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Abstract: The pathophysiological link between type 2 diabetes mellitus (T2DM) and 

Alzheimer’s disease (AD) has been suggested in several reports. Few findings suggest that 

T2DM has strong link in the development process of AD, and the complete mechanism is yet 

to be revealed. Formation of amyloid plaques (APs) and neurofibrillary tangles (NFTs) are 

two central hallmarks in the AD. APs are the dense composites of β-amyloid protein (Aβ) 

which accumulates around the nerve cells. Moreover, NFTs are the twisted fibers containing 

hyperphosphorylated tau proteins present in certain residues of Aβ that build up inside the 

brain cells. Certain factors contribute to the aetiogenesis of AD by regulating insulin signaling 

pathway in the brain and accelerating the formation of neurotoxic Aβ and NFTs via various 

mechanisms, including GSK3β, JNK, CamKII, CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, 

PPP, and P70S6K. Progression to AD could be influenced by insulin signaling pathway that is 

affected due to T2DM. Interestingly, NFTs and APs lead to the impairment of several crucial 

cascades, such as synaptogenesis, neurotrophy, and apoptosis, which are regulated by insulin, 

cholesterol, and glucose metabolism. The investigation of the molecular cascades through 

insulin functions in brain contributes to probe and perceive progressions of diabetes to AD. 

This review elaborates the molecular insights that would help to further understand the potential 

mechanisms linking T2DM and AD.

Keywords: Alzheimer’s disease, type 2 diabetes mellitus, insulin deficiency, insulin signaling 

pathway, cholesterol

Introduction
Many reports suggest a strong pathophysiological links between type 2 diabetes 

mellitus (T2DM) and Alzheimer’s disease (AD). Prevalence of T2DM and its asso-

ciated complications leads to AD that increases with time in the aging population, 

with profound oxidative stress (OS) potentially relating the molecular mechanisms 

involved in T2DM–AD linkage.1,2 Insulin action in the brain stimulates the modulation 

of numerous molecular cascades, such as cholesterol metabolism, energy expenditure, 

glucose homeostasis, feeding behavior, synaptogenesis, neurotrophy, neurotransmitters, 

cognition, memory, inflammation, apoptosis, and reproduction.3 In addition, insulin 

regulates the metabolism of peripheral β-amyloid peptide (Aβ) and hyperphosphory-

lated tau protein. In AD, the extracellular accumulation of Aβ plaques, intracellular 

aggregation of hyperphosphorylated tau protein in neurofibrillary tangles (NFTs), and 

neuronal loss occur in the cortex and hippocampus.4,5 Hence, the disruption of insulin 
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functions in diabetic conditions, like hyperinsulinemia and 

hyperglycemia, interrupts insulin signaling involved in the 

clearance of Aβ plaques and NFTs pathology. This leads 

to the accelerated formation of neurotoxic Aβ and NFTs 

via various mechanisms, including GSK3β, JNK, CamKII, 

CDK5, CK1, MARK4, PLK2, Syk, DYRK1A, PPP, and 

P70S6K contributing to the aetiogenesis of AD.1,2,6 In this 

review, we discuss the roles of aberrant brain insulin sig-

naling in T2DM leading to AD and the mechanisms in the 

deposition of Aβ and NFTs and their therapeutic potential in 

restoring the brain pathways that might contribute to T2DM 

and AD treatment.

Insulin hormone linking type 2 diabetes 
and AD
The excessive insulin finds way into the brain and inter-

rupts the biochemistry.7–9 One of the possible mechanisms 

could be the modification of insulin signaling involved in 

a variety of neuronal functions of brain, such as abnormal 

protein O-GlcNAcylation, alteration of mitochondria, OS, 

glucose metabolism, and cholesterol, as well as amyloid 

plaques (APs) formation, changed Aβ metabolism, and 

tau hyperphosphorylation protein deposition.1,8,10 Reduced 

insulin plasma levels in T2DM can impair this signaling 

pathway forming two core neuropathological hallmarks 

of AD, ie, NFTs and Aβ plaque, which leads to impaired 

memory and cognitive dysfunction.11,12 The progression of 

diabetes to AD and their molecular cascades involved in the 

function of insulin are discussed below (Table 1).

Insulin and brain
Regulation of carbohydrate and fat metabolism is medi-

ated by insulin hormone via stimulating the absorption of 

glucose from the blood to fat tissue and skeletal muscles. 

Disturbance in insulin in the periphery system may cause 

diabetic mellitus (DM), but in the brain develop certain 

neurodegenerative states like mild cognitive impairment 

(MCI) and AD. However, brain itself can also synthesize 

some portion of insulin and crosses the blood–brain barrier 

(BBB) through a saturable transporter within the central 

nervous system (CNS) that affects feeding and cognition 

through CNS mechanisms that are independent of glucose 

utilization.3,8,13,14 Studies on the mechanisms of insulin pro-

duction and secretion in the CNS show similarities between 

beta cells and neurons, remarkably in the context of ATP-

sensitive K+ (KATP) channel depolarization.15,16 Increased 

number of insulin receptors (IRs) during cell differentiation 

in the brain recommends important role of IR signaling 

in neuronal proliferation during development, maturation, 

regeneration of axons, and neurite outgrowth in developing 

neurons projections as they grow (Figure 1).8,17,18

Cholesterol metabolism
Cholesterol which is metabolized in the brain plays a crucial 

role in cell membrane, independent from peripheral tissues 

featuring BBB, where it plays important membrane func-

tion, acts as an antioxidant, and serves as the raw material 

to produce steroidal progesterone which modulates neuroen-

docrine functions that alter physiology and behavior in the 

CNS. Interestingly, in adipose tissue breakdown of fat is 

inhibited by insulin which is responsible for the intracellular 

lipase inhibition that demands triglycerides to hydrolyze 

and release fatty acids. Moreover, insulin stimulates entry 

of glucose into adipocytes to synthesize glycerol within the 

cells, thereby enhancing the rate of glucose translocation 

across the cell membrane, muscles, and in adipose tissue. 

Then, apolipoprotein E (ApoE)-cholesterol particle is pro-

cessed to free the cholesterol in the lysosomes and is then 

transported to the membrane. ApoE isoform ε4 is the most 

common risk factor for AD that correlates with escalation of 

Aβ clearance and accumulation in the brain during AD.19–22 

Thus, insulin alteration in diabetes can interrupt brain choles-

terol metabolism leading to metabolic dysfunction, thereby 

causing neurological disorders (Figure 2).23

Glucose uptake
Uptake of glucose, the main fuel in body, varies among the 

tissues depending on the tissue metabolic needs and glucose 

availability. The glucose transporter (GLUT) protein iso-

forms are involved in facilitating the translocation of glucose 

in which the prominent isoforms are GLUT1-4. Glucose 

uptake is stimulated by the movement of GLUT4 transporters 

from the intracellular membrane into the plasma membrane 

which demands GLUT4-containing vesicles to facilitate the 

process.24 In the kidney, glucose uptake is accomplished by 

the secondary active transport mechanism through GLUT2 

transporter, linked to Na+/K+ pump reliant on the sodium 

gradient generated by NaKATPase. Malfunctioning of 

GLUT4 protein in the hippocampus affects the biochemical 

reactions and cognitive flexibility offered by hippocampal 

neurons, thus developing depression and lowering the cogni-

tive function which in turn increases the risk of Alzheimer 

development (Figure 3).25–27

GLUT function can be regulated by insulin-like growth 

factor (IGF) family. IGF is very close to the natural human 

growth hormone and consists of three ligands (insulin, IGF-1, 

and IGF-2), six IRs (IRα [fetal], IRβ [adult], IGF-1 receptor 

[IGF-1R], IGF-2R, hybrid IGF-1R/IRα, hybrid IGF-1R/IRβ), 
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Table 1 Effect of insulin on brain: decrease of insulin via various pathways could lead to the effects on the brain which in turn contributes 
to Alzheimer’s disease

Region Effect of insulin Progress of insulin action Ref

Peripheral 
tissues, 
hippocampus

Regulation of glucose homeostasis 
through relationship between 
brain insulin receptors and 
neurotransmitters

1.	Induced neuronal norepinephrine inhibition and serotonin reuptake 
stimulation

2.	Increased food intake in the insulin resistance to facilitate peripheral 
elevation of free fatty acids and release of proinflammatory cytokines

3.	Reduced O-GlcNAcylation of tau in brain hypometabolism and 
increased tau phosphorylation and NFTs formation in AD

4.	Impaired mitochondrial function and thiamine-dependent processes in 
the cerebral glucose hypometabolism of AD

5.	Diminished insulin efficiency to block the glucose formation
6.	Induced opening of ATP-sensitive K+ channels leading to cell 

hyperpolarization

8, 191–193

Hypothalamus Production of liver glucose stimulus 
of the acute nucleus

1.	Stimulus transmission to the vagal motor nucleus nerve to produce 
appropriate response in the liver

2.	Decreased insulin inhibitory effect on the glucose hepatic production

194–198

Neurons and 
glial cells

Induction of forebrain neuron growth 
and differentiation and NGF to 
stimulate neuritis formation

Associated to the cerebral insulin actions, including cell growth

Hippocampus 
(CA1)

Induction of PSD-95 expression, a 
dendritic scaffolding protein

Activated PI3K/mTOR pathway 199

Hippocampus 
(CA1)

Synaptogenesis, synaptic function 
modulation, and regulation of dendritic 
spine formation and excitatory synapse 
development

1.	Upregulated Tau protein
2.	Stabilized tubulin mRNA and increased protein levels

200, 201

Human CNS 
and NSC

Proliferation and differentiation of 
multipotent neural stem cells and 
prevention of apoptosis, Aβ toxicity, 
oxidative stress, and ischemia

1.	Prevented apoptosis through PI3K pathway, but via MAPK pathway
2.	Protected cells against Aβ-induced cell apoptosis

202, 203

Extrasynaptic 
space

Induction of GABA and glutamate 
accumulation

1.	Elevated neuronal antioxidants such as uric acid, glutathione, and 
vitamins C and E

2.	Altered glucose metabolism and decreased lactic acidosis

204, 205

Hippocampus Anti-ischemic effect Stimulated Na+/K+ ATP pump to reduce extracellular K+ and intracellular 
Na+ to change neuronal firing rate and its metabolic demands

Rat 
hippocampus

Anti-ischemic effect 1.	Induced Akt and JNK1/2 cross-talk
2.	Reversed induction of JNK1/2 phosphorylation, Bcl-2 expression, and 

caspase-3 cleavage

8

Hypothalamus Alteration of intracellular ion 
concentrations

1.	Stimulated Na+/K+ ATP pump
2.	Increased intracellular Ca2+ concentration triggering neuropeptide release

70

Hypothalamus Modulation and stimulation of 
aminoacid uptakes, neurotransmitter 
receptor density and synthesis

1.	Reduced the increase of striatal dopamine receptor numbers and CSF 
serotonin levels

2.	Downregulated α2-adrenergic receptors in the hypothalamic neurons

206, 207

Hypothalamus 
synapses

Modulation of glutamatergic 
neurotransmission at the synapses and 
induction of LTD process by reduction 
of AMPA receptor levels in the 
postsynaptic membrane

1.	Phosphorylation of the hormone receptor, PI3-kinase activation
2.	Induced GluR2 subunit phosphorylation in the AMPA receptors to 

produce endocytosis and decrease of postsynaptic excitatory ability

208, 209

CNS Induction of GABA receptor effects on 
learn and memory processes

1.	Stimulated GABA receptor translocation to plasma membrane
2.	Abolished by PI3K inhibitor
3.	Increased expression of functional GABA receptors on the 

postsynaptic and dendritic membranes of CNS

210–212

CSF Induction of tyrosine, tryptophan 
azidothymidine, and leptin 
transportation from blood to the brain

Induced P-gp expression involved in the BBB integrity and protects brain 
against numerous exogenous toxins

213

Brain 
microvessels

Induction of neurochemical 
modifications in the brain microvessels

1.	Inhibited alkaline phosphatase activity
2.	Increased expression and activity of glutamate–cysteine ligase catalytic 

subunit by inducing antioxidant response element-4

8, 214, 215

Choroid 
plexus

Inhibition of serotonin receptor 
5-HT2C receptor activity

Modulated GPCR by tyrosine kinase receptor–MAP kinase pathway

Abbreviations: Aβ, β-amyloid protein; AD, Alzheimer’s disease; BBB, blood–brain barrier; CNS, central nervous system; CSF, cerebro spinal fluid; GABA, gamma-amino 
butyric acid; LTD, long term depression; MAPK, mitogen-activated protein kinases; mTOR, mammalian target of rapamycin; NGF, nerve growth factor; NSC, neural stem 
cells; PI3K, phosphoinositide-3-kinase.
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Figure 1 Regulation of carbohydrate and fat metabolism, mediated by insulin hormone in the brain, on central and peripheral functions.
Notes: Regulation of carbohydrate and fat metabolism is mediated by insulin through increasing the transport of glucose from the blood to fat tissue and skeletal muscles. 
Disturbance in the insulin levels in the periphery system leads to diabetes, but in the brain develops certain neurodegenerative states such as AD.
Abbreviations: AD, Alzheimer disease; ARC, arcuate nucleus.

and up to seven IGF-binding proteins (IGFBP1-7).28,29 IGF-1 

and insulin can control the neuronal excitability, metabo-

lism, and survival through insulin/IGF-1 signaling pathway. 

Abnormality and disruption in the activity of these pathways 

trigger the continuous dwindle of neurons in AD brain.30,31 

Few evidences on the brain of AD patients showed deficit 

ratio of insulin and resistance in IGF-1, suggesting that 

AD might be a brain-type diabetes or diabetes type 3.32,33 

Altered neuronal IGF-1 function seems to be an impor-

tant aspect of the overall synaptic and neuronal pathology 

induced by Aβ protein precursor (AβPP)-Aβ clearance 

in the apoE4 carriers. Hence, both hyperinsulinemia and 

hyperglycemia can increase the neuritic plaque formation 

and progress in AD.30,34

Energy expenditure
The amount of energy which is consumed for the perfor-

mance of physical activities, such as inhalation and exha-

lation, blood circulation, breakdown of food particles, or 

physical movement, is known as energy expenditure. This 

energy is obtained by the electrochemical gradient generated 

by the electron transport chain (ETC) which drives ATP 

synthesis via ATP synthase. The ATP production capacity 

and/or efficiency is performed via mitochondrial dynamics 

in beta cells.35,36

Leptin as an adipocytokine which is produced in the 

peripheral system as well as in the brain possesses key role 

in phenomena such as food intake, obesity, glucose homeo-

stasis, and energy expenditure. It is proved that both leptin 

expression levels and signaling pathways could be con-

nected to the pathophysiology of many neurodegenerative 

diseases, such as AD. It is illuminated that leptin receptors 

are highly expressed in the hippocampus involved with 

learning and memory, and are found critically affected in 

AD patients. In vivo and in vitro studies suggest that leptin 

supplementation could decrease both Aβ production and tau 

phosphorylation which contribute to the development process 

and pathogenesis of AD.37 Insulin secretion occurs in blood 

stream based on the availability of free fatty acid, amino 

acid, and beta cell measures glucose through mitochondrial 
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Figure 2 Crucial role of cholesterol in membrane.
Notes: Cholesterol is imported through receptor-mediated endocytosis of lipoproteins and through lysosomes and transported to the cell membrane. Thus, it causes the 
interruption on brain cholesterol metabolism, thereby leading to neurological disorders.
Abbreviation: PI3K, phosphoinositide-3-kinase.
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Figure 3 Glucose uptake eventually occurs through translocation of GLUT4 to plasma membrane.
Notes: Any damage in the underlying mechanism of GLUT4 protein action in the hippocampus affects the chemical reactions and cognitive flexibility provided by hippocampal 
neurons; this condition develops depression and lowers the cognitive function, consequently increasing the risk of Alzheimer development. Reproduced from Hajiaghaalipour F, 
Khalilpourfarshbafi M, Arya A. Modulation of glucose transporter protein by dietary flavonoids in type 2 diabetes mellitus. Int J Biol Sci. 2015;11(5):508–524.240
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respiration and nutrient oxidation accordingly. The main 

stimulator of insulin secretion signal is elevation of cytosolic 

ATP/ADP ratio or high glucose oxidation, mitochondrial 

ATP synthesis, and low ATP demand in the beta cells.38,39 

Permanent excess nutrient or continuous exposure to fat in 

T2DM damages mitochondria or decreases its function in the 

beta cell through reduced antioxidant activity and sustained 

overproduction of reactive oxygen species (ROS), indepen-

dent of changes in mitochondrial ATP synthesis.40 Besides, 

NF-kβ, TNF-α, and IL-6 as acute inflammatory cytokines 

lead to negative energy balance and promote energy expen-

diture and increase ROS.41,42

It is shown that abnormal production of AT-derived 

proteins contributes to the pathogenesis of insulin resistance 

and metabolic syndrome such as T2DM.9,43 The inflammatory 

cytokines elevation, energy expenditure, and insulin defi-

ciency result in high glucose expenditure and accumulation 

of β-amyloid peptide as a hallmark of AD.8,9,28

Role of leptin in glucose homeostasis
A balance between the insulin and glucagon maintains blood 

glucose levels or glucose homeostasis. Insulin exerts its 

pleiotropic effects through binding to the insulin receptor 

substrate (IRS) proteins which mediate regulation of glucose 

transport, protein metabolism, and control of cell growth 

and survival. IRS proteins connect insulin receptor activa-

tion to essential downstream kinase cascades, such as the 

phosphoinositide-3-kinase (PI3K) or mitogen-activated 

protein kinases (MAPK) pathways. Decreased IRS-1 contrib-

utes to reduction of glucokinase and increases blood glucose 

levels in diabetes.44–46

As we know, hypothalamus regulates leptin signaling 

that has a role in food intake and energy homeostasis in 

mammals which results in the downregulation of orexio-

genic peptides, such as neuropeptide Y (NPY) and agouti-

related peptide (AgRP), and in reverse, it can increase the 

expression of anorexiogenic peptides, such as α-MSH, 

which promotes energy expenditure in either adipose or 

skeletal muscle tissue. It is indicated that leptin-mediated 

ObRb receptors are expressed in vast density in the arcu-

ate nucleus (ARC), dorsomedial nucleus (DMH), and the 

ventromedial nucleus (VMH) of the hypothalamus. In the 

ARC, obRb is rarely expressed in two different neuronal 

cell types of the hippocampus (CA1 and CA3 regions) and 

the dentate gyrus,47 which express both NPY and AgRP, and 

proopiomelanocortin (POMC) is mainly expressed.48,49 Also, 

leptin increases synaptogenesis and aids in memory forma-

tion in the hippocampus and is pretended to be a cognitive 

promoter.50 Similarly, it was shown to elevate neurogenesis 

in the dentate gyrus in rodents.51 Leptin also plays a vital 

role in hippocampal neuronal survival via activating the 

PI3K/Akt/mammalian target of rapamycin (mTOR), as 

well as the AMP-activated protein kinase (AMPK)/SIRT1, 

JAK2/STAT3, ERK pathway signal transduction pathways 

through binding to its long-form receptor obRb.52 Leptin 

upregulates the expression of some potent endogenous anti-

oxidant enzymes involved in apoptosis, such as manganese 

superoxide dismutase and the anti-apoptotic protein Bcl-xL 

in the hippocampus.52

Leptin can modulate Aβ production and metabolism. 

Interestingly, chronic peripheral leptin administration in 

Tg2576 mice reduced tau phosphorylation explicitly at 

residues Ser202, Ser396, and Ser404 in retinoic acid. Such 

reduction is suggested to be mediated via AMPK, Akt, and 

p38 pathways.53,54 All these evidences could illuminate the 

role of leptin in T2DM and highlight AD linkage. Moreover, 

epidemiological studies have also found depleted leptin 

levels in the pathogenesis of AD. In a study by Narita et al, 

it was found that higher leptin levels positively correlate with 

higher hippocampal volumes.55 It should be noted that all the 

leptin-induced signaling pathways link to phosphorylation 

of glycogen synthase GSK3β and decrease in hyperphos-

phorylation of tau.56 It is interesting that the low circulating 

leptin levels, in turn, could potentially contribute to cognitive 

decline and worsen the pathology, leading to a downward 

spiral of further weight loss and progression of AD.57 The 

presence of amyloid plaques, NFTs, and neurodegenera-

tion in the hypothalamus of human AD brains suggest that 

Aβ-mediated suppression of leptin-responsive cells in the 

hypothalamus is extremely possible.58,59 Hence, leptin may 

possess a bidirectional role in the dysfunction of leptin sig-

naling that exacerbates AD pathology.

In addition, insulin activates PKB (or Akt) which is a 

serine/threonine kinase, composed of various members, 

including PKBα (Akt1) and PKBβ (Akt2). Only PKBα 

drives islet and β-cell proliferation. Interestingly, PKBα-

deficient mice also revealed normal insulin-stimulated 

disposal of blood glucose.60,61

TNF-α is a key cytokine that influences intermediary 

glucose metabolism which compromises IR/IRS-1 signaling 

independently of transcriptional regulation. This effect 

is mediated by minimum of seven serine kinases, which 

include c-JUN-NH
2
-terminal kinase (JNK), Akt/PKB, and 

IKK. Tyrosine phosphorylation of IRS-1 and IRS-2 serine 

at 307 residues is an essential factor to actively downstream 

effector pathways impairment in the insulin homeostasis. 
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Insulin homeostasis impairment affects glucoregulatory 

mechanisms characterized by altered glucose tolerance and 

causes insulin resistance leading to escalation of Aβ peptide, 

APP, NFTs neurotoxicity, and tau phosphorylation associ-

ated with AD.8,61,62

Feeding behavior
Controlling the body mass by maintaining food consumption 

underlies a twisted flow. Excess of food intake contributes to 

the onset and progression of the metabolic syndrome. Some 

hormones such as insulin, glucagon-like peptide 1 (GLP-1), 

and leptin are involved in the regulation of food uptake and 

energy consumption.63–66 Insulin with leptin exerts their acute 

effect by altering cells’ function and nutritional behavior via 

PI3K pathway. PI3K increases α-MSH release and decreases 

NPY release which induces depolarization of AgRP neurons 

and increases food intake. GLP-1 also regulates glucose 

homeostasis and reduces food intake. Food intake and 

the anorexic brain-gut peptide GLP-1 activate amygdala 

dopamine signaling through D2 receptor which is necessary 

and sufficient to alter the feeding behavior.67–69

Hypothalamic AMPK regulates food intake as well as 

body weight through altering the expression of NPY, AgRP, 

POMC, and CART in the ARC nucleus. Unlike feeding, 

fasting increases hypothalamic AMPK activity. In the hypo-

thalamus, minimum of two mechanisms exert impact on the 

anorexigenic effects on AMPK inhibition which results in 

the activation of acetyl-CoA carboxylase (ACC) and mam-

malian target of rapamycin (mTOR), and the phosphorylation 

of p70S6 kinase (p70S6K).68–71 In T2DM, increased mTOR 

and p70S6 kinase expressions elevate production of leptin 

which has direct effects on food intake. Feeding behavior 

dysfunction in T2DM modulates brain functionality leading 

to neurodegeneration process such as AD through overpro-

duction of APP, Aβ 1–42, and thereby accumulations of Aβ, 

and also contributes to NFTs production.2,72

Synaptogenesis feeding behavior
Synaptogenesis is a multi-step process of synapse for-

mation which is promoted by IGF-1 and IGF-2 through 

several pathways during all the major phases of neurode-

velopment. The activation of protein kinase C (PKC) also 

regulates synaptogenesis through phosphorylation, binding 

to signaling lipids, and translocation from the cytosol to the 

membrane.17,29,73–75 Phosphorylation of PKC at the first step 

is essential for its activation and formation of its catalytically 

active competent conformation. PI3K activation by insulin 

also induces synaptogenesis and controls the expression of 

synaptic markers in addition to their accumulation in the 

nerve cells. PI3K, accompanied with the existing elements 

of the InR signaling pathway, controls cellular magnitude, 

growth and multiplication, and creation of synapses in 

between the neurons. PI3K and B/Akt protein kinase regulate 

the development of synapses as well as their preservation. 

PI3K acts via its binding to synapsin, actin filaments, and 

high phosphoinositide levels that are linked to the cAMP 

pathway and cAMP response.60,76 The sites of expression of 

IRSp53 in the synapses are located on the granular layer of 

the cerebellum and hippocampal neurons, which suggests 

that these molecules are components of insulin-dependent 

signaling pathway at the postsynaptic apparatus. IRSp53 is 

a key factor in cytoskeleton which is phosphorylated upon 

stimulation with insulin and involved in neurite outgrowth 

and neurodegenerative disorders.8,77 Insulin stimulates 

translation, but not the transcription, of postsynaptic den-

sity PSD-95 in the hippocampal CA1 neurons, through 

the PI3K–Akt–mTOR pathway, an important intracellular 

signaling pathway in regulating the cell cycle.74,78 There is 

a linkage between the phosphorylation of IGF1-induced 

Akt and release as well as the translocation of GLUT4 from 

intracellular pools to nerve process membranes in the normal 

developing brain. High glutamate levels phosphorylate the 

Ser (307) residue in the IRS-1 protein which develops less 

reactivity and induces IGF-I via activation of pathway associ-

ated with protein kinase A (PKA) and PKC. This action arises 

due to a reciprocal activity between IGF-1 and nerve growth 

factor (NGF) in the peripheral nerves, where the PI3K/Akt/

GSK3 pathway underlies the impact raised from the coop-

eration of both agents on axonal growth. Insulin signaling 

pathways activate PKC and its substrates, many of which are 

vital components of synaptogenesis, cognition and neuronal 

repair, differentiation, growth, and apoptosis.79

Insulin also activates MAPK pathway through tyrosine 

phosphorylation of certain prototypical signaling adaptors 

such as Shc/Grb2, SOS/Grb2, and Gab-1/Shp2. Diabetes 

declines the activity of PI3K/AKT/mTOR in the enteric 

neurons, which impairs retrograde NGF transport in the 

vagus nerve. Activation of PI3-phosphatase decreases 

cellular contents of lipid products by PI3K. Any defects in 

the intracellular PI3K translocation or phosphatase activa-

tion may modify Akt/PKB activity.74,78,80 Synaptogenesis 

and synaptic remodeling increase Aβ oligomers which can 

directly produce neuronal insulin resistance and directly bind 

to PKC and inactivates it. GSK-3β phosphorylates multiple 

sites of tau protein in the intact cells. Aberrant hyperphos-

phorylated tau protein is a critical feature in AD pathogenesis 
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that signifies a close molecular relationship between diabetes 

and AD.74,80,81

Neurotrophy
Neurotrophy or nerve damage is strongly regulated by insulin 

which is essential for neuronal development and survival via 

IGF-1 and ROS signaling pathways. IGF-1 pathway coor-

dinates growth, proliferation, differentiation, development, 

metabolism, and glucose homeostasis. The graft of IGF-1 and 

the related receptor trigger the phosphorylation of essential 

adaptor proteins together with Shc and IRSs, which leads to 

the activation of two prosurvival signaling pathways.75,82,83 

Phosphorylation of IRS-1 or IRS-2 stimulates PI3K–PDK1–

AKT signaling pathway, whereas phosphorylation of Shc 

induces RAS, RAF, and ERK/MAPK signaling pathway 

which leads to regulation of neurotrophy. Moreover, phos-

phorylation of threonine 308 via PDK1 or phosphorylation of 

serine 473 via mTORC2 results in the activity of AKT; this 

activation increases the life span of cells through abundant 

mechanisms, like deterrence of apoptosis and giving rise 

to prosurvival gene expression. Decreased levels of serum 

IGF-I in DM patients with sensory and autonomic neuropathy 

compared with nonneuropathic DM or nondiabetic controls 

and IGF-I and IGF-II lead to sympathetic neuroaxonal 

dystrophy. IGF-1 blocks amyloid toxicity by increasing 

survival signaling through PI3–AKT and ERK which accu-

mulate high levels of Aβ from overexpressing APP. The Aβ 

oligomers elevate pro-inflammatory cytokines in the brain 

that mimic the trophic factor/insulin resistance as observed 

in AD brain.18,30,71,75,84

Apoptosis
Several studies suggest the protective role of insulin against 

apoptosis through various signaling pathways that suppress the 

excessive accumulation of ROS within the cells.85 The insulin/

IGF/Akt is one of these pathways in promoting β-cell survival. 

However, ER stress–induced apoptosis is mediated at least in 

part by signaling through the phosphatidylinositol 3-kinase/Akt/

GSK3β pathway. Moreover, presence of advanced glycation 

end products (AGEs) and advanced lipoxidation end products 

(ALE) that merely resulted from a long-term accumulation of 

modified protein can be considered as a stress. Chronic hyper-

glycemia-induced OS such as nitric oxide (NO) plays a central 

role in the formation of AGEs in DM.86,87 G-protein-adenylyl 

cyclase signaling, diacylglycerol (DAG)/PKC pathway, 

and calcium movement play a vital role in diabetes-induced 

galactooligosaccharide (GOS). Normalization of mitochondrial 

superoxide production blocked AGEs overproduction, PKC 

activation, and increased glucose flux through the aldose 

reductase pathway and NF-κB activation.88,89

Impaired immune system in diabetes is almost affiliated 

with the reduction of antioxidant activity and antioxidant 

enzymes manifestation as well as eccentric performance 

or abnormal enzyme activities. Among the diversity of the 

existing antioxidant enzymes, SOD, GPx, and CAT reflect 

greater impact on the regulation of ROS formation and entire 

antioxidant content available in a certain tissue as well as 

in DM.90–92 NADPH oxidase and dysfunction of mitochon-

drial respiratory chain (MRC) are also a major source of 

ROS in diabetes. Thus, blocking the overexpression and 

activation of this enzyme and subsequent ROS production 

together with its ROS scavenging property reduce OS in 

diabetes. Mitochondrial-derived superoxide anion is com-

mon in complications with diabetes. Overexpression of 

manganese-dependent superoxide dismutase (Mn-SOD), 

which is the major scavenger of mitochondrial superoxide 

anion and mitochondrial DNA damage in T2DM, prevents 

high glucose-induced OS and cell apoptosis. OS-related 

pathways interconnect AD and T2DM. It is a well-known 

connection of Aβ protein and hyperphosphorylated tau with 

glucose metabolic intermediates and IRs. Insulin transporters 

cause this interconnection in the AD brain, Aβ accumulates 

in the plaques, and receptor for AGE mediates Aβ 1–42-

induced perturbations of APP and NFTs neurotoxicity 

(Figure 4).18,87,89,93

Neurotransmitters
Endogenous chemical messengers that enable transmission 

of signals from one neuron to the target neuron, muscle 

cell, or gland cell stimulating insulin and glucagon are 

demarcated as neurotransmitters. Glutamate is one of the 

most abundant neurotransmitters in the brain; an excess 

of glutamate overstimulates brain cells, which results in 

neurological inflammation and cell death. A high glutamate 

concentration triggers insulin release to lower glucose levels 

which in turn increases glutamate. Another neurotransmitter, 

gamma-amino butyric acid (GABA) in the CNS, prevents 

nerve transmission in the brain and has a calming nervous 

activity. Heavy secretion of insulin results in a protracted 

secretion of GABA, glutamate, aspartate, and taurine through 

the number of GABA
A
 receptors. Moreover, insulin therapy 

could be considered as an efficient therapy to bridle the toxic 

activity of neurotransmitters to preserve neurons. Therefore, 

there is a close linkage between GABAergic signaling system 

and various aspects of AD pathology, including tau hyper-

phosphorylation, Aβ toxicity, and apoE4 effect. Low levels 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Drug Design, Development and Therapy 2018:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

4007

Molecular links between type 2 diabetes and Alzheimer’s disease

Figure 4 The protective role of insulin against apoptosis through various signaling pathways to suppress the excessive accumulation of ROS within the cells results in early 
diabetic retinopathy.
Abbreviations: ROS, reactive oxygen species; AGE, advanced glycation end product; PEDF, pigment epithelium-derived factor.

α

of GABA and glutamate cause significant limitation in the 

activities of synapses and synaptic transmission of neurons in 

the temporal cortex of AD patients, and activation of GABA
A
 

receptors induces tau hyperphosphorylation.18,94–96

Promoting glycogen synthesis
Synthesis of glycogen from glucose in skeletal muscle 

is regulated via the activity of certain hormones such as 

insulin. Muscle and liver uptake the available glucose upon 

stimulation by insulin hormone and leads to the activation of 

glycogen synthase (GS) through dephosphorylation of three 

specific serine residues, collectively termed sites 3.97–99

GS kinase (GSK)-3 is principally responsible for phospho-

rylation of sites 3, whereas phosphatase (PP)-1, a glycogen-

bound form of protein, dephosphorylates these sites.100 

However, defeat in tracing the fall in quantity of cAMP 

localization in muscles is associated with a secondary glyco-

gen synthase kinase which is not influenced by cyclic nucle-

otides. Immediate effect of insulin is to redirect synthesized 

glucose-6-phosphate to glycogen without affecting the rate 

of gluconeogenesis which requires hepatic Akt2-dependent 

redirection of glucose-6-phosphate to glycogen independently 

of GSK3α and GSK3β phosphorylation. Downstream defects 

at the level of glycogen synthase kinase (GSK)-3 or impaired 

regulation of the GSK3 target site of GS (site 3a/b/c and 4) 

which leads to abnormal phosphorylation in activation of 

GS and dysregulation of CaMKII seems as a major cause 

of insulin resistance phenomenon. In AD brain, increased 

activities of Akt, PKA, and GSK3α, and β and Aβ-induced 

GSK3β phosphorylation increase tau phosphorylation which 

leads to mitochondrial dysfunction.99–102

Cognition and memory
Controlling the transmission of ions through neuroreceptors 

located on the membrane is activated by neurotransmitters 

and synaptic transmission which influence the cognitive 

function in the presence of insulin.77 Suppression of Wnt or 

PI3-kinase signaling ruin the synaptic connections between 

neurons which is known as long-term potentiation (LTP) and 

results in the less synaptic strength which affects the process 

of learning and memory function. GSK3β at high expression 

level suppresses LTP impact, thus providing lesser spatial 

learning.103,104 GSK3 also phosphorylates and inhibits cAMP-

responsive element-binding protein, a universal modulator 
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of memory.105 Moreover, GSK3 promotes actin and tubulin 

assembly, processes required for synaptic reorganization 

during memory formation. PI3K/Akt/GSK-3β is another 

pathway to impair the ability of insulin in activation of 

glucose disposal and glycogen synthase in T2DM. Overex-

pression of GSK3 induces a series of pathological changes, 

most of which are hallmarks of AD and T2DM incurring 

severe pathology, such as cognitive decline. Adiponectin 

is an important target for AD by induction of Aβ and Tau 

phosphorylation in hippocampus and extrahypothalamic 

region. GSK3β together with GSK3α causes AD by induc-

ing tau hyperphosphorylation to form NFTs through PI3K/

Akt/GSK-3β signaling pathway.103,106–108

Inflammation
Insulin suppresses the pro-inflammatory proteins such as 

JNK, IKKβ/NF-κB, AP1, CAM1, PSD95, and MCP1 which 

downregulate the inflammatory response. Inflammation 

together with insulin resistance is increased by expression 

of several pro-inflammatory cytokines such as interleukin 

(IL)-1, IL-6, and tumor necrosis factor (TNF)-α. In contrast, 

IKKβ acts selectively against the physiological substrates 

and the IκB protein inhibitors of NF-κB. Phosphorylation 

by IKKβ targets IκBα to degrade proteasome that liberates 

NF-κB for translocation from cytoplasm into nucleus to pro-

mote expression of numerous target genes and consequently 

induce insulin resistance.42,62,109–111

PI3K–Akt–mTOR signaling pathway facilitates the syn-

thesis of PSD-95 protein via insulin induction in Dendron’s 

and hippocampal area. PSD-95, a 95-kDa scaffolding 

protein of PSD, is degraded by IL-1β. T2DM enhances pro-

inflammatory factors in the brain cells such as microglia and 

astrocytes that contribute and provoke AD. Inflammatory 

agents like toxicants and pollutants when accumulated in 

higher proportion lead to cellular stress, amyloid precursor 

protein (APP), and rise in genesis state, thereby stimulating 

amyloid-β–42 (Aβ–42) peptide production.78,112

Role of insulin resistance and tau protein 
in AD
Insulin resistance, impaired glucose tolerance, and forma-

tion of insoluble protein aggregates, as well as the loss of 

neurons and synapses, extend risk factors in the develop-

ment process of AD, but evidence for this assertion is not 

consistent. Impaired insulin signaling certainly does not 

preclude evidence from having a deficit effects on cognition 

independent of its role in AD pathology, such as diminished 

learning, memory, problem solving, and mental flexibility. 

Mechanisms of T2DM progression to AD by insulin are 

classified into two main categories: NFTs and Aβ formation. 

Various experimental paradigms suggest that Aβ and tau have 

been found to exert synergistic modes of toxicity, while the 

effect of insulin on the brain is complex and not confined to 

Aβ production (Figure 5).2,9,18,113,114 Tau protein plays a wider 

role in cellular shape, motility, and signal transduction in 

AD. The C-terminal of this protein is probably responsible 

for tubulin-binding and the acidic N-terminal region interacts 

with other cytoskeletal elements. The proline-rich middle 

region contains the target sites of many kinases. Moreover, 

R1–R4 are four repeat domains called microtubule-binding 

domains (MBDs) and each of them repeats and conserves 

consensus motif KXGS, which can be phosphorylated at 

serine.115,116

Insulin can modulate phosphorylation of tau protein 

which are MBD molecules involved in microtubule assembly 

and stabilization. Dysfunction of insulin can cause tau hyper-

phosphorylation through two different mechanisms at 

specific amino acids including Ser and Thr: glucose/energy 

metabolism and temperature independent.117,118 Out of 85 

phosphorylatable residues in tau protein, 28 sites are exclu-

sively phosphorylated in AD brains (Table 2). Reduced 

insulin plasma levels in T2DM can impair this signaling 

pathway resulting in tau hyperphosphorylation and disinte-

gration of microtubules and thereby formation of NFTs.115 

Most promising candidate kinases for tau phosphorylation 

which are responsible to provoke AD and T2DM are listed 

in Table 2. The details and the functions of each kinase are 

as follows:

GSK3β
It was shown that H

2
O

2
 increases GSK-3β activity in human 

embryonic kidney 293/Tau cells which leads to tau hyper-

phosphorylation at Ser396, Ser404, and Thr231. GSK3β is 

involved in the formation of both Aβ deposits and NFTs, 

two pathological features of AD. The Aβ promotes GSK-3β 

activity in the neuronal cells which is at Thr231 residue, 

but it enhances phosphorylation at the S9, S68, T69, T71, 

T175, and Ser396/404 sites which decreases tau–microtubule 

interactions and the pathologic fibril formation, thereby 

reducing tau binding to microtubules.119–122

c-JUN-NH2-terminal kinase
The JNK is a subfamily of the MAPK that binds and phospho-

rylate c-Jun on Ser-63 and Ser-73 within its transcriptional 

activation domain. The β2-adrenergic receptor (β2AR)–

PKA–JNK pathway phosphorylates tau protein at Ser-214, 
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Figure 5 Glucose tolerance and DM are the syndromes in the elderly and there is evidence in supporting a link between insulin dysfunction and AD.
Abbreviations: AD, Alzheimer disease; DM, diabetic mellitus; ROS, reactive oxygen species.

•
•
•
•
• β

β

α

Ser-262, Thr231, and Thr-181, which are utilized by Aβ 

signals in the primary neurons of prefrontal cortex (PFC) in 

mouse brain.123 Knocked-out β2AR mice showed an extreme 

decrease of phosphorylation of presenilin 1 (PS1) and APP 

associated to the Aβ-induced tau pathology in AD. Aβ also 

induces the clusterin/p53/Dkk1/wnt–PCP–JNK pathway, 

which drives the upregulation of several genes that mediate 

development of AD-like neuropathologies; these studies are 

in agreement with the animal experiments.124

JNK plays a critical role in regulation of insulin signaling, 

inflammatory response, apoptosis, and caspase-3 activity in 

diabetes and increases the expression of IL-6, IL-8, monocyte 

chemotactic protein-1, and tumor necrosis factor-α 35 in 

AD pathology.8,125,126

CamKII
Calcium-/calmodulin-dependent protein kinase type II is one 

of the abundant Ca2+-regulated protein kinases in the brain; 

these kinases are expressed primarily in neurons. CaMKII 

is regulated by Ca2+-/CaM-induced autophosphorylation at 

multiple sites such as Thr 286/287.127 The tau phosphoryla-

tion is upregulated at Ser214, Ser262, Ser131, Thr212, and 

Thr135 by CaMKII kinase in frontal cortex and hippocampus, 

and is found in PHF-tau of AD brains and T2DM which 

leads to the inactivation of protein phosphatases (PP).118,128 

Obviation of synapses results in depleting the memory 

function in preliminary stage of AD which is expected to be 

induced via Aβ oligomers by CaMKII. O-GlcNAc modifica-

tion by CaMKII at Ser 279 activates CaMKII autonomously, 

creating molecular memory even after Ca2+ concentration 

declines in T2DM.129 Furthermore, it was shown that the 

activation of CaMKII directly inhibits AGEs formation 

significantly and reverses D-ribose-induced tau hyperphos-

phorylation which links T2DM to AD.115,128

CDK5
Cdk5 belongs to the Cdk family which is expressed in the 

CNS and other tissues. It regulates several cell processes 

such as neuronal migration, actin, and microtubule dynam-

ics. Cdk5 acts through PP1 and regulates several proteins 

such as inhibitor-1 (I-1) and I-2. P25 is a neurotoxic activa-

tor of cdk5 which triggers tau phosphorylation and NFTs 

formation in AD pathophysiology.130 Moreover, p35 is a 

neuronal-specific protein that is nonhomologous to cyclins, 

and is responsible for the identification and activation of 

Cdk5 in association with Cdk5R1 or Cdk5R2. Interest-

ingly, the study on gene-targeted therapy opens up the clue 

with potential role of p35/Cdk5 kinase in the migration 

process of neurons as well as in the development stage 

of mammalian cortex.131 Expression of Cdk5 and its co-

activator p35 is upregulated in the presence of high glucose 

concentration and strong bounding with Cdk5 kinase is 
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Table 2 Progression of diabetes to AD, the molecular cascade involving the function of insulin in the brain: the enzymes which are 
activated in diabetes type 2 could phosphorylate the specific Tau residues leading to ADs

Kinase Residue(s) Alzheimer’s linked phosphorylation Ref

GSK3β S68, T69, T71, 
T175, S235

Leads to Thr231 phosphorylation and consequent pathologic fibril formation, inhibits 
the ability of tau to stabilize microtubules and cell death

119–122

GSK3β, Dyrk1a, JNK, 
MAKR, p38 (MAPK)

T181, S63, S73 Leads to early events in NFT formation and deregulating tau–microtubule interactions 
and indicative of the presence of pretangle tau

121, 216

PLK2 S129 •	 Inhibits the α-syn-induced tau mass to form intracellular neurofibrillary tangle-like 
aggregates

•	 Upon investigation of phosphorylation spots, it was found that numerous factors 
including glycogen synthase kinase 3 beta or MAP/microtubule affinity-regulating 
kinase 2 may be associated with this effect

153, 217, 218

Syk/Fyn Y18 •	 Leads to congregation of microtubules and their solidity along with its involvement in 
the formation and preservation of neuronal polarity

•	 Hypophosphorylation of Y 18 has the role in neurodegeneration
•	 The reciprocal action between direct Syk and α-syn was proven by a dual-hybrid 

system approach and confocal microscopy
•	 To be involved in neurons cell-signaling pathway

154, 219

GSK-3 S191 •	 Leads to abolishing the microtubule-stabilizing effect which is observed in 
tau-transfected cells

•	 In immature neurons, S191 phosphorylation may favor the microtubule dynamics 
which is probably required for neurite growth

•	 The aberrant hyperphosphorylation of tau in AD may shift the balance toward 
excessive microtubule

•	 Leads to defective axonal transport of organelles and impaired retrograde axonal 
transport of neurotrophic factors as well as to alterations in neurite morphology

220–222

Syk/TTK1 Y197

Cdk5, PKA, GSK-3, 
Dyrk1a, JNK, MARK, 
p38, CK1

T175, T181, 
S184, S195, S198, 
S199, S202, S235, 
S356, S396, S400, 
S404

•	 Prevent pathologic tau fibril formation and develop pathologic tau fibrils, and thus 
indicating a potential therapeutic avenue for amyotrophic lateral sclerosis with 
cognitive impairment

•	 Leads to physiological role of microtubule dynamics regulator, whereas another 
set (overlapping or not with the previous one) leads to aggregation into PHFs, 
degradation, and/or toxic function

•	 Leads to detachment of tau from microtubules
•	 Leads to the formation of a linkage between p-p70S6K (T421/S424) and S262 or 

S396/404, by facilitating site-specific phosphorylation on regulatory (T389) and 
catalytic (T229) domains

•	 A raise in the function of 70S6K might be possible, which in turn may phosphorylate 
tau at T212, S214, and S262 sites

•	 Leads to attachment with some proteins such as PP-1, actin, PP-2A, phospholipase C, 
α-synuclein, and glycogen synthase kinase-3β which is related to AD

121, 122, 161, 
190, 223, 224

Cdk5, CK1, PKA, 
GSK-3, PKB/Akt

S214 •	 Leads to suppress tau-dependent microtubule polymerization and inhibit axonal 
elongation in neurons

•	 Leads to reduce its ability to bind to microtubules
•	 To have some effects on microtubule association on tubulin, the tau-interacting site 

is located at the carboxyl terminal end, which is highly acidic and detaches from 
microtubules

•	 Leads to reductions of the tau–microtubule interaction in vitro
•	 Leads to suppress microtubule assembly, and may be a key factor in the observed 

detachment of tau from microtubules during mitosis

223, 225, 226

GSK3β, Cdk5 S202, T205 •	 Leads to microtubule dynamics regulatory
•	 Leads to detachment of tau from microtubule

227–229

Cdk5, PKA, CK1, 
GSK-3, PKB/Akt

T212, T214, 
T262

•	 Level of (70-kDa p70 S6 kinase) p-p70S6K (T421/S424) is only significantly correlated 
with p-tau at T212, S262, and S214, but not at T212/S214, in AD brains. These 
suggested that p70S6K might contribute to tau-related pathologies in AD brains

•	 Leads to compromise its binding ability to microtubules
•	 Phosphorylation of protein tau at the S262 site perhaps leads to the suppression of 

microtubule clustering and their stabilization. However, T212 site did not express 
a significant potency to assemble microtubules; prephosphorylation at this site has 
been shown to enhance S214 phosphorylation

119, 121, 123, 
154, 216, 228, 
230

(Continued)
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maintained. In contrast, transforming growth factor beta 

receptor I (Tgfbr1) inhibitors downregulate the expression 

of Cdk5 and p35 kinase activity. Similarly, early growth 

response protein 1 (Egr-1) has a capacity to highly express 

in the presence of glucose by mediating TGF-β1-ERK1/2 

pathway and its inhibition by siRNA downregulates p35 

and Cdk5 scenario.132 Moreover, protein–protein interac-

tions regulate the activity of Cdk5 with the intervention 

of regulatory and target molecules having substantial 

association with nestin in approaching p35, demonstrating 

streamlined flow and continuation of Cdk5/p35 activity. 

The truncated form of p35 molecule, p25, acquires and 

gathers in higher amount in the brain of AD patients’ 

neurons. This increases Cdk5 kinase activity by repel-

ling the degradation of p35 to p25 and binding of p25 to 

Cdk5 reflecting its cellular location and alters its substrate 

specificity. Hyperphosphorylation of tau molecules by 

p25/Cdk5 complex reduces its ability to associate with 

microtubules, thereby inducing cytoskeletal disruption, 

morphological degeneration, and apoptosis. Therefore, 

various findings support the idea of indicating p35 cleavage 

and accumulation of p25 involvement in the pathogen-

esis of cytoskeletal abnormalities and neuronal death.133 

Cdk5 is also expressed in adipocytes to phosphorylate 

Table 2 (Continued)

Kinase Residue(s) Alzheimer’s linked phosphorylation Ref

•	 Ps262 leads to microtubule-binding repeat domain which can be detached from 
the microtubules and may thus be protective in preventing tau aggregation into 
AD-like PHFs

•	 Perhaps, the phosphorylation of tau at T212 and S214 sites result in the 
neutralization of the fundamental charges, followed by the neutralization of inhibitory 
effect of S262 phosphorylation that causes tau to self-assemble into filaments

•	 Leads to the disconnection of microtubules and blockage of PHF formation in 
degenerating neurons in AD

•	 Leads to reduce its ability to bind to microtubules
•	 Leads to detach from microtubules
•	 Leads to strongly decrease the tau–microtubule interaction in vitro
•	 Leads to inhibition of microtubule gathering and might induce detachment of tau 

protein from microtubules during mitosis
GSK-3, Cdk5, PKA
Dyrk1a, JNK, MAPK

T231 •	 Prevents pathologic tau fibril formation, regardless of Thr175 state and develop 
pathologic tau fibrils

•	 Leads to fibril formation, indicating a potential therapeutic avenue for amyotrophic 
lateral sclerosis with cognitive impairment

•	 Leads to less binding potency microtubules via the activity of Ras–MAPK pathway
•	 Pin1 interacts only with phosphorylated T231; this connection evolves a 

conformational alteration resulting in the attachment of tau protein to microtubules

121, 122, 216, 
228, 231, 232

GSK-3, Cdk5, PKA, 
Dyrk1a, JNK, MARK

S262, S393, S324, 
S356

•	 Prevents the binding to microtubules 115 and aggregate into PHFs
•	 Leads to destabilizing microtubule assembly; functions and localizations of other 

subcellular structures such as mitochondria and lysosomes could be altered
•	 Leads to exert itself toxic effect on microtubule binding, and can lead to the 

breakdown of the microtubule network and cell degeneration
•	 Appears to play a major part in regulating its ability to interact with microtubules

113, 119, 216, 
223, 233

CK1, GSK-3, PKA, 
CAMKII

S409, S412, S413, •	 Disrupts microtubule affinity-regulating kinase (MARK2)/PAR-1b and protein kinase 
A (PKA), both of which are involved in the regulation of microtubule stability and 
neurite outgrowth

119, 216, 222, 
228, 229, 234

CAMKII, PKA, MARK S416 •	 Serine 416 is strongly phosphorylated at early developmental stages in rat brain; 
therefore, CaM kinase II is involved in the accumulation of tau in neuronal soma in 
AD brain

222, 229, 235

MAPK, GSK3β, PKA, 
Cdk5, Dyrk1a, JNK, 
p38, TTKI

S422 •	 S422 on caspase cleavage of tau may partly explain the delayed appearance of Tau-
C3-positive NFT; the eventual appearance of Tau-C3 reactive tangles makes it clear 
that phosphorylation takes place at S422

•	 Prevents segregation during the lower activity of caspase, but may be overwhelmed 
as caspase activity levels increase

•	 Leads to defensive operation resulting in the suppression of tau protein cleavage. 
Lead to abbreviate the transition path in vivo leading to fibril formation or develop 
stability of filaments in AD

216, 228, 229, 
236–239

Abbreviations: AD, Alzheimer disease; NFT, neurofibrillary tangles; JNK, c-JUN-NH2-terminal kinase; PKA, protein kinase A; MAPK, mitogen-activated protein kinases; 
PHFs, paired helical filaments; PP, protein phosphatases.
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proliferator-activated receptor gamma (PPARγ) which 

leads to metabolic syndromes such as T2DM.134,135 High 

glucose levels induce the expression of p35 and Cdk5 

through TGF–β1–ERK1/2–Egr-1 pathway leading to create 

high ROS.132 ROS also induces tau hyperphosphorylation 

and neuroinflammation in AD and T2DM via increasing 

proinflammatory mediators and the expression of TNF-α, 

IL-1β, and IL-6, and apoptosis.136,137

CK1
CK1, a ubiquitous serine/threonine-selective protein kinase, 

is mainly expressed in the neurons. CK1 is involved in the 

tau hyperphosphorylation and Aβ production which has 

been evidenced by the increased levels of CK1ε protein or 

mRNA leading to elevated phosphorylation of many sites of 

tau protein such as S262, S356, and S214, involved in AD 

and T2DM.121,138

PKA and PKB
PKA and PKB, the two members of phosphoinositide-

dependent PK, play a central role in cellular signaling by the 

process of phosphorylation. PKA phosphorylates many sites 

of tau such as Ser262 and Ser409 to increase cAMP levels as 

a prime for CK1 and GSK-3, whereas PKB phosphorylates 

this protein at Thr212 and Ser214 which promotes tau attach-

ment to the 14-3-3 as studied in the in vitro model. Phospho-

rylation of tau at S241 by both PKA and PKB is associated 

with organization of microtubule cytoskeleton and formation 

of NFTs in AD.139–141 These two kinases increase glucose 

uptake and inotropic effects in adipocytes and pancreatic 

cells, and glucotoxicity, as well as promote proliferation in 

the beta cells which are involved in progression of T2DM.142 

Blocking IP modulation of hepatic gluconeogenesis through 

PKA/CREB and PI3K-γ/PKC-ζ/TRB3/AKT pathway can 

also contribute to the T2DM progression.143

P38
P38 enzymatic activity in the MAPK reacts to the stress 

induction, in addition to apoptosis, leading to hyperglycemia 

that induces OS. This phenomenon, p38 MAPK pathway 

activation via tau protein phosphorylation, initiates devel-

opment of AD and T2DM.144,145 Many studies have shown 

that activated p38 is exclusively localized to the NFTs and 

coimmunoprecipitated with PHF-tau in the hippocampal and 

cortical brain regions of AD brain.146,147

MARK4
MARK4, also known as Par-1d/MarkL1, is a member of the 

AMPK, which is implicated in the regulation of glucose and 

energy homeostasis. Phosphorylation of the microtubule by 

this kinase causes its detachment from the microtubules. 

MARK selectively phosphorylates existing S262 and S356 

emerged in every MBD and other proteins that influence 

microtubules to facilitate the formation of cell processes.148,149 

It was reported that MARK4 deficiency mitigated insulin 

resistance enhancing insulin-stimulated AKT phosphoryla-

tion in major metabolic tissues.150

PLK2
Upregulation of PLK2 (SNK) is mediated by the increased 

α-syn phosphorylation at S129 site which elevates pre-form 

of α-syn fibrils and with Aβ leading to tau hyperphospho-

rylation and reduction of tau binding to microtubules to 

promote the formation of NFTs-like aggregates in AD.151,152 

Tau phosphorylation leads to aggregation of this protein 

by co-expressing glycogen synthase and kinase 3 beta or 

MAP/microtubule affinity-regulating kinase 2 involved in 

the progression of T2DM.153

Syk
Syk, a tyrosine kinase of tau protein at tyrosine 18 and α-syn, 

probably could influence the function and physiology of 

neurons in the brain.154 The tau in the detergent-resistant 

membranes is a tyrosine phosphorylated form which harbors 

lipid rafts. This form of tau protein is expected to facilitate a 

neurotoxic reactance towards Aβ. Syk can phosphorylate tau 

protein at Y18, Y197, and Y394 sites, respectively. Although 

other src family kinases may phosphorylate tau in the brain, 

PHF-tau is phosphorylated at tyrosine 394 and Fyn is the 

strongest candidate for tyrosine phosphorylation.117,155,156

DYRK1A
This kinase plays an important role in the signaling path-

ways which regulate cell proliferation and probably brain 

development. Dyrk1A mediates phosphorylation at the 

Thr356 and T181 residues of GSK3β that can inhibit its 

activity. Since DYRK1A pathway involves in the regulation 

of β cell mass and carbohydrate metabolism, defect in this 

protein could lead to T2DM.157,158

PPP
PPP group includes serine/threonine PP 1, 2A, 2B, and 5. 

Activity of PP2A in the normal brain is more than in AD 

brain (71% vs 50%), but activity of PP1 and PP5 in normal 

is less than in AD brain (11% and 10% vs 20% and 20%, 

respectively). PP1, PP2A, PP2B, and PP5 dephosphorylate 

tau protein at various sites, implicated in the stability and 

function regulation of microtubule. PP1 and PP2A are asso-

ciated in a state where tau protein is hyperphosphorylated 
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significantly than the tau protein in normal brain. PP5 at 

a higher expression level affects phosphorylation spot by 

removing the phosphate groups. Thus, it promotes neurons 

preservation vs apoptosis induced by Aβ.159,160

P70S6K
Protein, p70S6K, accompanied with Ser-Thr kinase, phos-

phorylates the ribosomal S6 subunit, the fundamental sequel 

in cell cycle control, growth, and differentiation leading to 

tau accumulation by translation and upregulating the expres-

sion. At protein level, the epitope T421/S424 of p-p70S6K 

is associated with tau phosphorylation. These epitopes phos-

phorylate tau at S214, S262, and T212 sites in AD brain, and 

inhibit recombinant tau assembly in vitro. Activated p70S6K 

in NFT-bearing neurons might be caused by the aberrant 

regulation of P13K and MAPK pathways, as well as the 

reduced activity of PP2A in AD brain. Deposition of Aβ in 

the AD brain also contributes to activation of p70S6K and 

consequential formation of tau-associated pathologies in AD 

brain, P70s6k plays a critical role in the early development 

process of T2DM as well. IRs mediate PI3K and p70S6K 

activation during insulin stimulation.161–163

Aggregation and degradation 
of hyperphosphorylated Tau
Approximately 90% of APP can be processed by 

nonamyloidogenic pathway and the remaining is processed 

by amyloidogenic pathway.

Nonamyloidogenic pathway
In nonamyloidogenic or nonplaque-forming pathway, 

a transmembrane protein known as APP is segregated via 

α-secretase enzyme leading to the formation of carboxy termi-

nus fragment α (CTFα) and soluble APP fragment α (sAPPα). 

Later, γ-secretase segregates CTFα, which ends up with the 

induction of APP intracellular cytoplasmic domain (AICD) 

and p3 peptide. Probably, the sAPPα, which is considered as 

neuroprotective factor, is associated with the establishment of 

synapses within the neurons, neurite outgrowth, and neuronal 

survival. AICD may be involved in nuclear signaling via 

transcriptional regulation as well as axonal transport through 

its ability to associate with various proteins.164,165

Amyloidogenic pathway
In the amyloidogenic or plaque-forming pathway, APP and 

β-secretase are interposed within the endosome with an acidic 

environment, inducing β-secretase to segregate APP protein, 

following the formation of CTFβ and soluble APP fragment 

β (sAPPβ). Consequently, CTFβ is cleaved by γ-secretase 

enzyme to form AICD and Aβ fragments. Later, sAPPβ 

together with Aβ liberates into the extracellular environment 

where Aβ fragments accumulate to form plaques.

Aβ aggregation and plaque formation
Aβ peptide chain contains 38 (Aβ

38
), 40 (Aβ

40
), or 42 (Aβ

42
) 

amino acids. Aβ
42

 is chemically stickier compared with the 

other peptides. All three genetic mutations that cause early-

onset AD change the role of gamma secretase, leading to an 

increased production of Aβ
42

.166,167 Aβ peptides aggregate 

into oligomers to organize fibrils with the formation of AP. 

Aβ plaques block signaling pathways and cells connection, 

which can be lethal to cells. Further, it can cause NTFs forma-

tion and Aβ is thought to cause oxidative damage to the cells. 

Along with the development of NFTs, low levels of insulin 

can increase the Aβ levels and forms AP in the brain. The 

Aβ peptide acts as monomers, dimers, or multimers on cell 

membranes and binds to its receptors on neuronal and glial 

cells at the nanomolar concentration to interfere with neu-

rotransmission and memory before the AP builds up.5,168,169

Insulin–amyloid plaque–neurofibrillary 
tangles
Insulin regulates peripheral Aβ and tau metabolism which 

influences the Aβ release in the brain through regulating APP 

metabolism to modulate the balance between Aβ anabolism 

and catabolism.170 Lack of insulin or its action may link T2DM 

to AD by modification of Aβ production and degradation. 

Defect in the insulin-dependent pathways may increase the 

activation of GSK3 associated with the risk of AD. T2DM also 

modifies mitochondrial antioxidant defense system and assists 

brain weakness in the presence of Aβ toxicity.

A link between the involvement of insulin-degrading 

enzyme (IDE) in hyperinsulinemia and AD is closely 

related to dysfunction in the metabolic and neurological 

pathways.171,172 IDE is a thiol zinc-metallo-endopeptidase that 

cleaves small proteins such as insulin, Aβ, glucagon, calci-

tonin, and amylin which leads to the formation of β-pleated 

sheet-rich amyloid fibrils under certain conditions; levels of 

insulin together with Aβ in the brain are regulated by IDE. 

Interestingly, the hypofunction of this enzyme triggers the 

formation of AD and T2DM.

Role of antidiabetic drugs on Alzheimer’s 
disease
The incidence of MCI more often seen in T2DM patients 

may develop to AD. Therefore, improvement in cognition 

with antidiabetic drugs could be a strategy rather than mere 

glycemic control. Interestingly, these drugs could benefit 
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AD patients associated with T2DM and it remains to be 

determined whether the potential is due to glucose lowering 

or the neuroprotective effects. However, further research 

is warranted to investigate their links between cognitive 

impairment and AD, and their safety measure is important 

too when considered in the management setting.

We highlight the potential of antidiabetic drugs with 

experimental and clinical observation through numerous 

studies that would be of interest to the researchers in devel-

oping strategies and linking in-depth mechanisms.

Biguanides
Metformin is an oral hypoglycemic drug under biguanide 

class used in the treatment of diabetes. In experimental 

studies, metformin showed neuroprotective role by pre-

venting etoposide-induced apoptotic cell death in primary 

neurons and improved oxygen-glucose in neuronal injury. 

McNeilly, in 2013, demonstrated that in high fat-diet-induced 

animals, metformin attenuated the insulin resistance and 

weight gain, but had no effect on performance in either mas-

sive transfusion protocol (MTP) or no MTP (nMTP) tasks. 

In addition, metformin has shown to prevent the appearance 

of molecular and pathological characteristics of AD in neuro-

blastoma cell line model of insulin resistance. Interestingly, 

in diabetic rat model, metformin has revealed the reduction 

of cell proliferation and neuroblast differentiation in hip-

pocampal dentate gyrus.173–176

Ng et al investigated the effect of metformin on the risk 

of cognitive impairment and its possible modulation by 

apolipoprotein E (ApoE) ε4 gene polymorphism. Metformin 

did not show any significant interactive role with ApoE 

ε4 and depression. Interestingly, among individuals with 

diabetes, long-term treatment (.6 years) reduced the risk 

of cognitive decline.

On other hand, the clinical studies on metformin show that 

the subjects aged 50 years and older significantly decreased 

the risk of dementia when compared with non-medication 

group after adjustment for cerebrovascular disease.177 

In contrast, a case–control study displayed that long-term 

users of metformin were at greater risk of developing AD.178 

Similarly, a study which included AD and cognitively intact 

patients showed worse cognitive performance in metformin 

users compared with those who were taking metformin 

and calcium together.179 Altogether, these studies raise the 

possible confounding effects of metformin in the manage-

ment process of AD/neurological function, and therefore 

needs further understanding through molecular biomarkers 

approaches in clinical studies.

Sulfonylurea
Sulfonylureas such as glyburide and glipizide inhibit mTOR 

activation in the experimental model, as we know aber-

rant PI3K/mTOR activation is commonly experienced in 

diabetes and AD.180 Glyburide has been shown to inhibit 

inflammasomes responsible for the elevation of proinflam-

matory cytokines resulting in neuroinflammation associated 

with AD.181

In clinical studies, sulfonylureas do not alter the risk 

of developing AD in a long-term population-based case–

control study.178 However, combination of metformin and 

sulfonylureas in a prospective cohort study over the period 

of 8 years reduced the risk of dementia by 35%, but their 

efficacy in preventing or improving memory and cognition 

needs to be determined.177

Thiazolidinediones
Thiazolidinediones such as rosiglitazone and pioglitazone 

might have role in reducing the risk of neurodegeneration.182 

Rosiglitazone has shown protective effects in experimental 

models against neuronal insulin resistance induced by beta 

amyloid oligomers.183 On the other hand, pioglitazone 

showed improved cognitive performance in a rat model of 

memory impairment.184

In randomized controlled trial (RCT), rosiglitazone 

preserved memory function in patients with early AD and 

amnestic MCI but beta amyloid continued to be stable in plas-

ma.172 Another small randomized double-blind trial on rosigl-

itazone demonstrated improvement in cognitive function in 

mild-to-moderate AD patients who were not carriers of the 

ApoE ε4 allele.185 In multicenter randomized concept clinical 

trial, rosiglitazone ameliorated impairment of brain glucose 

metabolism in mild-to-moderate AD subjects, but did not 

show evidence of slowing clinical progression.186 Another 

RCT on pioglitazone significantly decreased AD assessment 

scale (ADAS) score in AD/MCI subjects.187 In contrast, 

Phase III trial on rosiglitazone monotherapy failed to show 

a benefit on cognitive outcomes in mild-to-moderate AD.188 

Similarly, another population–based case–control study did 

not change the risk of developing AD.178

Glucagon-like peptide 1
Another study on GLP-1 receptor agonists, liraglutide and 

lixisenatide, reduced the hippocampal burden and improved 

spatial memory in AD transgenic mice.189 Liraglutide ame-

liorated tau hyperphosphorylation and restored brain insulin 

sensitivity in type 2 diabetic rats.190 Thus, liraglutide dimin-

ishes neurodegenerative developments in AD.
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Overall, preclinical and clinical studies support the effi-

cacy of antidiabetic drugs in cognitive enhancement; some 

studies have failed to confirm reports of improved cognition 

in patients with T2DM even after good glycemic control. 

However, more clinical studies on antidiabetic drugs in agree-

ment with preclinical approaches would enhance the chance 

of correlating MCI/AD for better therapeutic strategy and 

thereby increase the quality of life in AD patients.

Conclusion
This review extracted valuable outcomes from the studies 

that described the underlying common mechanisms between 

T2DM and AD, and the molecular determinants which could 

have significant therapeutic potential in treatment of T2DM- 

and/or AD-related damages. It was concluded that those 

patients who develop T2DM often suffer from dementia which 

might be AD. These patients could also suffer from hypergly-

cemia, hypercholesterolemia, and insulin signaling dysfunc-

tions which are common features to T2DM. In addition, some 

antidiabetic drugs could have beneficial effects against some 

AD hallmarks, such as tau hyperphosphorylation, Aβ plaque 

formation, and apolipoprotein particularly ApoE4. Therefore, 

cardiometabolic signaling needs appropriate crosstalk to 

understand the mechanism and linkage with neuroinflamma-

tion process in the neurodegenerative disorders.
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