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Background: This study investigated the ability of pulse pressure variation (PPV) and pleth 

variability index (PVI) to predict fluid responsiveness of patients undergoing spinal surgery 

in the prone position.

Patients and methods: A total of 53 patients undergoing posterior lumbar spinal fusion in 

the prone position on a Jackson table were studied. PPV, PVI, and hemodynamic and respiratory 

variables were measured both before and after the administration of 6 mL/kg colloid in both the 

supine and prone positions. Fluid responsiveness was defined as a 15% or greater increase in 

stroke volume index, as assessed by esophageal Doppler monitor after fluid loading.

Results: In the supine position, 40 patients were responders. The areas under the receiver operat-

ing characteristic (ROC) curves for PPV and PVI were 0.783 [95% CI 0.648–0.884, P0.001] 

and 0.814 (95% CI 0.684–0.908, P0.001), respectively. The optimal cut-off values of PPV 

and PVI were 10% (sensitivity 75%, specificity 62%) and 8% (sensitivity 78%, specificity 77%), 

respectively. In the prone position, 27 patients were responders. The areas under the ROC curves 

for PPV and PVI were 0.781 (95% CI 0.646–0.883, P0.001) and 0.756 (95% CI 0.618–0.863, 

P0.001), respectively. The optimal cut-off values of PPV and PVI were 7% (sensitivity 82%, 

specificity 62%) and 8% (sensitivity 67%, specificity 69%), respectively.

Conclusion: Both PPV and PVI were able to predict fluid responsiveness; their predictive 

abilities were maintained in the prone position.

Keywords: fluid therapy, intraoperative monitoring, prone position, stroke volume

Introduction
Determining whether a patient will respond to fluid resuscitation is one of the most 

important, yet often difficult tasks during the intraoperative period.1,2 Static indices 

such as central venous pressure lack accuracy in predicting fluid responsiveness despite 

their invasive nature.3,4 In contrast, some studies have demonstrated that dynamic indi-

ces based on heart–lung interactions are useful for predicting fluid responsiveness in 

mechanically ventilated patients.5 Of these, accumulating evidence suggests that pulse 

pressure variation (PPV) is the most accurate predictor of fluid responsiveness.6 More 

recently, increasing interest has focused on the availability of noninvasive dynamic 

indices, such as the pleth variability index (PVI). The PVI has been studied in various 

patient populations and clinical settings, and has been shown to reliably predict fluid 

responsiveness and guide fluid resuscitation.7–11

Surgical procedures of the spine are usually performed with the patient in the 

prone position, using a certain frame or table for the proper positioning of the patient. 

However, depending on the type of positioning device, the use of the prone position 
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increases intra-abdominal and intra-thoracic pressures, 

which may affect heart–lung interactions during mechanical 

ventilation.12,13 Among the commonly used equipment for 

prone positioning, the Jackson table can minimize increases 

in intra-abdominal pressure and has minimal effects on 

cardiac function.12 Nonetheless, physiological alterations 

following prone positioning may affect the reliability of 

dynamic indices for predicting fluid responsiveness, such 

as PPV and PVI; thus, the validity of these dynamic indices 

should not be extrapolated to surgical procedures performed 

with the patient in the prone position. Very few studies have 

investigated the predictive ability of these parameters on fluid 

responsiveness in patients undergoing spinal surgery in the 

prone position.14,15

The aim of this study was to evaluate the ability of PPV 

(invasive) and PVI (non-invasive) dynamic indices to predict 

fluid responsiveness in patients undergoing posterior lumbar 

spinal fusion in the prone position using a Jackson table.

Patients and methods
The study protocol was approved by the Institutional Review 

Board of the Yonsei University Health System, Seoul, South 

Korea (#4-2016-0189) and registered at ClinicalTrials.gov 

(NCT02826889). After receiving written informed consent 

from all patients, we enrolled 58 patients (19–75 years of 

age), with an American Society of Anesthesiologists physical 

status class of I–III, who were scheduled to undergo elective 

posterior lumbar interbody fusion in the prone position between 

May 2016 and July 2017. Exclusion criteria were as follows: 

cardiac rhythm other than sinus, valvular heart disease, left 

ventricular ejection fraction less than 50% on transthoracic 

echocardiography, history of lung disease, chronic kidney dis-

ease (estimated glomerular filtration rate 60 mL/min/1.73 m2), 

body mass index greater than 35 kg/m2, and contraindications 

to the insertion of an esophageal Doppler probe.

Upon arrival in the operating room, three-lead electro-

cardiography, noninvasive blood pressure, pulse oximetry, 

and bispectral index (BIS) monitoring were initiated. A Pulse 

CO-Oximetry probe (Masimo Rainbow SET; Masimo Corp, 

Irvine, CA, USA) connected to a monitoring system (Radi-

cal 7, software version 7.6.2.2; Masimo Corp) was attached 

to the patient’s index finger of either the right or left hand, 

contralateral to the side of the blood pressure cuff. Anesthesia 

was induced with propofol 1.0–2.0 mg/kg and remifentanil 

0.5–2 µg/kg, followed by rocuronium 0.8 mg/kg for muscle 

relaxation to facilitate tracheal intubation. A catheter was 

then inserted into the radial artery, and the Intellivue MP70 

monitor (Philips Medical Systems, Suresnes, France) was 

connected to the arterial line for monitoring automatically 

calculated PPV in real time using a previously described 

algorithm.16 Mechanical ventilation was performed using a 

tidal volume of 10 mL/kg ideal body weight at an inspiratory-

to-expiratory ratio of 1:2 without positive end-expiratory 

pressure. The ventilatory frequency was adjusted to maintain 

an end-tidal carbon dioxide tension of 35–40 mmHg. Anes-

thesia was maintained with both sevoflurane at a 0.7–1.5 

age-adjusted minimal alveolar concentration in a 50/50 air/

oxygen mixture and remifentanil 0.1–0.3 µg/kg/min, aim-

ing for a BIS of 40–60. The esophageal Doppler probe was 

inserted into the esophagus and adjusted to detect optimum 

waveform signals with the esophageal Doppler monitor 

(CardioQ-ODM; Deltex Medical, Chichester, UK); stroke 

volume averaging was calculated over 10 heartbeats.17 The 

position of the esophageal Doppler probe was adjusted as 

necessary before the collection of data to maintain optimum 

waveform signals.

After induction of anesthesia, heart rate, mean arterial 

pressure, cardiac index and stroke volume index (SVI) 

derived from the esophageal Doppler monitor, PPV moni-

tored through the Intellivue MP70 monitor, PVI derived from 

Masimo Rainbow SET Pulse CO-Oximetry, and plateau 

airway pressure were recorded with the patient in the supine 

position, without any external stimuli. The static compliance 

of the respiratory system was calculated as Cstat = tidal 

volume/plateau pressure. The first round of volume expansion 

was performed by loading 6 mL/kg ideal body weight of 6% 

hydroxyethyl starch (130/0.4) over 10 minutes. Five minutes 

after the completion of fluid loading, the same hemodynamic 

and respiratory variables mentioned above were recorded, 

and the patients were transferred to the Jackson table 

(Model #5803, OSI; Mizuho OSI, CA, USA) in the prone 

position. During surgery, a second round of fluid loading was 

performed in the same manner as determined by the attending 

anesthesiologist. Hemodynamic and respiratory variables 

were recorded immediately before and 5 minutes after fluid 

loading, and care was taken not to apply any external stimuli 

to the patient during this period, with the cooperation of the 

surgeon. All parameters were recorded in a hemodynamically 

steady state without the use of vasopressors or inotropes. 

All variables were recorded by an anesthesiologist who was 

familiar with the use of the esophageal Doppler probe but 

not involved in the study.

statistical analysis
Fluid responsiveness was defined as a 15% or greater 

increase in SVI after fluid loading.18 Sample size estimation 
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showed that at least 52 patients were necessary to detect a 

difference of 0.25 between the area under the receiver oper-

ating characteristic (ROC) curves of PPV (0.75)10,19 and the 

area under the null hypothesis (0.5) with a two-sided type I 

error of 0.05 and a type II error of 0.20, assuming a fluid 

responsiveness incidence of 77% in patients undergoing 

spinal surgery who are placed in the prone position. Con-

sidering a drop-out rate of 10%, 58 patients were enrolled 

in the study.

Normality of the data distribution was assessed using 

the Shapiro–Wilk test. Continuous variables were expressed 

as the mean ± SD if data were normally distributed or the 

median (interquartile range) if data were not normally dis-

tributed. Categorical variables were expressed as an absolute 

number (%). Responder and non-responder groups were com-

pared in the normally distributed data using an independent 

t-test, non-normally distributed data were compared using 

the Mann–Whiney U-test, and categorical variables were 

compared using either the χ2 or Fisher’s exact test. The 

effects of volume loading or a change in body position on 

hemodynamic parameters were assessed using a paired t-test 

or Wilcoxon signed rank test. Spearman’s rank method was 

used to assess the relationship between the relative changes 

in dynamic indices and the percent change in SVI after 

volume loading. ROC curve analysis was performed to assess 

the ability of PPV and PVI to predict fluid responsiveness. 

Comparison of the two ROC curves was performed using 

the nonparametric technique proposed by DeLong et al.20 

The best cut-off value was determined using the minimum 

distance method.21 The gray zone approach described by 

Coste et al22 was used to determine the inconclusive range of 

each parameter. The cut-off values delimiting the gray zones 

were defined by the values associated with a sensitivity of 

90% and a specificity of 90%. All statistical analyses were 

performed using SPSS (version 23; SPSS Inc., Chicago, 

IL, USA) and MedCalc (version 14.8.1; MedCalc, Ostend, 

Belgium) software programs. A P-value less than 0.05 was 

considered statistically significant.

Results
Of the 62 patients assessed for eligibility, four were excluded 

because of atrial fibrillation (n=1), left ventricular ejection 

fraction less than 50% (n=2), or a history of lung disease 

(n=1). Thus, 58 subjects were enrolled. Five patients were 

excluded because an optimal esophageal Doppler signal in the 

prone position could not be obtained; therefore, 53 patients 

were included in the final analysis (Figure 1). Patient charac-

teristics and perioperative details did not significantly differ 

between responders and non-responders in the supine and 

prone positions, respectively (Table 1).

Table 2 shows the changes in hemodynamic variables 

and respiratory indices of all patients at each time point. 

The cardiac index and SVI were significantly increased, 

whereas PPV and PVI were significantly decreased after 

volume expansion in both positions. With volume expansion, 

static lung compliance was significantly decreased, whereas 

plateau airway pressure was significantly increased in both 

positions. When patients were turned to the prone position, 

cardiac index and SVI decreased, whereas PVI increased 

significantly. Static lung compliance was significantly 

reduced, whereas plateau airway pressure was significantly 

higher, when patients were in the prone position compared 

with the supine position. There was no significant change in 

PPV between the supine and prone positions.

In the supine position, 40 patients were responders and 

13 patients were non-responders (Table 3). In both responders 

and non-responders, volume loading significantly increased 

cardiac index and SVI, and significantly decreased PPV 

and PVI. Baseline PPV and PVI values before volume 

loading were significantly higher in responders than in non-

responders. However, baseline cardiac index and SVI did 

not significantly differ between the two groups.

In the prone position, 27 patients were responders and 

26 patients were non-responders (Table 4). In both responders 

and non-responders, volume loading significantly increased 

cardiac index and SVI, and significantly decreased PPV 

and PVI. Baseline PPV and PVI values before volume 

Figure 1 Flow diagram of this study.
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loading were significantly higher in responders than in non-

responders, whereas baseline SVI was significantly lower 

in responders. However, baseline cardiac index did not 

significantly differ between the two groups.

Percent change in PPV and PVI after volume loading 

correlated with the percent change in SVI in the supine 

position (rho=-0.300, 95% CI -0.527 to -0.032, P=0.029; 

rho=-0.351, 95% CI -0.567 to -0.089, P=0.010, respec-

tively). The percent change in PPV and PVI after volume 

loading also correlated with the percent change in SVI in 

the prone position (rho=-0.633, 95% CI -0.771 to -0.437, 

P0.001; rho=-0.609, 95% CI -0.755 to -0.405, P0.001, 

respectively).

The ability of PPV and PVI to predict fluid responsive-

ness is shown in Table 5 and Figure 2. In the supine posi-

tion, the areas under the ROC curves for PPV and PVI were 

0.783 (95% CI 0.648–0.884, P0.001) and 0.814 (95% CI 

0.684–0.908, P0.001), respectively. The optimal cut-off 

values of PPV and PVI were 10% (sensitivity 75%, specificity 

62%) and 8% (sensitivity 78%, specificity 77%), respectively. 

Table 1 Patient characteristics and perioperative details

Overall
(n=53)

Supine Prone

Responders
(n=40)

Non-responders
(n=13)

P-value Responders
(n=27)

Non-responders
(n=26)

P-value

age, years 67 (61–73) 67 (61–73) 68 (61–74) 0.818 66 (61–71) 68 (61–75) 0.349
Female, n 32 (60.4) 26 (65.0) 6 (46.2) 0.227 17 (63.0) 15 (57.7) 0.695
height, cm 158.1±7.5 157.1±7.5 161.1±7.2 0.100 158.3±7.6 157.8±7.6 0.788
Weight, kg 62.1±10.5 61.5±11.0 64.1±8.8 0.437 61.0±11.0 63.2±10.0 0.458
BMi, kg/m2 24.7±2.8 24.8±3.0 24.6±2.1 0.872 24.2±2.6 25.3±2.9 0.142
ASA classification, I/II/III 15/27/11 10/23/7 5/4/4 0.251 7/13/7 8/14/4 0.715
Comorbidities, n 0.436 0.452

hypertension 31 (59) 25 (63) 6 (46) 16 (59) 15 (58)
Diabetes mellitus 16 (30) 11 (28) 5 (39) 10 (37) 6 (23)
Coronary artery 
disease

3 (5) 2 (5) 1 (8) 1 (4) 2 (8)

stroke 2 (4) 1 (3) 1 (8) 0 (0) 2 (8)
Medications, n 0.729 0.948

Calcium channel 
blocker

16 (30) 12 (30) 4 (31) 7 (26) 9 (35)

Beta blocker 3 (6) 2 (5) 1 (8) 1 (4) 2 (8)
aCe inhibitor 1 (2) 1 (3) 0 (0) 1 (4) 0 (0)
aRB 19 (36) 16 (40) 3 (23) 10 (37) 9 (35)
Diuretics 6 (11) 4 (10) 2 (15) 3 (11) 3 (11)

levels operated, 1/2/3/4 32/15/4/2 22/13/3/2 10/2/1/0 0.515 20/5/1/1 12/10/3/1 0.158
Duration of surgery, min 225 (208–270) 233 (203–279) 215 (208–233) 0.362 225 (200–245) 228 (210–296) 0.212
Fluid administration, ml 1,950 (1,775–2,325) 1,975 (1,810–2,475) 1,920 (1,555–2,145) 0.282 1,910 (1,600–2,180) 2,100 (1,830–2,450) 0.087
pRBCs transfusion, ml 109.4±195.0 125.0±207.0 61.5±148.8 0.238 90.7±191.7 128.9±200.2 0.482
Blood loss, ml 600 (400–800) 600 (400–875) 550 (450–750) 0.901 600 (400–700) 600 (475–1025) 0.432

Note: Data are presented as the mean ± sD, median (interquartile range) or number of patients (%).
Abbreviations: aCe, angiotensin-converting enzyme; aRB, angiotensin ii receptor blocker; asa, american society of anesthesiologists; BMi, body mass index; pRBCs, 
packed red blood cells.

Table 2 Hemodynamic variables and respiratory indices before and after fluid loading and changes in body position

T1 T2 T3 T4

hR, beats/min 73.8±13.3 68.6±11.9* 68.4±10.5 65.9±9.8‡

MaP, mmhg 74.5±15.8 72.9±10.9 78.9±11.0^ 77.4±9.3
Cardiac index, l/min/m2 2.8 (2.3–3.4) 3.1 (2.7–4.1)* 2.7 (2.4–3.7)^ 3.0 (2.6–4.0)‡

sVi, ml/m2 38.4 (30.9–47.0) 45.0 (41.5–55.6)* 40.5 (35.0–48.8)^ 45.3 (10.0–56.6)‡

PPV, % 14.0 (9.0–18.5) 7.0 (6.0–9.0)* 8.0 (6.0–10.0) 4.0 (3.0–7.0)‡

PVi, % 11.0 (7.0–14.5) 6.0 (4.0–8.0)* 8.0 (7.0–11.5)^ 6.0 (4.0–8.0)‡

Cstat, ml/cmh2O 34.9 (30.4–46.8) 33.7 (29.5–43.0)* 32.5 (28.2–39.7)^ 30.5 (27.9–38.5)‡

Pplat, cmh2O 14.0 (13.0–16.0) 15.0 (13.5–16.5)* 16.0 (15.0–17.0)^ 16.0 (15.0–18.0)‡

Notes: Data are presented as the mean ± sD or median (interquartile range). *P0.05 compared with T1; ^P0.05 compared with T2; ‡P0.05 compared with T3. Cstat, 
static compliance of the respiratory system; Pplat, plateau airway pressure; T1, before fluid loading with patients in the supine position; T2, 5 minutes after fluid loading with 
patients in the supine position; T3, before fluid loading after placing patients in the prone position; T4, 5 minutes after fluid loading with patients in the prone position.
Abbreviations: hR, heart rate; MaP, mean arterial pressure; PPV, pulse pressure variation; PVi, pleth variability index; sVi, stroke volume index.
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The gray zone for PPV occurred between 8.2% and 13.9% and 

contained 18 (34%) patients. The gray zone for PVI occurred 

between 6.0% and 11.4% and contained 23 (43%) patients. In 

the prone position, the areas under the ROC curves for PPV 

and PVI were 0.781 (95% CI 0.646–0.883, P0.001) and 

0.756 (95% CI 0.618–0.863, P0.001), respectively. The 

optimal cut-off values of PPV and PVI were 7% (sensitivity 

82%, specificity 62%) and 8% (sensitivity 67%, specific-

ity 69%), respectively. The gray zone for PPV occurred 

between 6.4% and 10.4% and contained 31 (58%) patients. 

The gray zone for PVI occurred between 6.5% and 10.7% 

and contained 31 (58%) patients. Diagnostic accuracy did not 

significantly differ between the use of PPV and the use of PVI 

in the supine (P=0.669) and prone (P=0.766) positions.

Discussion
This study demonstrated that both PPV and PVI were useful 

for determining fluid responsiveness in patients undergoing 

spinal surgery in the supine or prone position using a Jackson 

table. We found only slight changes in optimal cut-off values 

for both indices when patients were moved from the supine to 

the prone position. However, the gray zones for these indices 

included a considerable number of patients.

The prone position is used commonly in patients under-

going spinal surgery to facilitate surgical access. However, 

placing a patient in the prone position induces physiological 

changes in the cardiovascular and respiratory systems.13,23 

Pelvic and abdominal compression results in increased intra-

abdominal pressure that puts direct pressure on the inferior 

vena cava, resulting in venous pooling and decreased venous 

return. Increased thoracic pressure causes decreased left 

ventricular compliance and filling, resulting in reductions in 

ventricular volume, stroke volume, and cardiac index, while 

raising central venous pressure.12 In addition, increased intra-

abdominal pressure causes a decrease in the compliance of 

the respiratory system and an increase in airway pressure, 

which can also decrease both venous return and cardiac 

output.24 Considering that PPV has been suggested to be 

negatively affected by increased intra-abdominal pressure,25 

reduced lung compliance,26 and increased right ventricular 

afterload,27 the physiological changes associated with placing 

patients in the prone position could influence the predict-

ability of PPV based on heart–lung interactions.

In the present study, however, we found that the ability 

of PPV to predict fluid responsiveness in such patients 

using a Jackson table was maintained in the prone posi-

tion. These findings are consistent with those of two earlier 

studies, which reported that placing patients in the prone 

position using four pads (two chest and two pelvic sup-

ports) or a Wilson frame did not alter the ability of manually 

Table 3 Hemodynamic variables before and after fluid loading in responders and non-responders placed in the supine position

Responders (n=40) Non-responders (n=13)

Before (T1) After (T2) Before (T1) After (T2)

hR, beats/min 75.6±13.1 70.2±12.5* 67.9±12.6 63.6±8.6*
MaP, mmhg 74.4±16.6 72.6±10.0 74.9±13.7 73.7±13.9
Cardiac index, l/min/m2 2.8 (2.2–3.6) 3.2 (2.8–4.2)* 2.8 (2.5–3.2) 2.9 (2.7–3.3)*
sVi, ml/m2 34.4 (30.6–46.1) 46.9 (41.3–58.9)* 40.0 (37.8–51.2) 44.7 (42.7–55.2)*
PPV, % 16.0 (10.3–21.0) 7.5 (6.0–9.8)* 10.0 (8.0–14.0)^ 7.0 (4.5–7.5)*
PVi, % 11.0 (9.0–15.0) 6.0 (4.0–9.0)* 7.0 (5.5–8.5)^ 5.0 (4.5–7.0)*

Notes: Data are presented as the mean ± sD or median (interquartile range). *P0.05 compared with before fluid loading; ^P0.05 compared with baseline values (before 
fluid loading) in responders. T1, before fluid loading with patients in the supine position; T2, 5 minutes after fluid loading with patients in the supine position.
Abbreviations: hR, heart rate; MaP, mean arterial pressure; PPV, pulse pressure variation; PVi, pleth variability index; sVi, stroke volume index.

Table 4 Hemodynamic variables before and after fluid loading in responders and non-responders placed in the prone position

Responders (n=27) Non-responders (n=26)

Before (T3) After (T4) Before (T3) After (T4)

hR, beats/min 70.7±11.1 68.3±10.4* 66.1±9.4 63.4±8.7*
MaP, mmhg 78.2±9.9 77.5±8.1 79.7±12.3 77.4±10.5
Cardiac index, l/min/m2 2.7 (2.3–3.6) 2.9 (2.6–3.9)* 2.9 (2.4–4.0) 3.0 (2.6–4.1)*
sVi, ml/m2 38.2 (33.0–48.0) 44.5 (39.7–56.5)* 43.0 (38.1–54.2)^ 46.4 (41.0–58.0)*
PPV, % 10.0 (8.0–10.0) 4.0 (3.0–7.0)* 6.5 (5.0–8.0)^ 4.5 (3.8–7.3)*
PVi, % 10.0 (8.0–13.0) 6.0 (4.0–8.0)* 8.0 (6.8–9.0)^ 6.5 (4.8–8.3)*

Notes: Data are presented as the mean ± sD or median (interquartile range). *P0.05 compared with before fluid loading; ^P0.05 compared with baseline values (before 
fluid loading) in responders. T3, before fluid loading after placing patients in the prone position; T4, 5 minutes after fluid loading with patients in the prone position.
Abbreviations: hR, heart rate; MaP, mean arterial pressure; PPV, pulse pressure variation; PVi, pleth variability index; sVi, stroke volume index.
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calculated PPV or automatically calculated PPV to predict 

fluid responsiveness, respectively, during spinal surgery 

(Table 6).14,15 Compared with the use of four pads or a Wil-

son frame, the use of a Jackson table is known to minimize 

increases in intra-abdominal pressure and have minimal 

effects on cardiac function. Therefore, considering that 

physiological changes that occur as a result of the place-

ment of a patient in the prone position are mainly due to an 

increase in intra-abdominal pressure, the fact that the use of a 

Jackson table did not alter the ability of PPV to predict fluid 

responsiveness seems reasonable. In this study, when patients 

were placed in the prone position, the decrease of static lung 

compliance was only 1.2 mL/cmH
2
O. Importantly, unlike the 

use of four pads or a Wilson frame, a corresponding statisti-

cally significant increase in PPV was not found (Table 2). 

However, PPV was slightly less reliable in predicting fluid 

responsiveness in the present study compared with previ-

ous studies.14,15 As aging is reported to be associated with 

increased arterial stiffness,28 and the patients in this study 

were older than those in previous studies, our results could 

be explained by altered arterial compliance, which is a major 

determinant of pulse pressure amplification and arterial pulse 

wave-based PPV.29

The optimal cut-off value of PPV, however, was lower 

in patients in the prone position vs the supine position. Biais 

et al reported that in patients placed in the prone position 

using four pads, the cut-off value of PPV was 11% in the 

supine position and 15% in the prone position, unlike the 

findings in our study (Table 6).14 Yang et al reported that, in 

patients placed in the prone position using a Wilson frame, 

the cut-off value of PPV was 15% in the supine position 

and 14% in the prone position, as in our study (Table 6).15 

Table 5 Prediction of fluid responsiveness by receiver operating characteristic curves of pulse pressure variation and pleth variability 
index

AUROC curve
(95% CI)

P-value Cut-off 
value

Gray zone Patients in the 
gray zone (%)

Sensitivity (%)
(95% CI)

Specificity (%)
(95% CI)

supine
PPV 0.783 (0.648–0.884) 0.001 10% 8.2%–13.9% 18 (34) 75.0 (58.8–87.3) 61.5 (31.6–86.1)
PVi 0.814 (0.684–0.908) 0.001 8% 6.0%–11.4% 23 (43) 77.5 (61.5–89.2) 76.9 (46.2–95.0)

Prone
PPV 0.781 (0.646–0.883) 0.001 7% 6.4%–10.4% 31 (58) 81.5 (61.9–93.7) 61.5 (40.6–79.8)

PVi 0.756 (0.618–0.863) 0.001 8% 6.5%–10.7% 31 (58) 66.7 (46.0–83.5) 69.2 (48.2–85.7)

Abbreviations: aUROC, area under the receiver operating characteristic; PPV, pulse pressure variation; PVi, pleth variability index.

Figure 2 Receiver operating characteristic curves, showing the ability of PPV (solid line) and PVi (dashed line) before volume loading to discriminate responders from non-
responders.
Notes: (A) The supine position. The areas under the curves for PPV and PVi were 0.783 (95% Ci 0.648–0.884, P0.001) and 0.814 (95% Ci 0.684–0.908, P0.001), 
respectively. There was no significant difference between the areas under the curve of PPV and PVI (P=0.699). (B) The prone position. The areas under the curves for PPV 
and PVi were 0.781 (95% Ci 0.646–0.883, P0.001) and 0.756 (95% Ci 0.618–0.863, P0.001) respectively. There was no significant difference between the areas under the 
curve of PPV and PVi (P=0.766). The area under the curve for PVi in patients placed in the prone position was slightly smaller than in patients placed in the supine position, 
unlike for PPV.
Abbreviations: PPV, pulse pressure variation; PVi, pleth variability index. 
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There are several explanations for the discrepancies in cut-off 

value, the value itself and the change after the prone posi-

tion, between this and two other studies. First, although the 

increased abdominal pressure in the prone position is a major 

factor, other factors such as increased afterload, decreased 

left ventricular compliance, decreased lung compliance and 

increased airway pressure may also affect the cut-off value of 

PPV for predicting fluid responsiveness. In a previous study 

using transesophageal echocardiography to detect changes 

in hemodynamic and cardiac functions after placing patients 

in different positioners, the decrease in cardiac output and 

stroke volume with the Wilson frame was likely due to the 

increase in myocardial wall tension associated with increased 

afterload caused by reduced chest wall compliance.12 There-

fore, the cut-off value of PPV may vary depending on clinical 

situation. The change in the cut-off values after prone position 

also may vary according to the positioners used. Second, the 

definition of fluid responsiveness and fluid loading were dif-

ferent. In previous studies, fluid responsiveness was defined 

as 15% increase in cardiac output or 10% increase in 

SVI after fluid loading.14,15 In this study, the responder was 

defined as a 15% or greater increase in SVI after fluid loading. 

Biais et al14 used 500 mL colloid and we used 6 mL/kg ideal 

body weight of colloid for volume expansion. The timing of 

volume loading in this study was decided by the attending 

anesthesiologist as in other studies.14,15 These differences in 

definition and inconsistent timing of fluid loading may have 

resulted in different ROC curve analysis.

According to the previous studies, there is a significant 

correlation between intraoperative bleeding and abdominal 

pressure during lumbar spine surgery,30 and reduction of 

abdominal pressure has been achieved by using the Jackson 

table.31 The intraoperative mean blood loss in this study was 

lower than in Yang et al’s or in Biais et al’s study (Table 6). 

This may due to the use of the Jackson table as a prone 

positioner. This lower blood loss possibly kept relatively 

larger proportion of patients in the flat portion of the Flank–

Starling curve during our study. Therefore, in this study 

which used ROC curve analysis (the binary approach based 

on a fixed definition of fluid responsiveness), the lower blood 

loss possibly affected the optimal cut-off value, decreased 

the predictive ability of PPV (and maybe also that of PVI), 

and increased the gray zone. This could be another possible 

explanation for the discrepancies in results from ROC curve 

analysis between this and the two previous studies.

PVI is a relatively new dynamic index that is based on 

a different mechanism from older indices such as PPV. 

A previous study that evaluated the ability of PVI to predict 

fluid responsiveness in patients undergoing noncardiac sur-

gery reported an area under the ROC curve of 0.84 (95% CI 

0.69–0.99) and a baseline value of greater than 10.5% for pre-

dicting a 10% increase in SVI.11 Our PVI results of patients 

in the supine position are consistent with the results of this 

previous study.11 However, although the predictive ability of 

PPV on fluid responsiveness in patients placed in the prone 

position using a Jackson table was statistically maintained, 

Table 6 Characteristics of the studies that investigated the ability of dynamic indices to predict fluid responsiveness in patients 
undergoing spinal surgery in the prone position

Study Biais et al14 Yang et al15 Present study

Year 2010 2013 2018
surgery scoliosis surgery lumbar spinal fusion lumbar spinal fusion
Positioning system Four pads Wilson frame Jackson table
age, years 48 (18–74) 56 (20–76) 66 (45–75)
Fluid bolus, ml 500 ml of colloid 6 ml/kg of colloid* 6 ml/kg of colloid*
Fluid administration, ml – 2,612±1,354 2,095±559
Blood loss, ml 1,540±450 1,055±1,002 697±401
Definition of fluid responsiveness increase in CO  15% increase in sVi  10% increase in sVi  15%
Cut-off value (AUROC curve [95% CI])
supine position

PPV 11% (0.949 [0.789–0.993]) 15% (0.935 [0.870–0.999]) 10% (0.783 [0.648–0.884])
FTc – 358 ms (0.822 [0.682–0.961]) –
PVi – – 8% (0.814 [0.684–0.908])

Prone position
PPV 15% (0.959 [0.803–0.994]) 14% (0.969 [0.912–1.000]) 7% (0.781 [0.646–0.883])
FTc – 331 ms (0.846 [0.706–0.985]) –
PVi – – 8% (0.756 [0.618–0.863])

Notes: Data are presented as the mean (range) or mean ± sD. *ideal body weight.
Abbreviations: AUROC, area under the receiver operating characteristic; CO, cardiac output; FTc, corrected flow time; PPV, pulse pressure variation; PVI, pleth variability 
index; sVi, stroke volume index.
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the area under the ROC curve for PVI in patients placed in the 

prone position was slightly smaller than in patients placed in 

the supine position, unlike for PPV. Peripheral vasoconstric-

tion caused by vasoactive drugs, hypothermia, or responses to 

surgical stress can decrease the reliability of PVI.32 In patients 

receiving a higher dose of vasoactive drug, it may be not 

possible to obtain a finger plethysmographic signal.33 In this 

study, no vasoactive medications were administered during 

the measurement period, and PVI could be recorded in all 

patients. However, although peripheral temperature was not 

recorded in our study, peripheral temperature might drop 

when the PVI value is obtained in patients placed in the prone 

position compared to patients placed in the supine position 

due to prolonged exposure to operating room temperature. 

We also could think of the possibility of slight reduction of 

perfusion in the index finger caused by shoulder abduction 

in prone “surrender” position. Nevertheless, the ability of 

PVI to predict fluid responsiveness in patients placed in the 

prone position in the present study was acceptable.

Although ROC curve analysis is widely used to evalu-

ate diagnostic tests, its limitation lies in that it uses a binary 

decision with a single cut-off value in differentiating the 

responders and the non-responders to fluid resuscitation.34 

Categorizing patients into two groups based on a single 

cut-off may result in false-positives, which can lead to inap-

propriate volume loading in patients for whom this may have 

deleterious effects. On the other hand, there is also the issue 

of false-negative diagnosis as patients who would actually 

benefit from volume resuscitation are withheld from volume 

loading. Therefore, in present study, the gray zone approach 

was applied to assess diagnostic accuracy of PPV and PVI for 

the prediction of fluid responsiveness. When a given value of 

PPV or PVI is in the gray zone, physicians should be aided 

by other clinical data for determining fluid responsiveness in 

order to evaluate the patient comprehensively. Conversely, if 

the measured value lies outside the gray zone, the necessity 

for fluid resuscitation can reliably excluded or confirmed.

Limitations
The present study has some limitations. We used an esopha-

geal Doppler monitor to assess volume status. Although 

cardiac output and stroke volume were not assessed by the 

standard thermodilution technique using a catheter inserted 

into the pulmonary artery, the ability of the esophageal Dop-

pler monitor to assess cardiac functions is well established.35 

Nevertheless, because the esophageal Doppler device 

assumes a fixed aortic area and a constant proportional 

descending aortic flow during systolic phase,36 accurate 

measurement of cardiac output and stroke volume could be 

influenced by the alterations in aortic geometry or sympa-

thetic tone. In addition, the use of an esophageal Doppler 

monitor is operator dependent.37 To exclude inter-observer 

variations, esophageal Doppler probes were inserted and 

manipulated by a single experienced anesthesiologist in 

the present study.

Conclusion
Both PPV and PVI were able to predict fluid responsiveness 

in patients undergoing spinal surgery in the prone posi-

tion using a Jackson table. However, these indices require 

cautious interpretation on the part of the anesthesiologist, 

because their gray zones include a considerable number of 

patients. In future studies, the ability of PPV and PVI to 

predict fluid responsiveness of patients placed in the prone 

position should be assessed using different positioning sys-

tems in various clinical situations.
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