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Background: Previous studies have suggested that β
2
-adrenergic receptor (ADRB2) is associated 

with COPD. However, the role of genetic polymorphisms in ADRB2 on COPD has not been 

evaluated yet.

Methods: In this study, SNaPshot genotyping, luciferase assay, chromatin immunoprecipitation 

and real-time polymerase chain reaction were adopted to investigate the association between 

ADRB2 genetic polymorphisms and COPD, comprehensively.

Results: One single nucleotide polymorphism (rs12654778), located upstream of ADRB2, 

showed a significant association with COPD by the logistic regression analysis after adjusting for 

age, sex and smoking history (p=0.04) in 200 COPD patients and 222 controls from southwest 

Chinese population. Furthermore, the luciferase assay indicated that rs12654778-A allele reduced 

the relative promoter activity by ~26% compared with rs12654778-G allele (p=0.0034). The 

chromatin immunoprecipitation analysis demonstrated that rs12654778 modulated the binding 

affinity of transcription factor neurofibromin 1. In addition, a significantly reduced expression 

of ADRB2 in COPD patients was observed, compared with normal controls (p=0.017). 

Conclusion: Our findings suggest a previously unknown mechanism linking allele-specific 

effects of rs12654778 on ADRB2 expression to COPD onset, for the first time.

Keywords: β
2
-adrenergic receptor, ADRB2, FEV

1
, lung, polymorphism

Introduction
COPD, one of the most common respiratory diseases in old people, is characterized 

by airflow limitation, that is, a chronic persistent inflammatory process that is not fully 

reversible. Nowadays, COPD has become the third source of morbidity in the world.1 

Although tobacco smoking has been suggested to be the predominant environmental 

factor for COPD, only ~10%–20% smokers develop airway obstruction.2 This phenom-

enon, together with the familial clustering in COPD patients,3,4 indicates that genetic 

factors might play an important role in the development of COPD. Recent genome-wide 

association studies have identified multiple COPD susceptibility genes,8 for example, 

Hedgehog interacting protein (HHIP). So far, only α1-antitrypsin (SERPINA1) has 

been confirmed to be a genetic risk factor for COPD. However, the mutant protease 

inhibitor Z homozygote of the gene, which could increase individual susceptibility to 

COPD, is extremely rare across worldwide populations (0.001%–4.5%), especially in 

Asians (,0.004%), and accounts for only 2% of COPD patients.5,6 Thus, additional 

genes were assumed to also play a crucial role in the predisposition to COPD and 

remained to be identified.7

A major cause for COPD is airflow obstruction in the lung and respiratory paren-

chyma maintained by airway smooth muscle cells. Chronic obstructive abnormality 

followed by airway remodeling increases the thickness of the airway and causes airflow 
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obstruction.9 Therefore, genes involved in the regulation 

of airway smooth muscle tone are good candidates for the 

genetic predisposition to COPD.

β
2
-adrenergic receptor (ADRB2) is a G protein-coupled 

transmembrane receptor located on airway smooth muscle 

cells,10 and increase in ADRB2 gene expression was observed 

in COPD patients compared to patients with mild/moderate 

asthma,11 leading to the speculation that it is a candidate gene 

for COPD.12 Thus, many previous studies have focused on 

the relationship between single nucleotide polymorphisms 

(SNPs) in the coding region of ADRB2 and COPD in the 

Asian population, for example, rs1042713 (Arg16Gly)13–20 

and rs1042714 (Gln27Glu),13,15,17,18,21 since these SNPs are 

thought to be affecting the construction of ADRB2 or altering 

the function of the translation product. However, there is still 

controversy in this issue,13–15 and more genotyping data and a 

meta-analysis are indispensable to resolve this conflict.

In addition, growing knowledge has shown that non-

coding SNPs, especially the ones in the promoter region, 

are more important and might be functional, for example, 

affecting transcription factors’ (TFs) binding affinity and 

further influencing gene expression.22 Thus, investigation of 

the variants in the promoter of ADRB2 is valuable not only to 

focus on how the gene expression of ADRB2 is regulated, but 

also to discover the causal molecular mechanism of COPD. 

There are several SNPs, rs1801704 (-20T/C), rs1042711 

(-47T/C), rs11959427 (-367T/C), rs11168070 (-468C/G), 

rs12654778 (-654G/A), rs2053044 (-1023G/A), rs2400707 

(-1343A/G) and rs2895795 (-1429T/A), identified in the 

promoter region of ADRB2, which contain a number of 

putative regulatory elements.23,24 Previous studies focused 

on rs1042711 and found that this SNP could introduce a 

non-conservative amino acid change (Arg→Cys) at the 

19th amino acid, further influencing the gene expression 

of ADRB2,24,25 since it lies within a 19 amino acid peptide 

(referred to as β upstream peptide) in the 5′ leader region.25 

However, the crucial issue of whether other SNPs affect 

the expression of ADRB2 or the onset of COPD has never 

been scrutinized.

Due to the pivotal role of ADRB2 in lung function, we 

hypothesized that noncoding SNPs of ADRB2 could be 

important for its expression. To address this hypothesis, we 

validated whether its expression could be associated with 

COPD. Subsequently, a comprehensive evaluation to identify 

the causal variants and investigate the functional impact of 

this SNP on COPD pathogenesis was undertaken. This study 

would provide new insight into the potential molecular basis 

for COPD.

Materials and methods
Study population and lung tissues
A total of 422 adult subjects (200 unrelated patients with 

COPD and 222 healthy smokers) were recruited from the 

First Affiliated Hospital of Kunming Medical University 

(Kunming, China) for genotyping. All smokers belonged 

to Han nationality to minimize the potential sampling 

bias due to population stratification. COPD patients were 

diagnosed based on the results from multiple examina-

tions, including the ratio of forced expiratory volume in  

1 second/forced vital capacity (FEV
1
/FVC ratio ,70% and 

FEV
1
 ,80% predicted), according to the Global Initiative 

for Chronic Obstructive Lung Disease criteria.26 The healthy 

smokers exhibited normal pulmonary function (FEV
1
/FVC 

ratio .70% and FEV
1
 .80% predicted) and a smoking history 

of $10 pack-years. In addition, they were excluded from the 

possibility of COPD by chest computed tomography (CT).

To investigate whether the expression of ADRB2 could 

be related with COPD, human lung tissue samples from 

18 COPD patients as case subjects (FEV
1
 ,80%) and 24 

control subjects with normal lung function were also col-

lected from the same hospital.

This study was approved by the institutional ethics com-

mittee of the First Affiliated Hospital of Kunming Medical 

University, and all participants were contacted by telephone 

to obtain verbal informed consent. Detailed information of 

patients and healthy smokers is presented in Table 1.

Transcription analysis
Total RNAs were isolated by Trizol (Thermo Fisher Scien-

tific, Waltham, MA, USA) from human lung tissues stored 

in RNAlater (Thermo Fisher Scientific) solution. cDNA 

was synthesized by SuperScript® III First-Strand Synthesis 

Table 1 Demographic characteristics of the study subjects

DNA sample RNA sample

Case Control Case Control

Subjects (n) 200 222 18 24
Male (%) 81.5 72.1 83.0 46.0
Age (years) 69.9±9.8a 67.9±8.8b 60.1±7.1 51.1±7.5

Smoking (pack-years) 30.6±8.6 28.8±7.0 28.1±19.7 8.3±11.4

FEV1/FVC 49.0±16.1 86.0±6.1 64.5±5.2 85.5±6.2

FEV1% predicted 54.0±17.5 95.0±8.7 60.1±5.7 83.8±11.4

FEV1% .50% predicted 112 0 17 24
FEV1% #50% predicted 88 0 1 0

Notes: Data are presented as mean ± SD. aData available for 155 patients; bData 
available for 150 subjects.
Abbreviations: FEV1, forced expiratory volume in 1 second; FVC, forced vital 
capacity.
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System (Thermo Fisher Scientific). Transcript levels for 

ADRB2 gene in the lung were measured by real-time poly-

merase chain reaction (PCR) with SYBR green (Kapa Biosys-

tems, Wilmington, MA, USA) and primers (forward primer: 

5′-AGGCAGCTCCAGAAGATTG-3′ and reverse primer: 

5′-CCAGCAGAGGGTGAAAGTG-3′). All samples were 

tested on ABI PRISM® 7000 Sequence Detection System 

(Thermo Fisher Scientific) with three replications under the 

following cycling conditions: 2 min at 50°C, 10 min at 95°C, 

40 cycles of 15 s at 95°C and 1 min at 60°C. The average cycle 

number at threshold (Ct) was normalized by glyceraldehyde-

3-phosphate dehydrogenase (GAPDH). The expression level 

of ADRB2 was calculated based on the 2−ΔΔCt method.

Tag SNPs selection
SNPs within the ~8 kb region (chr5: 148203156–148211197, 

relative to build 37) containing the entire ADRB2 gene in East 

Asian population (Han Chinese in Bejing, China [CHB] and 

Japanese in Tokyo, Japan [JPT], n=89) were downloaded from 

1,000 genomes project (www.internationalgenome.org/).27 Tag 

SNPs were chosen by ldSelect software with r2.0.8.28 Among 

the 32 SNPs identified in the East Asian population, eight tag 

SNPs were chosen for genotyping (Supplementary Figure 1).

Sample size power calculation
To assess whether our sample size for the association 

study was enough, genetic power calculation was used in 

this study,29 with 7.3% disease prevalence in the Chinese 

population30 and α=0.05, for a variant with 0.05 minor allele 

frequency in a dominant model. In the calculation of genetic 

power, $80% is a general threshold for acceptable power.

Genotyping of tag SNPs in ADRB2
Genomic DNA was extracted from peripheral blood by 

phenol–chloroform method. The genotype of each tag SNP 

for COPD patients and healthy smokers was screened by 

SNaPshot according to the manufacturer’s protocol (Thermo 

Fisher Scientific). In brief, multiplex PCR was performed 

by primers given in Supplementary Table 1 with FastStart 

Taq DNA polymerase (Roche, Basel, Switzerland). After 

alkaline phosphatase (Shrimp, Takara-Bio Inc., Kusatsu, 

Japan) and exonuclease I (Takara Bio Inc.) clean-up, single 

base extension was performed by SNaPshot Multiplex Ready 

Reaction Mix (Thermo Fisher Scientific) and the products 

were analyzed on ABI PRISM 3730 sequencer (Thermo 

Fisher Scientific). The genotypes of some random samples 

were confirmed by resequencing in 3730 sequencer.

Cell culture
Human bronchus normal epithelial cells Beas-2B (#CRL-

9609; American Type Culture Collection, Manassas, VA, 

USA) were cultured in 1640 medium (Thermo Fisher Scien-

tific) with 10% fetal bovine serum (Thermo Fisher Scientific) 

in 5% CO
2
 at 37°C.

Luciferase reporter assay
ADRB2 promoter ~1.38 kb region (chr5: 148205009–

148206387, relative to build 37) was amplified using primers 

5′-CAGTCGCTAGCTTTGGTAAGTCACAGACGCCAG-

3′ and 5′-CAGTCAAGCTTAGTCTGGCAGGTGAGCGCA

C-3′, which introduced restriction sites for NheI and HindIII 

(New England Biolabs, Ipswich, MA, USA), respectively. 

PCR was performed by Pfu DNA polymerase (recombinant) 

enzyme (Thermo Fisher Scientific) to avoid artificial muta-

tion. After digestion, the segment was cloned into the compat-

ible sites of the pGL3-basic vector (Promega, Madison, WI, 

USA). A plasmid with another allele (G) for rs12654778 was 

generated through mutagenesis with Phusion Site-Directed 

Mutagenesis Kit (Thermo Fisher Scientific) and primer 

pair 5′-TCGGTATAAGTCTAAGCATGTCTGCC-3′ and  

5′-ACCACAGCCATAGACACTGAGACAC-3′, according 

to the manufacturer’s protocol. Plasmid DNA was sequenced 

to exclude any PCR errors and check the orientation of the 

haplotypes prior to transfection.

Plasmid constructs with rs12654778-A and G (475 ng) 

were transfected into Beas-2B cells by Lipofectamine 2000 

(Thermo Fisher Scientific) according to the manufacturer’s 

recommendations. After 24 hours transfection, cells were 

harvested and luciferase activity was measured by Dual-

Luciferase Reporter Assay System (Promega) according 

to the manufacturer’s protocol. Plasmid pRL-TK (25 ng; 

Promega) was co-transfected as an internal control and the 

promoter activity was expressed as the ratio between firefly 

and Renilla luciferase. Independent transfection and reporter 

assays were performed six times.

Chromatin immunoprecipitation (ChIP)-
PCR assay
ChIP was carried out with EZ-ChIP Assay Kit (EMD Millipore, 

Billerica, MA, USA) according to the manufacturer’s protocol. 

Briefly, Beas-2B cells were grown to reach sub-confluency. 

Approximately 1×107 cells were cross-linked for 10 min with 

formaldehyde (1% final concentration) at room temperature, 

which was followed by addition of glycine for 5 min to end 

the cross-linking. After washing twice with ice-cold phosphate-

buffered saline (Thermo Fisher Scientific) containing protease 
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inhibitor cocktail, cells were scraped, lysed and sonicated 

to obtain 200–800 bp fragments in the Sonicator (Branson, 

Medford, NY, USA). The chromatin solution was diluted 

10-fold with dilution buffer and precleared with protein G 

beads. After centrifuging and transferring the supernatant, 

1% sample was stored as input and the remaining protein/

chromatin complex was subjected to immunoprecipitation with 

mouse monoclonal NF-1 antibody (Santa Cruz Biotechnology, 

Dallas, TX, USA) or normal mouse IgG as a negative control, 

and precipitated by protein G beads. After washing with low 

salt, high salt, LiCl and Tris-EDTA buffer (twice), the immu-

noprecipitated protein/chromatin complex was resuspended 

in elution buffer and the cross-links were reversed. Protein 

was digested by proteinase K and DNA was recovered. The 

obtained DNA from ChIP preparation was quantified by 

real-time PCR to evaluate the enrichment using SYBR green 

with primers 5′-TGTGTTGGACAGGGGTGACTT-3′ and 

5′-ACATTCGGAAGGAAACGAGAGT-3′. In the ChIP assay, 

relative enrichment was normalized by input DNA. Data are pre-

sented as the mean ± SD of triplicate experiments.

Statistical analysis
Age, smoking history and pulmonary function data are 

displayed as mean ± SD. Hardy–Weinberg equilibrium was 

evaluated by a goodness-of-fit chi-square test with one degree 

of freedom. The frequencies of each SNP between patients 

and controls were compared by two-tailed chi-square tests. 

To assess the independent effect of each SNP on COPD, a  

logistic regression analysis with tag SNPs (rs17108803, 

rs1432623, rs12654778, rs1042713, rs1042714, rs1042717, 

rs1042719 and rs1042720) as independent variables adjusted 

for age, sex and smoking history was also performed. For 

comparing the ADRB2 expression between cases and controls 

in the lung tissues and the luciferase activity, independent 

t-test was performed. All statistical tests were performed in 

SPSS 13.0 (SPSS Inc., Chicago, IL, USA). Odds ratios and 

95% CIs were also calculated to assess the relative disease 

risk. In this study, the significance level was accepted when 

p (probability) value was ,0.05.

Transcription factor-binding site 
prediction
For evaluating whether rs12654778 would alter the binding 

affinity of the TF, a putative TF-binding site was analyzed 

by using the web-based TRANSFAC database (http://www.

gene-regulation.com/cgi-bin/pub/programs/match/bin/

match.cgi).

Results
ADRB2 expression in lung tissues from 
cases and controls
We firstly assessed whether ADRB2 gene expression was 

altered in the lung tissues from COPD subjects. We measured 

ADRB2 expression in the lung tissues of COPD subjects and 

smokers who had normal lung function. By real-time PCR, 

we found that mRNA levels of ADRB2 were significantly 

reduced ~28% in COPD subjects compared with control 

subjects (p=0.017; Figure 1), confirming that ADRB2 is 

differentially expressed between pathologic and normal tis-

sues and the decreased ADRB2 expression is associated with 

COPD development or onset.

Tag SNPs selection
To develop a comprehensive list of common genetic vari-

ants for ADRB2, the genotype data for East Asian popula-

tion were obtained from 1,000 genomes project. In this 

~8 kb region, 32 SNPs were identified, among which 12 

were in the upstream region of ADRB2, six were in the 5′ 
untranslated region, six were in the 3′ untranslated region, 

five were synonymous and three were missense mutations in 

Figure 1 The average expression of ADRB2 in COPD patients and controls.
Notes: The data are presented as mean ± SD. **p,0.01.
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the coding region. Subsequently, 14 blocks were observed 

(Supplementary Figure 1; Supplementary Table 2). Eight 

blocks showed minor allele frequency .5%, and thus, eight 

tag SNPs (rs17108803, rs1432623, rs12654778, rs1042713, 

rs1042714, rs1042717, rs1042719 and rs1042720) were 

selected from each block for further association study.

Association study between SNPs 
in ADRB2 and COPD
To assess the relationship between these tag SNPs of ADRB2 

and COPD, 200 COPD subjects and 222 normal controls were 

recruited in this study (Table 2). There was no significant 

difference in sex, age or smoking history between cases 

and controls (p.0.05). In contrast, a significant difference 

was found in the baseline FEV
1
 percentage predicted and 

FEV
1
/FVC between cases and controls.

Although our study sample size was moderate, our sample 

size provided .80% power to detect a genetic relative risk 

(or odds ratio) of 2.35, by using genetic power calculator,29 

with 7.3% disease prevalence in the Chinese population30 

and α=0.05, for a variant with 0.05 minor allele frequency 

in a dominant model.

The tag SNPs from these eight blocks were genotyped in 

422 subjects and the result is presented in Table 2. All eight 

SNPs were under Hardy–Weinberg equilibrium in controls 

(p.0.05). As shown in Table 2, rs1042713 (Arg16Gly), which 

was detected in most previous studies,13–19,31–34 was also investi-

gated in our study, and the genotype (AA, AG, GG) frequency 

was 23%, 62% and 16% in COPD and 28%, 48% and 24% 

in controls, respectively, indicating that there was no statisti-

cally significant difference (p=0.15) after adjusting for age, 

sex and smoking history. The same analysis was performed 

Table 2 Genotypes distribution in patients with COPD (case) and healthy smokers (control)

SNP Positiona Amino 
substitution

Genotype frequency (%) OR (95% CI)b p-value

Case Control Genotypeb HWE*

rs1432623 -2,389 N/A 0.10 0.68
CC 0.13 0.08 1.00
CT 0.42 0.39 1.92 (0.86–4.27)
TT 0.46 0.53 3.62 (1.11–11.86)
rs17108803 -839 N/A 0.83 0.99
GG 0.00 0.00 1.00
GT 0.11 0.13 0.00 (0.00-)
TT 0.90 0.87 0.00 (0.00-)
rs12654778 -654 N/A 0.04 0.08
AA 0.12 0.16 1.00
AG 0.56 0.41 0.97 (0.36–2.61)
GG 0.33 0.43 2.40 (0.54–10.63)
rs1042713 +46 Arg16Gly 0.15 0.61
AA 0.23 0.28 1.00
GA 0.62 0.48 0.65 (0.30–1.42)
GG 0.16 0.24 1.17 (0.37–3.69)
rs1042714 +79 Gln27Glu 0.73 0.98
GG 0.02 0.01 1.00
GC 0.29 0.21 1.36 (0.27–6.98)
CC 0.69 0.78 1.68 (0.32–8.77)
rs1042717 +253 Leu84Leu 0.19 0.62
AA 0.10 0.14 1.00
AG 0.47 0.45 2.82 (0.91–8.77)
GG 0.44 0.41 3.82 (0.82–17.86)
rs1042719 +1,055 Gly351Gly 0.69 0.19
CC 0.18 0.25 1.00
CG 0.48 0.45 0.96 (0.45–2.06)
GG 0.35 0.30 1.29 (0.49–3.46)
rs1042720 +1,241 Leu413Leu 0.13 0.07
GG 0.22 0.15 1.00
GA 0.46 0.40 1.55 (0.76–3.19)
AA 0.33 0.45 2.15 (0.86–5.35)

Notes: *p-value from test for HWE in controls. aThe position is based on the first nucleotide of the start codon being +1. bThe OR (95% CI) and genotype p-value have 
been adjusted for age, sex and smoking history.
Abbreviations: HWE, Hardy–Weinberg equilibrium; OR, odds ratio; SNP, single nucleotide polymorphism; CI, confidence interval.
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on rs1042714 (Gln27Glu) and similar results were obtained 

(p=0.73; Table 2). These results were consistent with those of 

Brogger et al,31 while they disagree with Ho et al’s results.13 To 

resolve this conflict, a total of 13 previous studies on rs1042713 

and rs104271413–21,31–34 were collected and reanalyzed by meta-

analysis (Supplementary Table 3). Besides the publication of 

Niu et al,35 four more studies (Wang et al,19,21 Vacca et al33 

and our genotyping data) were involved. In total, 2,908 cases 

and 2,946 controls were included in this meta-analysis and no 

significant difference was observed in rs1042713 or rs1042714 

under allele model (p.0.05, Supplementary Figure 2), con-

sistent with a previous meta-analysis in 2012.35

However, one SNP (rs12654778), located in the promoter 

region of ADRB2 (-654), presented a significant difference 

between cases (AA 12%, AG 56%, GG 33%) and controls 

(AA 16%, AG 41%, GG, 43%; p=0.04) adjusted by age, sex 

and smoking history. Lung function (FEV
1
 value) of COPD 

patients with the different genotype of rs12654778 was also 

investigated. Although the result was not significant, FEV
1
 

value in individuals with AA genotype was higher than that 

of other genotypes (GA and GG; Supplementary Figure 3), 

suggesting that this SNP should be a candidate site for 

regulating ADRB2 gene expression and should be further 

associated with COPD or FEV
1
.

Promoter activity of different alleles 
for rs12654778
There are two SNPs (rs12654778 and rs17778257) in this 

block, and rs12654778 is closer to ADRB2 translation start 

codon than rs17778257 (~2 kb upstream). Considering 

that rs17778257 is far away from the regulatory region of 

ADRB2 and as no TF binding near this site (Supplementary 

Figure 4) was found by searching the ENCODE database, 

rs12654778 was chosen for further functional analysis. We 

proposed that rs12654778 may influence the transcriptional 

activity of ADRB2. To verify this hypothesis, we generated 

the plasmids containing different alleles of rs12654778 and 

transiently transfected them into Beas-2B cell lines. As shown 

in Figure 2, the cloned region showed ~100-fold higher 

luciferase expression compared with pGL3-basic plasmid, 

demonstrating the strong promoter activity of this region in the 

lung tissue. Moreover, rs12654778-A allele showed a ~21.8% 

reduction in promoter activity compared to the rs12654778-G 

allele (p=0.0034, Figure 2), suggesting that this SNP could 

regulate ADRB2 gene expression in the lung tissue.

Transcription factor neurofibromin 1 
(NF1) binding rs12654778 surrounding 
region
Considering that rs12654778 is located within a conserved 

CCAAT box-like motif,36 which may function as a canonical 

binding site for NF1 based on TRANSFAC prediction, we 

hypothesized that NF1 is involved in the transcription of 

ADRB2 and this SNP might affect the binding affinity of NF1 

to this region. To investigate whether NF1 binds the upstream 

region of ADRB2, we performed ChIP assays in Beas-2B cells 

using an anti-NF1 antibody and quantified the enrichment in 

the predicted NF1 binding site by real-time PCR. As shown 

in Figure 3, the chromatin immunoprecipitated by NF1 anti-

body was significantly enriched in the region surrounding 

rs12654778 compared with IgG (p=0.0021), suggesting that 

NF1 binds this region in the lung tissue.

Discussion
COPD is a common respiratory disease caused by interac-

tion of environmental risk factors with genetic background.37 

Figure 2 Transient transfection of plasmid constructs with different rs12654778 alleles in Beas-2B cell line.
Note: **p,0.01.
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While several relevant environmental risk factors of COPD 

have been identified, the genetic risk factors are less well 

understood. ADRB2, which encodes the β
2
-adrenergic recep-

tor, is expressed in airway smooth muscle cells and is consid-

ered as an important pharmacologic target in the management 

of COPD, thus leading to speculation of its contributions to 

the onset of COPD. Previous studies have found that several 

genetic variants of ADRB2 are associated with COPD,13 but 

the real function of these variants is not elaborated, especially 

the noncoding variants, which might play a more important 

role in altering ADRB2 expression and further resulting in 

COPD. So, it is essential and necessary to use new data and 

multilevel surveys, including genetic association study and 

functional analysis, to further elucidate the role of ADRB2 

noncoding variant in COPD, comprehensively. Several lines 

of evidence in this study implicated a noncoding SNP of 

ADRB2 as a COPD-susceptibility variant. Firstly, we con-

firmed that the expression level of ADRB2 was significantly 

reduced in COPD lung tissues. Secondly, a noncoding SNP 

(rs12654778), located upstream of ADRB2, was associated 

with COPD. Thirdly, functional analysis indicated that 

rs12654778 could modulate the binding affinity of TF (NF1) 

and its risk allele could reduce the transcriptional activity of 

ADRB2 gene expression. Taking all evidence together, our 

results are the first to reveal that the differential NF1 binding 

at rs12654778 could lead to reduced ADRB2 expression level 

in the lung tissue and increased susceptibility to COPD.

There are several studies showing that mutations in the cod-

ing region could affect the disease, for example, SERPINA1, 

PiMZ heterozygote produced by α1-antitrypsin defciency.38  

However, most common variants identified by the associa-

tion panel are located in noncoding regions, especially by the 

genome-wide association studies, and might be cis-regulatory 

elements for the nearby gene.39 Indeed, successful identifi-

cation of functional variants in these promoter regulatory 

elements has been reported for β-thalassemia40 and pyruvate 

kinase deficiency.41 Considering that the study of regula-

tory elements is very important and it is difficult to identify 

functional genetic variants in the regulatory regions, it is 

worth performing intensive investigation. We contend that 

the identification of functional variants in such regions is 

an extremely important requisite for at least two reasons. 

On one hand, the identification of functional variants can 

conclusively prove which gene is actually involved in dis-

ease susceptibility. On the other hand, study of functional 

variants can lead to new insights into the pathophysiological 

mechanisms of diseases.

Since rs12654778 is located in the ADRB2 gene regulatory 

region, another important concern is about the potential mech-

anism by which this SNP in ADRB2 is associated with COPD 

susceptibility. The rs12654778 is located ~654 bp upstream 

of ADRB2, which is with the histone modification H3K27Ac, 

H3K4me1 and H3K4me342 (Supplementary Figure 4). Since 

H3K27Ac and H3K4me3 are usually correlated with acti-

vation of chromatin, it was reasonable to hypothesize that 

this region is pivotal for ADRB2 gene expression. Here, 

we firstly showed that rs12654778 could reduce ADRB2 

expression level in the lung tissue by altering TF NF1 bind-

ing with ADRB2 promoter region, and contributed to the 

COPD onset, and this SNP has been identified with other 

diseases in several studies.43,44 Meanwhile, ADRB2 is also 

expressed in lymphoblastoid cells,10 and it is interesting to 

know whether this variant is correlated with the expression 

of ADRB2 in lymphoblastoid cells. To address this issue, 

we utilized eQTL browser (http://eqtl.uchicago.edu/cgi-bin/

gbrowse/eqtl/), which collected published eQTL data of lym-

phoblastoid cell lines (LCL) from four HapMap populations 

to search for potential association. Interestingly, a significant 

association between rs12654778 and expression of ADRB2 

in LCL was observed in Yoruban in Ibadan, Nigeria (YRI), 

Figure 3 Enrichment of the region spanning rs12654778 in anti-NF1 ChIP DNA 
relative to mouse IgG ChIP in Beas-2B cells.
Note: **p,0.01.
Abbreviations: ChIP, chromatin immunoprecipitation; NF1, neurofibromin 1.
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Utah residents with Northern and Western European ances-

try from the CEPH collection and two samples which were 

treated as a single analysis panel of 90 Asians populations45 

(data not shown). We further evaluated the effect of this 

SNP on ADRB2 expression in LCL from 726 HapMap3 indi-

viduals in GENe Expression VARiation (http://www.sanger.

ac.uk/resources/software/genevar/).46 The AA genotype of 

rs12654778 presented a significantly reduced expression 

of ADRB2, compared with the other genotypes AG or GG 

in most populations (CHB, Gujarati Indians in Houston, 

TX, USA, JPT, Mexican ancestry in Los Angeles, CA, USA, 

Maasai in Kinyawa, Kenya and YRI, shown in Supplemen-

tary Figure 5), which was consistent with our result.

In addition, β
2
-adrenoceptors, through their extracellular 

domain, can bind to Gs and prevent adenylyl cyclase from 

activating the cAMP signaling pathway,47 a critical path-

way for embryonic lung development. Decreased ADRB2 

expression leads to overactivation of the cAMP pathway in 

multiple types of breast tumor, which in turn contributes to 

uncontrolled cellular proliferation.48 In our study, we found 

that ADRB2 expression was decreased in the lung tissue from 

COPD cases compared with control subjects with normal 

lung function, indicating that lower ADRB2 expression 

may exacerbate COPD pathogenesis. This was inconsistent 

with Selivanova et al’s study,11 which might be due to the 

difference in the control group. In our study, the control 

group consisted of people with normal lung function, while 

in Selivanova et al’s study, the control group consisted of 

mild/middle asthma patients.11 Further mechanistic studies 

on the cAMP pathway in the context of smoking may provide 

novel insights into the pathogenesis of COPD.

Conclusion
Our study is the first to demonstrate that a functional SNP 

(rs12654778), upstream of ADRB2, was significantly associ-

ated with increased risk for COPD. These results offer valu-

able insights into the signaling, maintenance and regulatory 

mechanisms of ADRB2 in lung and its further correlation 

with COPD.
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