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Abstract: Real-world systems are usually multivariate and hence usually cannot be adequately 

described by one selected variable without the risk of serious misrepresentation. Analyzing the 

effect of one variable at a time by analysis of variance techniques can give useful descriptive 

information, but this will not give specifi c information about relationships among variables 

and other important relationships in the entire matrix. Multivariate data analysis was developed 

in the late 1960s, and used by a number of research groups in analytical and physical organic 

chemistry due to the introduction of instrumentation giving multivariate responses for each 

sample analyzed. Development of such methods was also made possible by the availability of 

computers. Multivariate data analysis involves the use of mathematical and statistical techniques 

to extract information from complex data sets. The objective of this paper is to briefl y describe 

and illustrate some multivariate data analysis methods used for grape and wine analysis.
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Introduction
Scientists in the food and beverage industry are faced with many different quality 

control tasks, including verifying that products meet required compositional and 

fl avor standards, identifying changes in process parameters that might lead to a change 

in quality, detecting adulteration in raw materials and manufactured products, and 

identifying geographical origin of raw materials.1–3

Traditionally, much of the research in the fi eld of grape and wine has been conducted 

in a manner that can be described as “univariate”, since it only examined the effect 

(response) of a single variable on the overall matrix.4–5 Around the 1920s, when many 

statistical methods were developed, samples were considered cheap and measurements 

expensive.6 Since that time, the nature of technology has changed, samples are now 

expensive (eg, the high cost of experiments) and measurements are cheap.

Analyzing the effect of one variable at a time by analysis of variance (ANOVA) 

techniques can give useful descriptive information, but this will not give specifi c 

information about relationships among variables and other important relationships in 

the entire matrix.7–11 Multivariate data analysis was developed in the late 1960s and 

was used by a number of research groups in analytical and physical organic chemistry. 

Its development was due to the introduction of modern instrumentation, which gave 

multivariate responses for each sample analyzed (eg, wavelengths, ions, mass to charge 

ratios, chromatographic peaks) and to the wider availability of computers.9–13

In modern chemical measurements, we are often confronted with so much data that 

the essential information may be not readily evident.9–13 Certainly that can be the case 

with chromatographic or spectral data for which many different observations (peaks or 

wavelengths) have been collected from a single sample. Each different measurement 

can be thought of as a different dimension. Traditionally, analysts strive to eliminate 

matrix interference in analytical methods by isolating or extracting the analyte in 
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order to make the measurement itself apparently simple and 

certain. However, this approach ignores the possible effects 

of chemical and physical interactions between the different 

constituents present in the sample, which is something that 

is especially evident when complex materials like grapes and 

wine are analysed.14–19

Univariate models do not consider the contributions of 

more than one variable source and can result in models that 

oversimplify the system under analysis. Therefore, in the 

modern scientifi c approach, scientists need to look at the 

sample in its entirety and not just at a single component if 

we wish to untangle all the complicated interactions between 

the constituents and understand their combined effects on 

the whole matrix.20 Multivariate methods provide the means 

to move beyond the one-dimensional (univariate) world. In 

many cases, multivariate analysis can reveal constituents that 

are important through various interferences and interactions. 

This inductive rather than deductive reasoning needs a leap 

of imagination; it might be harder to accept and seemingly 

less certain and secure, but it opens a new chapter in the 

development of inferences from the analysis of the whole 

matrix.9–13,20 Therefore, multivariate data analysis is defi ned 

as the application of mathematical or statistical methods to 

chemical data.

Multivariate data analysis, unlike classic statistics, 

considers multiple variables simultaneously. Although 

multivariate ANOVA (MANOVA) is available, other 

multivariate analytical methods have the advantage that they 

can take collinearity into account.7–8 Multivariate analysis can 

take into account the variation in one variable, or a group of 

variables, in terms of co-variation with other variables.8,20–22 

The analysis can mathematically describe the co-variation 

(degree of association) between variables, or fi nd a math-

ematical function (regression model), by which the values 

of the dependent variables are calculated from values of the 

measured (independent) variables.20–22

Today, many food quality measurement techniques are 

multivariate and based on indirect measurements of chemical, 

physical, and sensory properties.5–8 A typical characteristic 

of many of the most useful of these instrumental techniques 

is that, paradoxically, the measurement variable might not 

have a direct relationship with the property of interest, for 

instance the concentration of a particular chemical in the 

sample, that is, a correlative method. This often refers to 

chemical and physical interference.20–22

Multivariate data analysis research spans a wide area 

of different methods which can be applied in different 

fi elds of science and technology. They include methods 

and techniques for collecting good data (optimization of 

experimental parameters, design of experiments, calibration, 

signal processing) and for getting information from these 

data (statistics, pattern recognition, modeling, structure–

property–relationship estimations).8,11 The most commonly 

used multivariate data analysis techniques applied to grape 

and wine analysis are principal component analysis (PCA) 

and partial least squares (PLS) regression.9–13

The aim of this review is to give a brief description 

of different multivariate methods used in grape and wine 

analysis.

Brief description of multivariate 
data methods
Both quantitative and qualitative applications of multivariate 

data analysis have been reported in the literature for the 

analysis of grape and wine. Most involve the use of PCA 

and PLS regression.14–19,23–43 The following section describes 

briefl y the different multivariate data analysis methods 

used. Many of the methods are based on the concept of soft 

modeling, a linear modeling method that originated in the 

fi eld of multivariate statistical analysis, but which has become 

synonymous with the term “chemometrics”. The focus of 

the soft modeling method on the properties of the signal, 

rather than on the noise, helps to distinguish multivariate 

data analysis from statistics, where the emphasis is usually 

on the structure and properties of the error term.9–13 Chemists 

often confuse the two fi elds, but remembering the difference 

in focus makes distinguishing them relatively simple.9–13

Because of the heavy emphasis on soft modeling in 

multivariate data analysis, the fi eld developed around an 

algorithmic rather than theoretical framework, an attribute 

that is now beginning to change.4,12–13,20–22 Discussions of 

soft modeling in current literature are more likely to focus 

on the linear algebraic theory of the modeling than on the 

specifi c steps needed to form the model.4,12–13,20–22 It is useful 

to have an appreciation for some of the key approaches and 

assumptions of soft modeling, as these underlie the logic 

of many of the multivariate analytical methods.10–13 For 

example modeling in spectroscopy has been done using 

“fi rst-principles” (hard) models. A hard model is one that 

describes the system in terms of a mathematical relationship 

developed using the measurement variables as independent 

variables and the desired outputs as dependent variables.7–8 

Because chemical systems are generally complex, the hard 

modeling used in chemistry has either been applied to simpli-

fi ed systems or has involved either limiting “laws” or other 

approximations and restrictions to the region of application 
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of the hard model.7–8 The ubiquitous “Beer’s Law” relations 

used in quantitative spectroscopy is an example of one such 

fi rst-principles model with well known limitations due to the 

simplifi cations made in the theory.20–22

Soft modeling sees the modeling problem from an entirely 

different logical perspective. It assumes that the chemical 

system under study is complex and that it is not possible or 

economically feasible to adequately describe the behavior of 

the system using a hard model. The soft model is based on 

variation and correlation in the data, as captured in a covari-

ance matrix, which can be thought of as a measure of the 

overall fl uctuation in each independent variable present in the 

data set, as well as the variable–variable interactions.20–22

The fi rst step in soft modeling is to express the data in 

terms of a new set of axes based on the different contribu-

tions to variation in the data.7–8,20–22 This is conveniently 

done by a mathematical conversion from measured data 

to new axes based on covariance in the data set. A set of 

orthogonal components made from linear combinations of 

the independent (eg, spectral data) variables is created to 

describe independent sources of the observed variation in 

the covariance matrix created from the data set analyzed, 

according to the equation:

X = UVT

where matrix V, the loadings of the set of spectral data 

described by matrix X, contains the linear combinations of the 

original measurement variables that defi ne the new variation-

based coordinate system spanning the data in X and matrix U, 

called the scores of X, contains the coordinates of the data X 

in that variation-based coordinate system.20–22

The linear combinations of the measured spectral 

variables that result from the rotation are called latent 

variables because they are derived rather than measured. The 

latent variables extracted to describe a data set are ordered 

in terms of the size of the independent sources of variation 

that they explain. The fi rst latent variable explains the largest 

independent source of variance in the data, the second latent 

variable the second largest, and so on, until all variation in 

the data set is accounted for by one of the linear combinations 

of the measurements.8,20–22

The second step in soft modeling is the elimination of 

noninformative latent variables. Generally, re-expression of 

the data set X in terms of latent variables is not useful unless 

a decision is also made on the number of latent variables 

that are needed to adequately explain the systematic varia-

tion in the data X. At this point it is important to distinguish 

between the variables that help answer the questions posed 

(and therefore must contain “signal”) and those that do not 

help (because they contain “noise”).8,20–22

Exploratory data analysis
Patterns of association exist in many data sets, but the 

relationships between samples can be diffi cult to discover when 

the data matrix exceeds three or more variables.20–22 Explor-

atory data analysis can reveal hidden patterns in complex data 

by reducing the information to a more comprehensible form. 

Such multivariate data analysis can expose possible outliers 

and indicate whether there are patterns or trends in the data. 

Exploratory algorithms such as PCA and hierarchical cluster 

analysis (HCA) are designed to reduce large complex data sets 

into a series of optimized and interpretable views.8,13

Principal component analysis
PCA is used as a tool for screening, extracting, and 

compressing multivariate data.8,10–13 PCA employs a math-

ematical procedure that transforms a set of possibly correlated 

response variables into a new set of noncorrelated variables 

called principal components.10–13 PCA can be performed on 

either a data matrix or a correlation matrix depending on 

the type of variables being measured. However, in a case 

where the original variables are nearly noncorrelated, noth-

ing can be gained by using a PCA analysis. PCA produces 

linear combinations of variables that are useful descriptors 

or even predictors of some particular structure in the data 

matrix.8,11–13

PCA is one of the most commonly used methods to 

analyze large data sets and has been applied to different types 

of instrumental methods as well as sensory data. For example, 

recent research has shown that rapid analysis of wine volatiles 

using an electronic nose (EN) instrument produces signals 

containing information that, even without chromatographic 

separation, can be used to determine a fi ngerprint of wine 

based on its aroma profi le.23–29 The combination of PCA 

analysis and gas sensors allow the detection of mass fragments 

formed during ionization of volatile compounds.23–29 This 

suggests that some of these volatiles are directly responsible 

for the sensory differences between samples and measuring 

the mass fragments of these compounds can provide some 

understanding of the chemical basis for sensory differentia-

tion as well as a basis for varietal discrimination.23–29 Other 

examples of the use of PCA applied to chemical, instrumental, 

and sensory data are shown in Table 1.

A combination of PCA and rapid methods is illustrated 

in Figure 1. The mid infrared (MIR) spectra (Figure 1A) of a 

set of wine samples (Shiraz, Riesling, and Sauvignon Blanc) 
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and their principal component scores (Figure 1B) are plotted, 

indicating a separation between the wine samples analyzed. 

From the visual observation of the MIR spectra alone it is 

very hard to identify groups of samples related to variety. 

The use of PCA as a multivariate analytical tool allows the 

classifi cation of wine samples according to variety (Shiraz, 

Riesling, and Sauvignon Blanc).

Discriminant analysis using PLS regression
Discriminant analysis (DA) can be considered a qualitative 

calibration method. Instead of calibrating for a con-

tinuous variable, one calibrates for group membership 

(categories). In the case of two groups (eg, A and B) and 

several measurements there is a fairly obvious way to use 

regression methods to perform a DA. For example, create 

an artifi cial (dummy) Y-variable that has value 0 (zero) for 

each case in group A, and 1 (one) for each in group B, and 

develop a regression equation between Y and the X-variable 

measurements. The resulting models are evaluated in terms 

of their predictive ability to predict the Y variable of new 

and unknown samples (standard error of prediction, SEP). 

The use of DA and other classifi cation tools can be found 

extensively in the analysis of grape and wine.14,29–31

Several studies have suggested that gas sensors together 

with DA methods might be used by the wine industry for the 

identifi cation of white wine varieties or their blends.27–29 Even 

though the conventional analysis based on gas chromatography 

provides fundamental information about the volatile com-

pounds present in the wine, the use of gas sensors has advan-

tages of simplicity of sample preparation and reduced time 

of analysis.27–29 For example, the use of EN was reported 

to classify Riesling and unwooded Chardonnay wines from 

Australia and to discriminate between different wines, regions, 

vintages, and spoilage.29–32

In another study, metal oxide sensor (MOS) instruments 

were tested for the ability to characterize Ontario-produced 

fruit wines.33 Eight fruit wines (blueberry, cherry, raspberry, 

blackcurrant, elderberry, cranberry, apple, and peach) and 

four grape wines (red, Chardonnay, Riesling, and ice wines) 

were each obtained from fi ve Ontario wineries. This study 

showed that it was possible to separate each wine variety 

based on differences between wineries.33 The results show 

that MOS instruments can discriminate between fruit and 

grape wines and may become an important tool for standard-

ization of wine quality.33

Table 1 Use of principal component analysis and discriminant 
analysis combined with instrumental methods in the grape and 
wine industry

Reference Instrumental method Sample

16 NIR Discrimination of Riesling 
and Chardonnay wines

29 Electronic nose Wine spoilage

30 Electronic nose Wine classifi cation

31 Electronic nose 
and tongue

Wine classifi cation

35 Electronic nose Aroma compounds

36 NIR Fermentation monitoring

47 NIR and MIR Wine grading

Abbreviations: NIR, near infrared spectroscopy; MIR, mid infrared spectroscopy.
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Figure 1 A combination of PCA and rapid methods.  A the mid-infrared spectra of a set of wine samples, B and their principal component scores.
Abbreviations: PCA, principal component analysis; PC, principal component score.
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An application of EN (based on a tin oxide array) for the 

identifi cation of typical aromatic compounds present in white 

and red wines and responsible for different aroma attributes 

(eg, fruity, fl oral, herbaceous, vegetative, spicy, smoky) 

has also been reported.34,35 Both PCA and DA showed that 

datasets of these groups of compounds were clearly separated 

and confi rmed that the system could correctly discriminate 

the aromatic compounds added to the wine.34,35

Classifi cation and clustering
Many applications require that samples be assigned to pre-

defi ned categories, or “classes”. This may involve determining 

whether a sample is good or bad, or predicting an unknown 

sample as belonging to one of several distinct groups. A clas-

sifi cation model is used to predict a sample class by comparing 

the sample to a previously analyzed experience set, in which 

categories are already known. Both k-nearest neighbour (KNN) 

and soft independent modeling of class analogy (SIMCA) are 

primary multivariate data analysis workhorses.11–13 When these 

techniques are combined to create a classifi cation model, the 

answers provided are more reliable and include the ability to 

reveal unusual samples or patterns in the data.11–13

Quantitative analysis: modeling 
and calibration
In many applications, it is expensive, time consuming or 

diffi cult to measure a property of interest directly. Such cases 

require the analyst to predict the property of interest based 

on related properties that are easier to measure. The goal of 

multivariate data analysis regression analysis is to develop a 

calibration model which correlates the information in the set 

of known measurements to the desired property. Multivariate 

data analysis algorithms for performing regression include 

PLS and principal component regression (PCR) and are 

designed to avoid problems associated with noise and correla-

tions in the data. Because the regression algorithms used are 

based on factor analysis, the entire group of known measure-

ments is considered simultaneously, and information about 

correlations among the variables is automatically built into the 

calibration model. Multivariate data analysis regression lends 

itself handily to the on-line monitoring and process control 

industry, where fast and inexpensive systems are needed to 

test, predict, and make decisions about product quality.36

The modeling (regression) of one or several dependent 

Y-variables by means of a set of predictor responses 

(X-variables), is one of the most common applications of 

multivariate data analysis in science and technology. This is 

known as calibration and is one of the most important tasks 

in quantitative analysis.4,8,9 The principal aim is to under-

take regression analysis to develop a suitable mathematical 

model for descriptive or predictive purposes.12 Examples of 

mathematical models that help to deal with highly correlated 

data are PCR and PLS regression.4,8,9

Partial least squares regression
PLS regression is a recently developed generalization of 

multiple linear regression (MLR).4,8,9 PLS regression is of par-

ticular interest because, unlike MLR, it can analyse data with 

strongly collinear (correlated), noisy and redundant variables (X 

variables) and can also model several characteristics (Y values) 

at the same time.4,8,9 Note that the emphasis is on predicting the 

characteristics and not necessarily on trying to understand the 

underlying relationships between the variables. PLS is a data 

reduction technique in that it reduces the X-variables to a set 

of noncorrelated factors that describe the variation in the data. 

However, if the number of factors used in the regression model 

is too large (greater than the number of samples) the models 

that fi t the sampled data perfectly might fail to predict new 

data.4,8,9 This phenomenon is called overfi tting and is discussed 

further below; as the number of factors is increased with a PLS 

calibration it approaches the model of multiple linear regression, 

which is notoriously prone to overfi tting when there is a large 

amount of X data relative to Y data to be predicted.4,8,9

A variant of PLS regression is locally weighted regression 

(LWR).37–40 A potential problem with using the whole data 

matrix is that large sample matrix variations within the 

dataset can create problems in developing a global PLS 

calibration, capable of predicting all samples.37–40 This can 

be a particular problem with agricultural products such 

as grape samples that can show seasonal variations and 

variations due to environmental effects. For example it has 

been demonstrated that seasonal and varietal variations can 

place constraints on calibration performance in the analysis 

of grapes with PLS regression of near infrared (NIR) 

spectra. When attempting to produce a universal calibration 

spanning many seasons, growing regions and grape varieties, 

the performance of PLS regression in prediction of grape 

anthocyanin was limited by pronounced nonlinearity.37–40 

A potential method to minimize this matrix-related error 

is the use of “locally weighted” a regression algorithm that 

develops a PLS calibration from samples that best match 

the sample to be predicted. A particular software variant of 

LWR is the LOCAL algorithm, that uses a software driven 

selection process to match unknown samples with samples 

from a large calibration database, then uses a PLS calibration 

tailored to fi t the unknown sample. It has been shown that 
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LOCAL improves calibration performance over standard 

PLS, allowing universal application of calibrations for grape 

analytes across the wine industry, regardless of growing 

region, grape variety, and growing season.37–40

Table 2 summarizes some applications of PLS as a 

regression method to predict several compounds in grape, 

juice, and wine samples.

Artifi cial neural networks
Application of artifi cial neural networks (ANN) is a more 

recent technique for data and knowledge processing, char-

acterized by its analogy with a biological neuron.10 When 

the fi ring frequency of a neuron is compared with that 

of a computer, then for a neuron this frequency is rather 

low.10,51 In the biological neuron the input signal from the 

dendrites travels through the axons to the synapse. There 

the information is transformed and sent across the synapse 

to the dendrites of the next neuron forming part of a highly 

complex network. The multivariate techniques based on 

ANN simulates the biological neuron by multiplication of 

the input signal (X) with the synaptic weight (W) to derive 

the output signal (Y).10,51 Unlike linear regression, PCR and 

PLS, ANN can deal with nonlinear relationships between 

variables. The performance of ANN is attributed to a high 

degree of interconnections. Like LOCAL regression, ANN 

can handle nonlinearity and outperforms standard PLS 

regression in that situation.34–36

Overfi tting and underfi tting
When using any of the data modeling techniques presented 

above, it is important to select an optimum number of 

variables or components.8 If too many are used, too much 

Table 2 Use of partial least squares regression combined with instrumental methods to measure chemical compounds in grape and 
wine samples

Reference Parameter Sample Instrumental 
method

SEP

40 Alcoholic degree (%, v/v) Red, rose and white wines VIS + NIR 0.24

Total acidity (meq L−1) 0.48

pH 0.07

Glycerol (g L−1) 0.72

Reducing sugars (g L−1) 0.33

41 Sodium (mg L−1) White wine VIS + NIR 9.22

Potassium (mg L−1) 79.0

Magnesium (mg L−1) 14.5

Calcium (mg L−1) 8.09

42 Sugar (Brix) White varieties NIR 0.31

Malic acid (g L−1) (must and wine) 1.02

Lactic acid (g L−1) 1.34

18 Methanol (g L−1) Grape spirit NIR 0.06

44 Alcohol (vol %) Several varieties 
and styles

MIR 0.02

Alcohol (g L−1) 1.96

Volatile acidity (g L−1) 0.008

pH 0.01

Total acid (g L−1) 0.06

Fructose (g L−1) 1.21

Glucose (g L−1) 0.49

43 Malvidin-3-glucoside (mg L−1) Several varieties 
and styles

Spectroscopy 0.02

Total anthocyanins (mg L−1) 1.96

45 Polysaccharides White wine MIR

Abbreviations:  VIS + NIR, visible plus near infrared spectroscopy; MIR, mid infrared spectroscopy; SEP, standard error of prediction.
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redundancy in the X-variables is modeled and the solution 

can become overfi tted; the model will be very dependent on 

the dataset and will give poor prediction results. On the other 

hand, using too few components will cause underfi tting and 

the model will not be large enough to capture the variability 

in the data. This “fi tting” effect is strongly dependent on the 

number of samples used to develop the model, and in general, 

more samples give rise to more accurate predictions.8

Conclusions
Multivariate data analytical methods both quantitative and 

qualitative are increasingly being used by research scientists 

in combination with traditional analytical tools. Multivariate 

data analysis techniques can be used to simplify methods and 

reduce analytical times for many compounds present in grapes 

and wine. Key factors contributing to the use of these methods 

in the grape and wine sector have been advances in instru-

ment reliability, readily available multivariate data analysis 

software, and improved computing power. Compared to 

traditional methods, multivariate analysis combined with 

modern instrumental techniques (eg, EN, high-performance 

liquid chromatography, NIR and MIR spectrophotometers) 

often give new and better insight into complex problems by 

measuring a greater number of chemical compounds at once, 

thus enabling the “fi ngerprinting” of each sample. These 

methods are attractive due to their inherent features of versa-

tility, fl exibility, effectiveness, and richness of information.
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