

The drugs were obtained from Sigma and then dissolved in 

agreement with the datasheet of each drug, in saline (0.9%) or 

in light-protected dimethyl sulfoxide (DMSO) as a stock solu-

tion (stored at −20°C). Stock solution was then further diluted 

in cell culture medium to create working concentrations. The 

maximum final concentration of DMSO was ,0.1%.

Recombinant TNF-alpha was obtained from PeproTech, 

Inc. (Rocky Hill, NJ, USA). Enzyme-linked immunosorbent 

assay (ELISA) for MMP-2 and MMP-9 monoclonal antibody 

(Biotrak Human ELISA System, Amersham Pharmacia Bio-

tech, Little Chalfont, Buckinghamshire, UK) was performed 

according to manufacturer’s protocol.

Primary cultures of HBECs
Adjacent normal lung tissue from a surgical specimen of 

lung tumor was obtained with the written informed consent 

of the patients. The study was approved by the Research 

Ethics Committee (EUDRACT number 2010019530-27), 

and was carried out in accordance with the Declaration of 

Helsinki and Guidelines for Good Clinical Practice. To avoid 

contamination of tumor tissue, the normal tissue was obtained 

far from the tumor lesion. Therefore, HBECs were obtained 

from fresh surgical specimens derived from patients who 

underwent either lobectomy or pneumectomy, in agreement 

with our previous papers.23–27

The cells were then harvested and cultured in bronchial 

epithelial growth medium (BEGM; Clonetics, Sand Diego, 

CA, USA) in the presence of antibiotics (100 U/mL of 

penicillin and 100 µg/mL of streptomycin; Sigma) and fun-

gizone (1 µg/mL; Gibco BRL, Gaithersburg, MD, USA). 

Cells were maintained at 37°C in a humidified incubator, 
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with 5% CO
2
. The cell line generated by primary epithelial 

culture medium was referred to as HBECs.

Experimental protocol
For assays, cells at passage 3 or 4 (4 days for each passage) 

were seeded into 24-well cell culture plates (1 mL BEGM/

well containing 5×104 cells/mL). When cells reached 

70%–80% confluence, they were then treated for 24 h with 

TNF-alpha (50 ng/mL) or IL-1 (1 ng/mL) in the presence or 

absence of an overnight treatment with methylprednisone 

(10−5 and 10−10 M), hydrocortisone (10−5 and 10−10 M), and 

theophylline (10−5 M). The medium was not changed after 

the treatment. The solvent employed to dissolve these drugs 

was used as control. After this period, the medium was col-

lected for ELISA determination and cells were processed for 

protein extraction and immunoblotting.

Protein extraction and immunoblot 
analysis
Following treatment with TNF-alpha or IL-1, cells were 

lysed for Western blotting in radioimmunoprecipitation assay 

buffer as previously reported.28–32

Briefly, protein extracts were then separated on 12.5% 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

and transferred onto polyvinylidene difluoride membranes 

(Amersham Pharmacia Biotech). Immunoblotting was 

performed using an anti-phospho-ERK1/2 monoclonal anti-

body. Membranes were reprobed with a polyclonal antibody 

against total (phosphorylated and unphosphorylated) protein. 

Antibody binding was visualized by enhanced chemilumi-

nescence-Plus (Amersham Pharmacia Biotech); intensities 

of experimental bands were analyzed by computer-assisted 

densitometry (ImageJ software for Windows) and expressed 

as arbitrary units (control levels set at 100). These experi-

ments were performed in triplicate.

Enzyme-linked immunosorbent assay
A commercially available sandwich ELISA kit for MMP-2 

and MMP-9 determination based on monoclonal antibody 

(Human Biotrak ELISA System, Amersham Pharmacia 

Biotech) was used to determine MMP levels, in agreement, 

with our previous papers.33–35 These experiments were per-

formed in triplicate.

Statistical analysis
All data are expressed as mean ± standard error of the mean. 

Statistical evaluation of the results was performed by analysis 

of variance (ANOVA). Differences identified by ANOVA 

were pinpointed by paired Student’s t-test. The threshold of 

statistical significance was set at P,0.05.

Results
ERKs phosphorylation and NF-κB 
modulation under proinflammatory 
stimuli and steroid drugs
The exposure of HBECs for 24 h to TNF-alpha (50 ng/mL) 

induced a significant increase in the ERK1/2 phosphoryla-

tion (pERKs; P,0.01; Figure 1A, C, lane 2). In agreement 

with pERK, an increase in the activation of NF-κB (P,0.01) 

was recorded (Figure 1B, C, lane 2). The effect of TNF-

alpha on both pERKs and NF-κB was significantly inhib-

ited (P,0.01) by a 24-h treatment with methylprednisone 

and hydrocortisone at high dosage (10−5) (Figure 1A–C, 

lanes 3, 4). In contrast, corticosteroids at low dosage (10−10) 

did not modify the effects of TNF-alpha on both pERKs and 

NF-κB (Figures 1A–C, lanes 5, 6).

The exposure of HBECs for 24 h to IL-1 (1 ng/mL) sig-

nificantly increased (P,0.01) both pERK1/2 and NF-κB 

(Figure 2A–C, lane 2). These effects were significantly inhib-

ited (P,0.01) by a 24-h treatment with methylprednisone and 

hydrocortisone at high concentrations (10−5) (Figure 2A–C, 

lanes 3, 4). In contrast, a 24-h treatment with methylprednisone 

and hydrocortisone at low concentrations (10−10) did not modify 

the effects of IL-1 on pERK and NF-κB (Figures 2A–C, lanes 

5, 6). The treatment with theophylline (10−5) did not modify 

the effects of both TNF-alpha and IL-1 on p-ERK and NF-κB 

(Figures 3A–C, lane 2; 4A–C, lane 2), but potentiated the 

inhibitory effects of methylprednisone and hydrocortisone on 

both TNF-alpha and IL-1 (Figures 3A–C, lanes 5, 6; 4A–C, 

lanes 5, 6). Both TNF-alpha and IL-1 exerted their effects 

uniquely on phosphorylation-dependent activation of ERK1/2, 

without affecting its total expression (data not shown).

Matrix metalloproteinases expression
The exposure of HBECs for 24 h to TNF-alpha (50 ng/mL) 

induced a significant increase (P,0.01) in MMP-2 and MMP-9 

expression. These effects were reversed by a 24-h treatment with 

methylprednisone and hydrocortisone at high dosage (10−5); in 

contrast, the treatment with corticosteroids at low dosage (10−10) 

did not modify the effects of TNF-alpha on MMPs expression 

(Figure 5A and B). Similarly, IL-1 (1 ng/mL) increased the 

expression of MMPs and this effect was significantly reversed 

(P,0.01) by a 24-h treatment with corticosteroids at high dos-

age (Figure 6A and B). Theophylline (10−5) potentiated the 

effects of methylprednisone and hydrocortisone on MMP-2 

and MMP-9 expression (Figures 5C and D, 6C and D).
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Discussion
TNF-alpha plays an important role in defense of the body 

against foreign pathogens such as viruses, bacteria, and 

fungi. TNF-alpha production within the lung (from several 

cells, ie, neutrophils, T cells, macrophages, monocytes, 

epithelial cells, fibroblasts, and smooth muscle cells) plays 

a central role in both inducing the expression of adhesion 

molecules (eg, intercellular adhesion molecule [ICAM]-1, 

vascular cell adhesion molecule-1, and E-selectin) and cytok-

ines (eg, IL-1, IL-6, IL-8, platelet-derived growth factor, 

granulocyte macrophage colony stimulating factor, monocyte 

chemoattractant protein-1, and macrophage inflammatory 

protein 2).36

Increased levels of chemokines, cytokines, and adhesion 

molecules induce both the activation and recruitment of neu-

trophils and macrophages to the lung and lead to tissue destruc-

tion.37 In agreement, it has been documented that blood levels 

of TNF-alpha and IL-1 correlate with COPD severity.38,39 In 

this view, we treated primary HBECs with TNF-alpha and 

IL-1 to mimic organ conditions in COPD. In our study, both 

TNF-alpha and IL-1 induced a significant increase in pERK 

and NF-κB suggesting that these proinflammatory molecules 

play a role in the inflammatory process. These data are in 

agreement with other authors who documented that in human 

lung cells, TNF-alpha and IL-1beta induce the activation of 

NF-κB and MAPK signaling pathways.40,41

Previously in HBECs, we documented that TNF-alpha 

stimulates, via activation of p38 MAPK signaling pathway, 

IL-8 release and airway epithelial cell apoptosis, an effect 

that was inhibited by budesonide.42

In agreement, Ito et al43 showed both in vitro and in vivo 

that low-dose theophylline enhances HDAC activity in 

epithelial cells and macrophages via p38 MAPK activation 

and this effect increases the activity of corticosteroids.

κ

κ

Figure 1 Effects of TNF-alpha (50 ng/mL) in the presence or absence of either 
methylprednisone (10−5 M) or hydrocortisone (10−10 M) in a 24-h treatment on  
(A) p-ERK and (B) NF-κB evaluated by (C) Western blot analysis in primary HBECs 
under the same treatments described in the graphs (lanes 1–6).
Notes: Theophylline is not present. Protein levels were determined by Western 
blot analysis. The gray level of every band was measured to check the difference 
in the protein expressions of HBECs by ImageJ software. Data are expressed as 
mean ± standard error of the mean of the three experiments. **P,0.01.
Abbreviations: HBECs, human bronchial epithelial cells; NF-κB, nuclear factor-κB; 
p-ERK, phosphorylated ERK 1/2; TNF, tumor necrosis factor.

κ

κ

Figure 2 Effects of IL-1 (1 ng/mL) in the presence or absence of either 
methylprednisone (10−5 M) or hydrocortisone (10−10 M) in a 24-h treatment on  
(A) p-ERK and (B) NF-κB evaluated by (C) Western blot analysis in the primary 
HBECs under the same treatments described in the graphs (lanes 1–6).
Notes: Theophylline is not present. Protein levels were determined by Western 
blot analysis. The gray level of every band was measured to check the difference 
in the protein expressions of HBECs by ImageJ software. Data are expressed as 
mean ± standard error of the mean of the three experiments. **P,0.01.
Abbreviations: HBECs, human bronchial epithelial cells; IL-1, interleukin-1; NF-κB, 
nuclear factor-κB; p-ERK, phosphorylated ERK 1/2.
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Now, we have documented the involvement of ERK 

pathway in this mechanism. In fact in our study both meth-

ylprednisone and hydrocortisone reduced the effects of both 

TNF-alpha and IL-1 on both pERK and NF-κB, suggest-

ing a suppressive effect at high concentration. In contrast, 

low concentration of theophylline did not counteract this 

effect, but significantly inhibited these mechanisms in the 

presence of both corticosteroids at low dosage, suggesting 

a synergic mechanism.

MMP-2 and MMP-9 are members of gelatinases, which 

start the degradation components of the endothelial basal 

lamina including type IV collagen, fibronectin, laminin, and 

heparan sulfate. In a recent clinical trial performed in patients 

with post-thrombotic syndrome, we documented a correlation 

between MMPs, TNF-alpha, and ILs suggesting that these 

molecules are involved in inflammatory pathways.44 More-

over, previous experimental studies documented in cerebral 

endothelial cells show that TNF-alpha and IL-1 beta were 

able to increase the MMP-9 levels and this effect was reduced 

by dexamethasone treatment.45,46 In agreement, in the pres-

ent study, TNF-alpha and IL-1-induced MMPs release that 

were inhibited by methylprednisone and hydrocortisone. The 

effects of these corticosteroids on MMPs secretion, seems 

to be related to two mechanisms: 1) block of the activator 

protein (AP)-1 site in the MMP-9 gene, and 2) induction 

of the expression of tissue inhibitor of metalloproteinase-1 

(TIMP-1).46 AP-1 is involved in the coordinated expression 

of several genes that control inflammation, cell proliferation, 

and apoptosis, while TIMP-1 is the controller of MMPs.47 An 

imbalance between MMPs and TIMP is involved in airway 

diseases.48,49 Yigit et al50 documented in 27 patients with 

inflammatory nasal polyposis that the treatment with oral 

corticosteroid reduces the tissutal expression of MMP2, while 

increases the tissutal expression of TIMP-1. Previously, in 

κ

κ

Figure 3 Effects of TNF-alpha (50 ng/mL) in the presence or absence of either 
methylprednisone (10−5 M) or hydrocortisone (10−10 M) in a 24-h treatment on 
(A) p-ERK and (B) NF-κB evaluated through (C) Western blot analysis in primary 
HBECs under the same treatments described in the graphs (lanes 1–7).
Notes: Theophylline was present at 10−5 M. Protein levels were determined by 
Western blot analysis. The gray level of every band was measured to check the 
difference in the protein expressions of HBECs by ImageJ software. Data are expressed 
as mean ± standard error of the mean of the three experiments. **P,0.01.
Abbreviations: HBECs, human bronchial epithelial cells; NF-κB, nuclear factor-κB; 
p-ERK, phosphorylated ERK 1/2; TNF, tumor necrosis factor.

κ

κ

Figure 4 Effects of IL-1 (1 ng/mL) in the presence or absence of either 
methylprednisone (10−5 M) or hydrocortisone (10−10 M) in a 24-h treatment on 
(A) p-ERK and (B) NF-κB evaluated through (C) Western blot analysis in primary 
HBECs under the same treatments described in the graphs (lanes 1–7).
Notes: Theophylline was present at 10−5 M. Protein levels were determined by 
Western blot analysis. The gray level of every band was measured to check the 
difference in the protein expressions of HBECs by ImageJ software. Data are 
expressed as mean ± standard error of the mean of three experiments. **P,0.01.
Abbreviations: HBECs, human bronchial epithelial cells; IL-1, interleukin-1; NF-κB, 
nuclear factor-κB; p-ERK, phosphorylated ERK 1/2.
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Figure 5 Primary HBECs under TNF-alpha (50 ng/mL) stimuli in the presence or absence of either methylprednisone (10−5 M) or hydrocortisone (10−10 M) in 24-h treatment. 
(A) Expression of MMP-2 and (B) MMP-9 in the absence of theophylline. (C) Expression of MMP-2 and (D) MMP-9 in the presence of theophylline (10−5 M). Protein levels 
were determined by Western blot analysis.
Notes: The gray level of every band was measured to check the difference in the protein expressions in HBECs by ImageJ software. Data are mean ± standard error of the 
mean of three experiments. **P,0.01 TNF-alpha vs control. #P,0.01 (TNF-alpha with corticosteroids vs TNF-alpha without corticosteroids).
Abbreviations: HBECs, human bronchial epithelial cells; MMP, matrix metalloproteases; TNF, tumor necrosis factor.

Figure 6 Primary HBECs under IL-1 (1 ng/mL) stimuli in the presence or absence of either methylprednisone (10−5 M) or hydrocortisone (10−10 M) in a 24-h treatment. 
(A) MMP-2 and (B) MMP-9 expression in the absence of theophylline. (C) MMP-2 and (D) MMP-9 expression in the presence of theophylline (10−5 M). Protein levels were 
determined by Western blot analysis.
Notes: The gray level of every band was measured to check the difference in the protein expressions of HBECs by ImageJ software. Data are expressed as mean ± standard 
error of the mean of three experiments. **P,0.01 IL-1 vs control; #P,0.01 (IL-1 with corticosteroids vs IL-1 without corticosteroids).
Abbreviations: HBECs, human bronchial epithelial cells; IL-1, interleukin-1; MMP, matrix metalloproteases.
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patients with COPD as well as in patients with asthma it has 

been documented that a combination therapy with corticos-

teroid and low-dose theophylline may reduce airway inflam-

mation, improving clinical symptoms.51,52 An explanation of 

this synergic mechanism has been postulated by Sun et al,13 

that in an experimental study it is documented that a low-dose 

theophylline might improve the anti-inflammatory effects of 

steroids by increasing HDAC -2 activity.

In our study, theophylline used at low dosage potentiated 

the inhibitory effects of methylprednisone and hydrocorti-

sone on MMP-2 and MMP-9, suggesting that theophylline 

may be able to improve the effects of steroids also through 

its anti-inflammatory activity.

Our study has several limitations. First, these data must 

be confirmed in clinical trials. Second, we measured the 

immunoreactivity of MMPs in the cells but these values are 

not related to the activity of the enzymes, which would have 

been better and more reflective of their actual enzymatic func-

tional activity. In fact, although we used antibodies against 

active MMPs in this study, we did not measure activity or 

localize the activity. However, this study could increase the 

knowledge related to the synergic effects of these compounds 

supporting the rationale for the use of theophylline at low 

dosage with corticosteroid in respiratory diseases with an 

inflammatory component. This synergy (theophylline-

corticosteroids at low dosages) resulting in improved anti-

inflammatory effect, could improve the clinical efficacy of 

the compounds, reducing their side effects.
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