
© 2008 Kumar and Calhoun, publisher and licensee Dove Medical Press Ltd. This is an Open Access 
article which permits unrestricted noncommercial use, provided the original work is properly cited.

Biologics: Targets & Therapy 2008:2(4) 845–854 845

R E V I E W

Differential regulation of the transcriptional 
activity of the glucocorticoid receptor through 
site-specifi c phosphorylation

Raj Kumar1

William J Calhoun2

1Division of Gastroenterology;
2Division of Allergy, Pulmonary, 
Immunology, Critical Care, and Sleep 
(APICS), Department of Internal 
Medicine, University of Texas Medical 
Branch, Galveston, TX, USA

Correspondence: Raj Kumar
Division of Gastroenterology, 
Department of Internal Medicine, 
University of Texas Medical Branch, 
301 University Blvd, Galveston, TX 
77555-1071, USA
Tel +1 409 772 9696
Fax +1 409 772 6334
Email rakumar@utmb.edu

Abstract: Post-translational modifications such as phosphorylation are known to play 

an important role in the gene regulation by the transcription factors including the nuclear 

hormone receptor superfamily of which the glucocorticoid receptor (GR) is a member. Protein 

phosphorylation often switches cellular activity from one state to another. Like many other 

transcription factors, the GR is a phosphoprotein, and phosphorylation plays an important 

role in the regulation of GR activity. Cell signaling pathways that regulate phosphorylation of 

the GR and its associated proteins are important determinants of GR function under various 

physiological conditions. While the role of many phosphorylation sites in the GR is still not 

fully understood, the role of others is clearer. Several aspects of transcription factor function, 

including DNA binding affi nity, interaction of transactivation domains with the transcription 

initiation complex, and shuttling between the cytoplasmic compartments, have all been linked 

to site-specifi c phosphorylation. All major phosphorylation sites in the human GR are located 

in the N-terminal domain including the major transactivation domain, AF1. Available literature 

clearly indicates that many of these potential phosphorylation sites are substrates for multiple 

kinases, suggesting the potential for a very complex regulatory network. Phosphorylated GR 

interacts favorably with critical coregulatory proteins and subsequently enhances transcriptional 

activity. In addition, the activities and specifi cities of coregulators may be subject to similar 

regulation by phosphorylation. Regulation of the GR activity due to phosphorylation appears to 

be site-specifi c and dependent upon specifi c cell signaling cascade. Taken together, site-specifi c 

phosphorylation and related kinase pathways play an important role in the action of the GR, and 

more precise mechanistic information will lead to fuller understanding of the complex nature 

of gene regulation by the GR- and related transcription factors. This review provides currently 

available information regarding the role of GR phosphorylation in its action, and highlights the 

possible underlying mechanisms of action.

Keywords: glucocorticoid receptor, phosphorylation, transactivation activity, gene regulation, 

coactivators

Introduction
The glucocorticoid receptor (GR) belongs to the superfamily of the hormone-activated 

intracellular transcription factors, the nuclear hormone receptors (NHRs). Most of the 

biological effects of glucocorticoids are mediated through the GR and occur at the 

level of regulation of gene transcription (Evans 1988; Beato 1989; Yamamoto 1985). 

The role of the GR, which acts in a ligand-, cell type-, and promoter-specifi c manner 

is important in the transcriptional activation of genes involving the regulated assembly 

of multiprotein complexes on enhancers and promoters (Simons 1994; Kumar et al 

1999a; Rogatsky et al 2003). The classical mechanism of steroid/hormone action 

(Figure 1) (Dean et al 1996; Kumar et al 1999b; Nissen et al 2000; Mendelson 2004) 

states that the GR in its inactive form is located in the cytoplasm, and after entry into 
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the cell the steroid/hormone fi nds the receptor as part of a 

large heteromeric complex consisting of several proteins 

including HSP90, HSP70, Immunophilins, FKBPs, CyP-40, 

P23, and possibly others (Housley et al 1985; Sanchez et al 

1987; Pratt et al 1997, 2003; Silverstein et al 1999; Shikama 

et al 2000; Davies et al 2002; Morishima et al 2003). Steroid 

binding leads to the disassembling of the complex through 

conformational changes in the receptor molecule and the 

activated receptor enters the nucleus, where it interacts with 

critical regulatory sites on the relevant genes (Hollenberg 

et al 1987; Orti et al 1992; Henriksson et al 1997; Horwitz 

et al 1996; Starr et al 1996; Lefstin et al 1998; Yamamoto et al 

1998; McKenna et al 1999; Kumar et al 2003; Rogatsky et al 

2003; Weigel et al 2007a, 2007b). The classic model for steroid 

action states that the DNA bound receptor collects a variety 

of ancillary factors which modify chromatin structure and/or 

contact the primary transcription complex machinery proteins 

such that transcription from the relevant promoter can be 

either enhanced or repressed. However, this has led to the 

problem of understanding how the receptor molecule makes 

such large protein surface areas available to accommodate 

specifi c sites for all these factors. The molecular mechanisms 

to explain this phenomenon have not been fully defi ned.

There are possibilities that some of these actions can be 

explained on the basis of post-translational modifi cations of 

specifi c NHRs. In spite of the fact that GR is a hormone-

activated transcription factor, its expression and many physi-

ological activities are highly regulated by post-translational 

modifi cations (Webster et al 1997; King et al 1998; Wallace 

et al 2001; Le Drean et al 2002; Tian et al 2002). One such 

important post-translational modifi cation associated with GR 

function is site-specifi c phosphorylation (Wang et al 2002; 

Ismaili et al 2004; Duma et al 2006). Involvement of several 

known phosphorylation sites in the GR and variety of kinases 

facilitates integration between cell-signaling pathways and 

the GR action (Krstic et al 1997; Rogatsky et al 1998a). 

Most, if not all known phosphorylation sites in the GR are 

localized within the N-terminal domain (NTD) that contains 

a major transactivation domain, AF1 (Bodwell et al 1991, 

1998; Blind et al 2004; Kumar et al 2004a).

Post-translational modifi cations including phosphoryla-

tion are generally an important phenomenon in regulation of 

protein function in eukaryotic cells, and are often concerned 

with switching of a cellular activity from one state to another 

(Auricchio 1989; Orti et al 1989; Kuiper et al 1994). It is 

now well accepted that for several transcription factors 

including GR, site-specifi c phosphorylation can modulate 

their DNA binding affi nity, the interaction of transactivation 

domains of these transcription factors with components of 

the transcription initiation complex, and the shuttling of 

transcription factors between the cytoplasmic compartments 

(Bai et al 1995; Rogatsky et al 1998b; Wang et al 1999; Gioeli 

et al 2002). There are several reports showing that kinases 

can phosphorylate GR at multiple sites leading to altered 

GR activity (Blind et al 2004; Ismaili et al 2004). Depending 

upon the kinases involved, the GR activity can be both up- or 

down-regulated (Ismaili et al 2004). For example, phosphory-

lation of GR by cyclin-dependent kinases (Cdk1, Cdk2, and 

cdk5) leads to up regulate GR activity (Ismaili et al 2004; 

Weigel et al 2007a), whereas JNK and GSK3 inhibits GR 

activity through direct phosphorylation of GR (Rogatsky et al 

1998a, 1998b). In contrast, certain kinases such as p38 MAPK 
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Figure 1 Classical action of the glucocorticoid signaling mediated by the GR. Unliganded receptor is located in the cytosol associated with several heat shock and other 
chaperone proteins including HSP90, HSP70, CyP-40, P23, and FKBPs (shown by different shapes and shades in the cytosol). Ligand binding leads to conformational alterations in 
the GR, and by doing so GR dissociates from these associated proteins, and ligand bound GR is free to translocate to the nucleus. This process appears to be phosphorylation-
dependent. Once in the nucleus, GR dimerizes and binds to site-specifi c DNA binding sequences and interacts with several other coregulatory proteins including coactivators 
and proteins from the basal transcription machinery including SRCs, CBP/p300, DRIP/TRAP, TBP, GRIP1, and several others (shown by different shapes and shades) in the 
nucleus, and subsequently leading to transcriptional regulation.
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are reported to both up- and down-regulate GR activity, these 

effects of p38 MAPK appears to be cell-specifi c (Szatmary 

et al 2004; Miller et al 2005).

Some of the GR phosphorylation sites are conserved 

across species, whereas others are unique to specifi c species 

(Ismaili et al 2004). Generally, GR phosphorylation is ligand-

dependent, which suggests that this may be a determinant of 

promoter specifi city, interaction with coregulatory proteins, 

and even GR stability (Webster et al 1997; Zhou et al 2005; 

Faus et al 2006). There are several kinases that phosphorylate 

the GR with the resultant phosphorylation enhancing GR 

transcriptional activity (Ismaili et al 2004). However, GR can 

also be phosphorylated in a ligand independent manner as 

well (Ismaili et al 2004, 2005). In fact, we have earlier shown 

that p38 MAPK can phosphorylate human GR fragment 

lacking the LBD, which enhances the transactivation activity 

of the GR and mediates GR-dependent apoptosis in cells 

transfected with this fragment (Miller et al 2005). We also 

found that p38 was activated probably through immediate 

upstream activators, MKK3 and MKK6, both specifi c to p38 

(Miller et al 2005). In addition, MKK4, whose best-known 

substrate is JNK, can also phosphorylate p38. In recent years, 

it is becoming clearer that many receptor phosphorylation 

sites are substrates for multiple kinases, suggesting towards 

potential for very complex regulatory patterns. In this review 

article, we have summarized knowledge regarding the role of 

GR phosphorylation in the regulation of receptor function, 

and the possible underlying mechanisms of action.

The structural arrangements 
of the glucocorticoid receptor (GR)
The GR protein consists of a domain structure arrangement, 

typical of the superfamily of the NHRs (Yamamoto 1985; 

Evans 1988; Beato 1989; Simons 1994; Kumar et al 1999). 

This modular conceptual framework has been useful, but it 

has become clear that there are certain limits to the domain. 

This fundamental domain model divides the primary sequence 

into NTD, DNA-binding domain (DBD) (Hard  et al 1990; 

Luisi et al 1991), and LBD with “activation function” (AF2) 

sub-domain that regulates transcription (Giguere et al 1986; 

Hollenberg et 1987; Bocquel et al 1989; Ikonen et al 1997; 

Metivier et al 2001; Bledsoe et al 2002). Ligand binding to 

the LBD results in conformational rearrangement of its AF2 

sub-domain (usually helix 12) such that its surfaces are avail-

able for interactions with specifi c coregulatory proteins 

through LXXLL motifs. The GR and several other recep-

tors in the family have long NTD (Kumar  et al 2003). In 

these is found another, potent transactivation domain, AF1 

(Godowski et al 1987; Miesfeld et al 1987). Cooperative 

binding and site specifi city combine for GR:GRE tethering 

allows receptor’s interaction with the transcription initiation 

complex, directly by interactions between AF1/AF2 and 

the complex, or indirectly through specifi c coregulators 

(Thompson et al 2003). To a fi rst approximation, this concep-

tual model is useful, but fails to explain several essential facts 

such as the role of post-transcriptional modifi cations, includ-

ing sumoylation, acetylation, and site-specifi c phosphory-

lation. Our recent data and available literature from other 

laboratories clearly indicate an important role of GR phos-

phorylation and involvement of specifi c kinases (Rogatsky 

et al 1998a; Ismaili et al 2004; Miller et al 2005). Other data 

suggests that intramolecular signaling occurs as well between 

the amino-terminal and LBD regions (Ikonen  et al 1997; 

Hittelman et al 1999; Tetel  et al 1999; Kumar et al 1999; 

Bommer et al 2002). To fully understand the mechanisms 

of action of the GR, we must understand the answer to the 

above mentioned fundamental questions.

Phosphorylation regulates
structure and functions of the GR
Like many other transcription factors, the GR is a 

phosphoprotein, which becomes hyperphosphorylated upon 

steroid binding, and it has been suggested that phosphoryla-

tion plays an important role in the regulation of GR activity 

(Ismaili et al 2004). Protein phosphorylation is generally 

an important regulatory mechanism for protein function in 

eukaryotic cells, and is often concerned with switching of a 

cellular activity from one state to another. Phosphorylation 

of the Pol II protein complex is correlated with the transition 

between transcriptional initiation and elongation (Nissen 

et al 2000; Pinhero et al 2004); thus phosphorylation may be 

involved in transcriptional regulation. In recent years, more 

and more evidence point towards the role of phosphorylation 

and other post-translational modifi cations in the gene expres-

sion and regulation of many transcription factors (Boyle et al 

1991; Nichols et al 1992; Wisniewski et al 1999).

Cellular kinases play a prominent regulator role for the 

NHR (Ismaili et al 2004). Ligand binding, nuclear transloca-

tions, modulation of binding to REs, receptor dimerization, 

and interaction with general transcription factors, have 

all been linked to phosphorylation (Ismaili et al 2004). It 

has been reported that kinases enhance the transactiva-

tion activity of several steroid receptors both in a ligand-

dependent and ligand-independent manner (Rogatsky et al 

1998b; Ismaili et al 2004). For transcription factors, three 

main mechanisms of regulation by phosphorylation can be 
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identifi ed; 1) the DNA binding affi nity of transcription factors 

can be modulated negatively or positively; 2) the interaction 

of transactivation domains of transcription factors with 

components of the transcription initiation complex can be 

affected; and 3) the shuttling of transcription factors between 

the cytoplasmic compartments can be infl uenced.

In the human GR fi ve serine residues (S113, S141, S203, 

S211, and S226) have been identifi ed (Ismaili et al 2004), 

whereas in the mouse GR there are eight phosphorylation 

residues identifi ed. In mice, seven of the 8 phosphorylation 

sites are at serine residues (S122, S150, S212, S220, S234, 

S315, and S412) and one at threonine (T159) (Bodwell  et al 

1991; Bodwell 1998; Rogatsky et al 1998a). All the known 

phosphorylation sites identifi ed in mouse GR are found in 

the NTD, in or near the AF1 domain (Mason et al 1993). 

Several kinases are reported to be involved in the phos-

phorylation of these sites, such as mitogen protein kinases 

(MAPK), cyclin-dependent kinase (CDK) (Krstic et al 1997), 

glycogen synthase kinase-3 (GSK-3), and c-Jun N-terminal 

kinases (JNK) (Rogatsky et al 1998a). Though, each of 

these kinases is reported to show distinct specifi cities for 

potential phosphorylation residues, full receptor activity 

may require synergistic effects of these kinases and their 

signaling cascades.

In the human GR AF1, major functionally important 

known phosphorylated residues are S203, S211, and S226 

(ure 2). At least two of these (S211 and S226) are thought to 

be important for transcriptional activity of the GR (Rogatsky 

et al 1998b; Ismaili et al 2004; Miller et al 2005). The use of 

site-specifi c antibodies has shown that S203 phosphorylation 

is involved in the GR translocation (Ismaili et al 2004). It 

has also shown that site-specifi c (S211) phosphorylation of 

the GR AF1 enhances its interaction with a protein from the 

DRIP/TRIP complex, and subsequently GR activity (Blind 

et al 2004; Ismaili et al 2004). These observations clearly 

suggest that site-specifi c phosphorylation in GR AF1 may 

regulate GR function, in an AF1-dependent manner. However, 

it is not yet known exactly how phosphorylation infl uences 

the structure and functions of the GR AF1.

The AF1 can act constitutively in the absence of LBD, and 

is quite active in stimulating transcription from simple pro-

moters containing cognate binding sites(s). Because GR AF1 

exists in intrinsically disordered conformation(s), advances 

in understanding its structure and functions have been slowed 

(Dahlman-Wright et al 1995; Baskakov et al 1999; Kumar et al 

2004b). It is known that for function AF1 interacts with specifi c 

coregulatory proteins such as CBP, TBP, TIF2, DRIP/TRAP, 

Ada among others, and the available data strongly suggest 

that AF1 must adopt an ordered conformation to optimize 

interactions and subsequent transcriptional activity (Kumar 

et al 2003). In recent years, it has become quite evident that 

eukaryotic genomes are highly enriched in intrinsically dis-

order proteins relative to prokaryotes, refl ecting the greater 

need for signaling and regulation in nucleated cells (Crivici 

et al 1995; Namba 2001; Dyson et al 2002; Iakoucheva et al 

2002; Tompa 2002; Romero et al 2004; Ward et al 2004; Liu 

et al 2006). These disordered protein regions/domains promote 

molecular recognition primarily through unique combination 

of high specifi city and low binding affi nity with their functional 

binding partners, recognize and bind a number of biological 

targets, and create propensity to form large interaction surfaces 

suitable for interactions with their specifi c binding partners 

(Crivici et al 1995; Namba 2001; Iakoucheva et al 2002; Dyson 

et al 2002; Tompa 2002; Romero et al 2004; Ward et al 2004; 

Liu et al 2006). We hypothesize that site-specifi c phosphoryla-

tion of the GR AF1 leads to changes in its conformations that 

are important for AF1’s interaction with other critical coregula-

tory proteins, and subsequent transcriptional activity.

P P PP P P

1 77 777262 420 480
Figure 2 A topological diagram of the human GR (amino acids 1–777) showing its modular structure and known phosphorylation sites in it (based on ref. 38). Numbers on 
the bottom indicate amino acid positions of different functional domains. 1–420, NTD; 77–262, AF1; 421–481; DBD; and remaining C-terminal part, the LBD are shown. P 
denotes known phosphorylation sites in the NTD of the human GR. Shown from left to right: S113, S141, S203, S211, S226, and S308. Corresponding amino acids in the rat 
GR are S134, S162, S224, S232, S246, and S329, whereas in the mouse GR these correspond to S122, S150, S212, S220, S234, and S315. In the rat and mouse GR, there is one 
Threonine residue (T171 in rat and T159 in mouse) that is known to be phosphorylable, and is not conserved in the human GR. In the human GR except for S308, all other 
residues are located within the AF1 domain, and S203, S211, and S226 are reported to have to have some functional roles in the action of the GR. Phosphorylation of these 
sites are kinase- and cell-dependent.
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There are also reports suggesting that phosphorylation 

may affect GR stability and thus alter transcriptional activ-

ity of the receptor (Zhou et al 2005). Co-transfection data 

from Cidlowski and colleagues (Webster et al 1997; Wallace 

et al  2001) have shown that phosphorylated mouse GR 

had a half-life of 8–9 h in the presence of agonist, whereas 

mutations of multiple GR phosphorylation sites increased 

its half-life to 32 h. All the GR phosphorylation sites that 

are conserved among human, mouse, and rat are located 

within the AF1 domain. Single mutations of these do not alter 

receptor activity in an MMTV-driven promoter-reporter con-

struct, but a GR lacking all fi ve sites that are well conserved 

in mouse, rat and human GR shows signifi cantly decreased 

activity (Almlof et al 1995). Our recent published data 

however show that p38 and ERK2 are potent kinases for 

in vitro phosphorylation of S211 (located in AF1 domain) 

on the human GR (Miller et al 2005). The mutant lacking 

a phosphorylatable amino acid at position 211 (S221A) 

was considerably less potent in inducing the AF1-medited, 

GRE-driven reporter gene, and GR-mediated apoptosis 

induced by dexamethasone (Miller et al 2005). Garabedian 

and colleagues (Rogatsky et al 1998b; Blind et al 2004; 

Ismaili et al 2004; Kino et al 2007; Wang et al 2007) have 

also demonstrated that site-specifi c phosphorylation in GR, 

particularly S211 and S226 play an important role in gene 

regulation by the GR, and AF1 appears to be a main player 

in this process. Thus, in contrast to earlier study that sug-

gested lack of specifi city of phosphorylation (Almlof et al 

1995), these more recent fi ndings clearly indicate the role of 

site-specifi c phosphorylation in AF1-mediated GR functions 

(Ismaili et al 2004; Miller et al 2005).

Role of phosphorylation in protein:
protein interactions involving
the GR and specifi c coregulators
In the conceptual model of a GR:coactivator complexes, the 

ligand-bound receptor recruits one or more coactivators, 

which subsequently results in the recruitment of additional 

coactivators to the assembly. The histone acetylation and 

methylation activities of various constituents of the coactivator 

complex facilitate the relaxation of the chromatin architecture 

at the target gene promoter, thereby enhancing transcriptional 

activation. Analogous arguments can be made for GR:core-

pressors complexes (Horwitz et al 1996; Yamamoto et al 

1998; McKenna et al 1999). The GR AF1 domain is known 

to play an important role in many of these interactions, via 

interaction with regions of the coactivator remote from the 

LXXLL motif (Kumar et al 2003). The ability of GR AF1 

to interact with components of the general transcriptional 

machinery or with coregulator complexes provides a broad 

insight into the process of transcriptional initiation. CBP, TBP, 

AdA2, DRIP150, TSG101, and several other co-regulators 

have been shown to bind to the GR AF1 (Kumar et al 2003; 

Ismaili et al 2004). Direct binding of TBP with AF1, raises the 

possibility that this GR domain somehow directly infl uences 

the transcriptional machinery. In vitro transcription studies 

indicated that the holo-GR acts to stabilize the pre-initiation 

complex (Horwitz et al 1996; Yamamoto et al 1998; McKenna 

et al 1999), though other mechanisms to control transcription 

have recently been reported (Glass et al 1997; Yamamoto et al 

1998; Fujita et al 2003; Loven et al 2003).

It has been reported that the interaction between the GR 

and TSG101 may be modulated through GR phosphorylation 

(Ismaili et al 2005). This study shows that TSG101 is 

preferentially recruited to the nonphosphorylated form of 

the GR (Ismaili et al 2005). Another GR AF1 coregulator 

DRIP150 is also been reported to be modulated through GR 

phosphorylation (Ismaili et al 2004). Our unpublished data 

(Garza and Kumar, in preparation) show that interaction 

of several GR AF1 coregulators including TBP, CBP, and 

SRC-1 are facilitated by GR phosphorylation. Moreover, 

phosphorylation of several transcription factors, includ-

ing NHRs enhances recruitment of coregulatory proteins 

(Wu  et al 2005). Thus, it can be concluded that site-specifi c 

phosphorylation of the AF1 domain of GR can either enhance 

or diminish recruitment of coregulators.

These contrasting effects of AF1/GR phosphorylation on 

recruitment of specifi c coregulators may refl ect the biologic 

need for the GR to up- or down-regulate gene(s) in a cell- and 

promoter-specifi c manner. Recent studies have shown that GR 

site-specifi c phosphorylation can differentially regulate the 

expression of several target genes (Chen et al 2008; Davies 

et al 2008; Blind et al 2008). However, this phenomenon 

is not clearly understood, and further studies are needed to 

provide a more comprehensive explanation for this behavior. 

One clue to the complexity of this system is that SG101 sta-

bilizes ligand-unbound GR in its unphosphorylated form to 

protect it from degradation. Our recent fi ndings (Garza and 

Kumar, in preparation) suggest that phosphorylation of the 

GR stabilizes the conformation of otherwise unstructured 

AF1 such that AF1’s surfaces are available for its interaction 

with co-regulatory proteins. Thus, TSG101 interaction with 

GR may be important to keep unliganded GR protected from 

autodegradation until the GR becomes phosphorylated.

Recent studies suggest that in addition to the receptor 

phosphorylation, the activities and specifi cities of coregulators 
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are also subject to similar regulation by phosphorylation. For 

example, the actions of coregulators including SRCs and CBP 

can be modifi ed by phosphorylation (Tzukerman  et al 1994; 

Chen et al 1999; Font de Mora et al 2000; Rowan et al 2000a; 

Lopez et al 2001; See et al 2001; Puigserver  et al  2001; Yang 

et al 2001; Chevillard-Briet  et al 2002; Kotaja et al 2002; 

Chauchereau et al 2003; Wu et al 2005). Several phosphoryla-

tion sites for SRC-1 and SRC-3 have recently been identifi ed 

(Rowan et al 2000b; Wu et al 2004). Phosphorylation of these 

coregulators is induced by steroid hormones (Lopez et al 

2001; Wu et al 2004, 2005), and phosphorylation is critical 

for optimal activities. These data suggest that phosphory-

lation of coregulators may infl uence their protein-protein 

interactions with GR. This concept raised the possibility that 

the phosphorylation patterns of specifi c coregulator(s) might 

serve as a signal integrator, permitting this complex network 

of GR and cofactors to accurately and specifi cally activate a 

broad range of promoters for transcriptional activation.

Role of phosphorylation 
on the transactivation activity  
of the GR
It has been demonstrated that the status of GR phosphorylation 

can alter its transcriptional activity (Mason et al 1993). 

There are reports showing that in human GR S203A and/or 

S211A mutations signifi cantly repress GR activity, whereas 

S226A mutation has increased GR activity in a yeast system 

(Almlof et al 1995), suggesting that effects of phosphoryla-

tion on the GR transcriptional activity could be both up- or 

down-regulated depending upon the site of phosphorylation, 

and (due to site-specifi city of the kinase) probably the spe-

cifi c kinase pathways involved (Ismaili et al 2004). Reduced 

GR activity and decreased level of phosphorylation status 

have been observed in cells defi cient in the CDK inhibitor 

p27 (Rogatski et al 1997). However, other studies show that 

mutations of multiple GR phosphorylation sites do not sig-

nifi cantly alter GRE-mediated GR activity in cell co-transfec-

tion studies (Almlof et al 1991). A number of explanations 

for these apparently confl icting results exist. For example, 

some studies were conducted using different promoters, and 

therefore it is quite possible that the infl uence of the GR 

phosphorylation on its transcriptional activation activity may 

be dependent on the promoter context of the target gene. It 

is also likely that site-specifi c phosphorylation of the GR 

would contribute to endogenous gene regulation, acting in a 

cell-type specifi c manner in which the use of kinases might 

differ (Zhou et al 2005). Another possible explanation is that 

individual phosphorylation sites may infl uence translocation 

to the nucleus (Webster et al 1997). However, the presence of 

confl icting data (Wang et al 2007) highlights the complexity 

of this system, and the need for more studies to establish 

underlying mechanisms.

We have shown that a mutation of Ser211 to Ala 

residue reduced GR-mediated transcriptional activation and 

apoptosis in a human leukemia cell line, suggesting a role 

for p38 MAPK signaling in glucocorticoid-induced apoptosis 

of lymphoid cells. With respect to the consequences of p38 

MAPK phosphorylation, it has further been shown that S211 

residue of AF1 is a specifi c substrate site for p38 MAPK, and 

that mutation S211A, which prevents phosphorylation at this 

position, diminishes apoptosis driven by the constitutively 

active GR lacking the ligand binding domain, suggesting a 

possible role of AF1-mediated GR transcriptional activity 

(Miller et al 2005). However, it is not known whether other 

phosphorylation sites (eg, S203 and S226) are also involved 

in this process. Further studies in our laboratory are exploring 

a variety of possibilities to understand the role of phosphory-

lation in GR function. Similar effects have been shown in 

other laboratories, using different cells and kinase pathways 

(Ismaili et al 2004). Thus, in contrast to earlier study (Almlof 

et al 1995), these recent fi ndings clearly indicate the critical 

role of site-specifi c phosphorylation of AF1 in regulating GR 

functions. Activity of steroid bound GR may also be reduced 

due to site-specifi c phosphorylation (Ismaili et al 2004). For 

example, activation of JNK induces rat GR phosphorylation 

at S246 which signifi cantly reduces GR activity; mutation of 

S246A, eliminating the potential phosphorylation site, dimin-

ishes inhibitory effects of JNK (Ismaili et al 2004). These 

results suggest that phosphorylation at S246 either increases 

its affi nity for a corepressor or decreases its interaction with 

a coactivator. Thus, site-specifi c phosphorylation and the 

particular kinase pathways involved in different cell types 

may dictate the pattern of GR regulation of specifi c target 

gene(s). Further, these effects may be synergistic in nature.

Additional studies are needed to clarify the underlying 

mechanisms to determine these effects. A possible role of 

phosphatases has also been reported to regulate GR phos-

phorylation and its subsequent effects of the transcriptional 

activity (Ismaili et al 2004). Perturbations in protein phos-

phatase activity have been shown to affect GR function. 

Treatment of cells with protein phosphatase inhibitor results 

in enhanced phosphorylation of GR, accumulation of GR 

in the cytoplasm, and subsequent reduction in GR-mediated 

transcriptional activation (DeFranco et al 1991; Sommers et al 

1992). However, the effects of specifi c phosphatases (and by 

extension specifi c phosphatase inhibitor) on site-specifi c GR 
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phosphorylation and function have not been well established. 

Collectively, the effect of phosphatases on GR signaling 

and transcriptional regulation is complex, and requires fur-

ther examination. Thus, it becomes of great importance to 

determine the pattern, kinetics, extent, and effects of phos-

phorylation/dephosphorylation in modulating GR action. 

Subsequently, it will be critical to establish the mechanisms 

by which modulation of GR activity occurs, and determine 

whether AF1 phosphorylation, in a site-specifi c manner, is an 

integrating phenomenon for GR regulation. Although short 

of actual proof, it seems apparent that both kinases and phos-

phatases may be interacting in complex ways to determine 

phosphorylation of specifi c sites within the GR AF1 that may 

well be cell- and promoter-specifi c in nature.

Summary and perspectives
Steroids have been frontline therapy for decades in the 

treatment of malignancies and inflammatory disorders; 

however the mechanism by which steroid receptors pass 

signals from ligand to regulate specifi c genes is not fully 

understood. Recent progress combined with classical under-

standing of the steroid receptors action, and the availability 

of the structure of individual domains of several members 

of the NHR superfamily including the GR has provided 

new understanding of the function of the GR. Recent stud-

ies have suggested that under physiological conditions, 

there are many factors that infl uence the conformation of 

the GR such that malleable protein surfaces are available 

for interaction with appropriate coactivators/corepressors. 

However, it remains to be determined how precisely these 

GR:protein interactions may differ with different cell- and 

promoter-specifi c conditions, and how the receptor com-

municates with transcription initiation machinery. Another 

important problem that remains to be solved is the precise 

mechanism by which AF1 and AF2 synergize with each 

other in the holo-receptor. Post-translational modifi cations 

including phosphorylation, ubiquitination, and sumoylation 

have all been shown to affect functions of NHR family 

members.

In recent years it has become clear that the cross-talk 

exists between GR signaling and other receptor cascades 

including infl ammatory kinases (MAPKs, ERK, p38 and 

JNK) as well as the cAMP-driven PKA pathways. There 

is evidence that that differential phosphorylation is a 

potential regulator of species-specifi c actions of the GR. 

However, current knowledge reveals that the role of GR 

phosphorylation is a remarkably complex phenomenon. It 

is evident that the GR is a target for multiple kinases, and 

that many GR functions are regulated by phosphorylation. 

Several outstanding questions remain to be answered. For 

example: 1) what are the relative levels of phosphorylation 

of individual sites under physiological conditions; 2) how do 

phosphatases infl uence the cellular machinery; and 3)  what is 

the correlation between cell based studies and in vivo animal 

models. However, it is clear that GR-mediated glucocorticoid 

signaling is a multifaceted process involving crosstalk with 

various regulatory kinase pathways. Thus, signaling cascades 

that induce phosphorylation of the GR and its coactivator 

proteins are critical factors in determining the physiological 

actions of the GR. Further studies that clarify the regulation of 

endogenous target genes by specifi c phosphorylation site(s) 

should lead to target- and perhaps tissue-specifi c require-

ments for phosphorylation. There are several other avenues 

of post-translational modifi cations that might also affect the 

actions of GR. Ubiquitination-mediated degradation regu-

lates glucocorticoid signaling by controlling the degradation 

rates of GR (Kinyamu et al 2005). Another post-translational 

modifi cation, sumoylation, can also regulate the GR func-

tions (Le Drean et al 2002). There are at least three known 

sumoylation sites in the human GR. Two of them are located 

in the NTD (K277 and K293) and one (K703) in the LBD 

(Faus et al 2006). Acetylation and methylation are other pos-

sible modifi cations that may infl uence GR actions; however, 

there is not enough evidence to suggest their direct role in 

modulating GR functions. At least one recent study has 

shown a ligand-dependent acetylation of the human GR at 

K494 and K495 residues, but the functional consequences 

of this modifi cation are not clear (Ito et al 2006).

We propose that under physiological conditions, 

site-specifi c phosphorylation plays a crucial role in allowing 

the AF1 domain of the GR to adopt functionally active 

conformation(s) in vivo (Figure 3). The resulting structurally 

modifi ed forms of AF1 suit it for its varied interactions with 

other critical coregulatory proteins, and possibly additional 

modulations in receptor structure essential for gene regulation 

by the GR. These interactions give a set of functionally 

active folded structure to AF1 and form the basis for the 

multiprotein assemblies involved in GR-mediated regulation 

of transcription. How site-specifi c phosphorylation leads to 

such AF1 conformation(s) and what kind of functional folded 

conformation it adopts are open questions, and we and others 

have been pursuing answers to these long-standing problems. 

Knowledge of the conformational changes in AF1 and/or 

other domains/regions of the GR due to site-specifi c phos-

phorylation and subsequently gene regulation will lead to an 

understanding of the role of this important phenomenon in the 
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transcription process, information essential to understanding 

how glucocorticoids affect gene regulation.
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