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Introduction: Monocytes from patients with diabetes mellitus type 2 (DM2) are dysfunctional, 

persistently primed, and prone to a proinflammatory phenotype. This may alter the phenotype 

of their differentiation to macrophages and result in diabetic peripheral neuropathy (DPN), 

nerve damage, nerve sensitization, and chronic pain. We have previously demonstrated that 

CD163 is a molecule that promotes an anti-inflammatory cellular phenotype in human primary 

macrophages, but this has not been proven in macrophages from patients with DM2 or DPN. 

Thus, we hypothesize that macrophages from patients with DM2 or DPN display an altered 

proinflammatory functional phenotype related to cytokine production and that the induction of 

CD163 expression will promote a more homeostatic phenotype by reducing their proinflam-

matory responsiveness.

Patients and methods: We tested these hypotheses in vitro using blood monocyte-derived 

macrophages from healthy subjects and patients with DM2 with and without DPN. Cells were 

incubated in the presence or the absence of 5 µg/mL of lipopolysaccharide (LPS). The con-

centrations of interleukin-10, interleukin-6, tumor necrosis factor-alpha (TNF-α), TGF-β, and 

monocyte chemoattractant protein-1 (MCP-1) were measured using ELISA assays. Macrophages 

were transfected with an empty vector plasmid or a plasmid containing the CD163 gene using 

mannosylated polyethylenimine nanoparticles.

Results: Our results show that nonstimulated DM2 or DPN macrophages have a constitutive 

primed proinflammatory state and display a deficient production of proinflammatory cytokines 

upon a proinflammatory challenge when compared to healthy macrophages. CD163 induction 

produced an anti-inflammatory phenotype in the healthy control group, and this effect was 

partial in DM2 or DPN macrophages.

Conclusion: Our results suggest that diabetic macrophages adopt a complex phenotype that 

is only partially reversed by CD163 induction. Future experiments are focused on elucidating 

this differential responsiveness between healthy and diabetic macrophages.
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Introduction
Diabetes is a multifactorial disease of epidemic proportions, which in 2015 affected 

415 million people worldwide.1 Diabetes is associated with persistent inflammation, 

characterized by a proinflammatory phenotype in monocytes/macrophages.2 This 

contributes to the development of several complications, including diabetic peripheral 

neuropathy (DPN) that can progress to a painful condition.3,4 Chronic pain due to DPN 
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is very difficult to treat; therefore, this condition has a severe 

impact on the quality of life of these patients. Furthermore, 

patients with DPN have a higher risk of developing chronic 

wounds.5 Such ulcers precede more than 85% of all lower 

extremity amputations in patients with diabetes and are a 

large source of health care expenditures costing the USA 

between 9 and 13 billion dollars in 2014.6,7

The complexity of the mechanisms underlying this condi-

tion could be a reason of the scarcity of effective treatments 

for painful DPN or diabetic ulcers. However, it is clear that 

the immune capabilities of an individual could determine the 

development of DPN. For instance, diabetic patients display 

elevated systemic levels of proinflammatory cytokines, 

chemokines, and acute phase proteins.4,8 Accordingly, this 

systemic inflammatory response seems to be driven by a 

dysfunctional proinflammatory phenotype in macrophages 

that play a key role in the pathogenesis of painful DPN9 or 

diabetic wounds.10–12

The normal resolution of inflammation requires a tran-

sition from an M1 (proinflammatory) phenotype in mac-

rophages to an M2 (or alternatively activated) phenotype. 

However, in diabetic conditions, macrophages are persistently 

primed in an M1-like phenotype and promote diabetic neu-

ropathy by their excessive production of proteases, cytokines, 

and reactive oxygen species, which creates an oxidative stress 

environment that degrades myelin and impairs nerve regen-

eration.13,14 Interestingly, M1 macrophages alter the normal 

function of pancreatic cells, which leads to insulin resistance 

and further exacerbates the disease and its complications due 

to hyperglycemia.15

Even though circulating monocytes seem to have an 

altered functional phenotype16,17 in patients with diabetes, 

macrophages are the final cellular effectors in pathological 

conditions such as ulcers, nerve damage, or pancreatic cells. 

In fact, we have previously shown that exposing human 

macrophages to a hyperglycemic in vitro environment alters 

their inflammatory response.18

Therefore, this study is focused on studying macrophages 

in an attempt to restore their normal functions by reducing 

their persistent primed/inflammatory phenotype.

Previous studies in our laboratory have revealed the 

anti-inflammatory capabilities of CD163 in human primary 

cells using a cell-directed gene therapy approach. CD163 is 

a cell-surface receptor expressed on peripheral blood mono-

cytes and resident tissue macrophages.19 CD163-expressing 

macrophages are found during the resolving phase of acute 

inflammation, in chronic inflammation, and in healing.20,21 

Interestingly, CD163-positive macrophages are reduced in 

patients with diabetes.17,22,23 This reduced CD163 expres-

sion has been associated with the presence of complica-

tions in these patients.23 Hence, the induction of CD163 in 

macrophages in patients with DM2 could restore normal 

macrophage functions.

Based on this evidence, we hypothesize that the induc-

tion of CD163 expression in macrophages from patients 

with DM2 or DPN will restore their phenotype and their 

capabilities to produce cytokines. To test our hypothesis, 

we first aimed to determine major cytokine production in 

macrophages from healthy subjects and patients with DM2 

with and without DPN under basal conditions, and after 

the addition of a proinflammatory challenge. Second, we 

induced CD163 overexpression in isolated macrophages 

using a polyethyleneimine (PEI) nanoparticle grafted with 

a mannose receptor ligand (mannosylated PEI [Man-PEI]) 

that selectively targets macrophages. We have previously 

demonstrated the efficacy of Man-PEI to induce CD163 

expression in THP-1 and human primary macrophages.24 

Third, we tested whether the induction of CD163 promotes an 

anti-inflammatory phenotype in DM2 or DPN macrophages.

Patients and methods
Patients and healthy subjects
This study includes cells from 10 patients with a diagnosis of 

DM2 with no DPN, 15 patients with DPN, and eight healthy 

subjects. The demographic characteristics of the subjects 

are summarized in Table 1. Patients were recruited from the 

Presbyterian College School of Pharmacy (PCSP) Wellness 

Center, located in Laurens County, SC, USA, and control 

healthy volunteer subjects were recruited by word of mouth 

Table 1 Demographic characteristics of the patients enrolled in 
the study

Characteristics Control (%) DM2 (%) DPN (%)

White 88.8 41.6 46.6
Black/aa  50 26.6
Unreported 11.1 8.3 26.6
gender    

Male 33.3 58.3 46.6
Female 66.6 41.6 53.3

 Mean (SD) Mean (SD) Mean (SD)

age (years) 48 (14.7) 56.3 (11.9) 61.1 (12.08)
Weight (pounds) 191.3 (88.4) 229.3 (63.2) 197.2 (46)
Diabetes duration 
(years)

 7.1 (6.7) 4.1 (1.8)

hba1c (%) 4.8 (0.5) 8.8 (2)* 8.2 (2.3)*

Note: *P<0.05 vs the control group.
Abbreviations: aa, african american; DM2, diabetes mellitus type 2; DPn, 
diabetic peripheral neuropathy.
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within the school and Laurens County community. Written 

informed consent was obtained from all participating sub-

jects in accordance with the Declaration of Helsinki, and our 

protocol was approved by Presbyterian College International 

Review Board (IRB PC-201523).

cell isolation and induction of monocyte-
derived macrophages
Human monocytes were isolated from peripheral blood 

mononuclear cells (PBMC) of buffy coats obtained from 

all subjects using Ficoll-Hypaque solution (GE Healthcare 

Bio-Sciences Corp., Piscataway, NJ, USA) according to the 

manufacturer’s instruction. Then, monocytes were isolated 

from PBMC using Dynabeads untouched human monocyte 

kit (Thermo Fisher Scientific, Waltham, MA, USA). Primary 

human monocytes were cultured at 37°C under 5% CO
2
 in 

24-well plates at a concentration of 2.5×105/mL in RPMI 

1640 (supplemented with 10% fetal bovine serum (FBS), 

1% penicillin/streptomycin, and 1% sodium pyruvate) and 

M-CSF (100 ng/mL; eBioscience, San Diego, CA, USA) for 

5–6 days to induce macrophage differentiation under normal 

glucose concentration (5 mM).

cell transfection for cD163 induction
Macrophages from healthy controls and patients with DM2 

or with DPN were transfected as previously described.24 

Briefly, 0.5 µg of a plasmid-encoding CD163 gene (pCD163; 

Origene, Rockville, MD, USA) or an empty vector plasmid 

as the control (pEmpty, pCMV6-XL4 vector; Origene) was 

mixed with 1 µL of Man-PEI nanoparticle (Polyplus, New 

York, NY, USA) in a total volume of 100 µL of NaCl solution 

(150 mM). The solution was gently mixed and incubated at 

room temperature for 30 minutes. An N/P ratio of 5 was used 

to perform the transfection according to our previous work.24 

Following the differentiation period, macrophages were incu-

bated in the presence or the absence of lipopolysaccharide 

(LPS; Escherichia coli O111:B4, 5 µg/mL; Sigma-Aldrich 

Co., St Louis, MO, USA) for 48 hours. Cells or supernatants 

were collected at this time point for further analysis.

immunocytochemistry
The membrane expression of CD163 was determined in LPS-

stimulated macrophages, nonstimulated macrophages, and 

macrophages transfected with either pEmpty or pCD163 from 

healthy volunteers, diabetic patients, and patients with DPN.

Cells were collected after 48 hours in all the abovemen-

tioned conditions and plated on coverslips (12 mm diameter) 

precoated with fibronectin (Sigma-Aldrich Co.).

Then, the cells were fixed with 4% formaldehyde/PBS 

solution for 30 minutes at room temperature. The cells were 

washed with PBS and permeabilized with 0.25% Triton-

X100 in PBS for 5 minutes (room temperature). Nonspecific 

binding was prevented by adding 0.5% FBS to the cells for 

1 hour at room temperature. The cells were then incubated 

overnight at 4°C with a mouse antibody against human 

CD163 (1:150; Serotec, Raleigh, NC, USA). Then, the cells 

were rinsed and incubated for 1 hour at room temperature 

with the anti-mouse secondary antibody, which was raised 

in goat and conjugated to Alexa 555 (1:250; Thermo Fisher 

Scientific). The antibodies and the blocking solution were 

diluted in PBS that contained 0.25% Triton-X100. Coverslips 

containing cells were mounted on slides using an anti-fade 

medium (Vectashield; Vector Laboratories, Burlingame, 

CA, USA). Cell nuclei were visualized by adding DAPI to 

the mounting preparation (4′,6-diamidino-2-phenylindole 

dihydrochloride hydrate; Sigma-Aldrich Co.). Slides were 

examined at 40× using a Leica DMIL microscope and a Leica 

DFC345 FX Digital Camera (Leica Microsystems, Wetzlar, 

Germany). The fluorescence intensity of CD163 was quanti-

fied in each individual cell by a blinded experimenter. The 

mean background intensity was also calculated from areas 

outside of the cell perimeter. The average of intensity per 

cell was determined by subtracting the background using 

Sigma Scan Pro software (Systat Software Inc., San Jose, 

CA, USA).

elisa
The concentrations of IL-6, monocyte chemoattractant pro-

tein-1 (MCP-1), TGF-β, IL-1β, tumor necrosis factor-alpha 

(TNF-α), and IL-10 were measured in cell-free supernatants 

using commercial ELISA kits (Ready-SET-Go! ELISA; eBio-

science). Sensitivity of ELISA kits is as follows: 2 pg/mL for 

IL-6, 7 pg/mL for MCP-1, 8 pg/mL for TGF-β, 2.4 pg/mL 

for IL-1 β, 4 pg/mL, and 2 pg/mL for TNF-α and IL-10, 

respectively. These assays were performed in duplicates fol-

lowing the manufacturer’s instructions.

statistics
All the statistical analyses were performed using GraphPad 

Prism 6.01 (GraphPad Software Inc., La Jolla, CA, USA). 

Two-tailed unpaired t-tests and two-way ANOVAs followed 

by Tukey’s post hoc were used as appropriate. A P value of 

0.05 was considered to be statistically significant. For the 

cytokine studies using transfected cells, each value was 

normalized against their respective pEmpty control in at 

least three independent experiments, and we did statistical 
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analysis and presented the data using the pooled values from 

these experiments.

Results
Cytokine profile in nonstimulated 
primary human macrophages
We cultured macrophages from healthy subjects (con-

trol group), patients with DM2, and patients with DPN 

and determined the levels of pro- and anti-inflammatory 

cytokines under basal nonstimulating conditions. When 

anti-inflammatory cytokines were measured, we found that 

macrophages from healthy subjects (control) produced 

detectable levels of IL-10, TGF-β, and sCD163 under basal 

conditions (Figure 1A–C). Macrophages from patients with 

DM2 produced similar levels of IL-10, TGF-β, and sCD163 

to macrophages from control subjects (Figure 1A–C). Macro-

phages from patients with DPN produced significantly lower 

levels of IL-10 when compared to the control or the DM2 

group (Figure 1A). Macrophages from patients with DPN 

produced similar concentrations of TGF-β (Figure 1B) and 

sCD163 (Figure 1C) to control and DM2 groups.

When proinflammatory cytokines were measured, we 

found that macrophages from healthy subjects (control) 

produced detectable levels of TNF-α, MCP-1, and IL-6 

under basal conditions (Figure 1D–F). However, we did not 

detect IL-1β under these conditions in the control group 

or the DM2 and DPN groups. Macrophages from patients 

with DM2 produced similar levels of TNF-α and MCP-1 

Figure 1 cytokine concentration in nonstimulated primary human macrophages.
Notes: Quantification for IL-10 (A), TgF-β (B), scD163 (C), TnF-α (D), McP-1 (E), and il-6 (F) protein concentration in nonstimulated primary human macrophages 
from control, diabetic patients, and patients with DPn. Data shown are mean±sD; n=5–13. *P<0.05 vs the control group by student’s t-test, #P<0.05 vs the connected group 
by student’s t-test.
Abbreviations: DM2, diabetes mellitus type 2; DPn, diabetic peripheral neuropathy; TnF-α, tumor necrosis factor-alpha; McP-1, monocyte chemoattractant protein-1.
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to  macrophages from control subjects (Figure 1D and E). 

However, macrophages from patients with DM2 produced 

significantly higher levels of IL-6 when compared to the con-

trol group (Figure 1F). Macrophages from patients with DPN 

produced similar concentrations of TNF-α to the control and 

DM2 groups (Figure 1D). However, macrophages from the 

DPN group produced lower levels of MCP-1 than the control 

group, and this MCP-1 concentration was not significantly 

different from the DM2 group (Figure 1E). Macrophages 

from the DPN group produced similar levels of IL-6 to the 

control group, but these levels were significantly lower when 

compared to the high levels of IL-6 produced by macrophages 

from DM2 patients (Figure 1F).

Cytokine profile in LPS-stimulated 
primary human macrophages
We cultured macrophages from healthy subjects (control 

group), patients with DM2, and patients with DPN using 

LPS as inflammatory stimulus and determined the levels of 

pro- and anti-inflammatory cytokines under these conditions.

When anti-inflammatory cytokines were measured, we 

found that macrophages from healthy subjects (control) and 

patients with DM2 or DPN stimulated with LPS produced 

higher levels of IL-10, TGF-β, and sCD163 when compared 

to nonstimulated conditions (P<0.05; Table 2). Macrophages 

from the DM2 or DPN group produced similar concentra-

tions of IL-10 (Figure 2A), TGF-β (Figure 2B), and sCD163 

(Figure 2C) to macrophages from the control group under 

these inflammatory conditions. The concentration of these 

anti-inflammatory cytokines was similar in both diabetic 

and DPN groups.

When proinflammatory cytokines were measured, we 

found that macrophages from healthy patients (control) and 

patients with DM2 or DPN stimulated with LPS produced 

higher levels of TNF-α, MCP-1, IL-6, and IL-1β when com-

pared to nonstimulated conditions (P<0.05; Table 3). Macro-

phages from the DM2 or DPN group produced lower levels 

of TNF-α, MCP-1, and IL-6 when compared to  macrophages 

Table 2 Levels of anti-inflammatory cytokines in LPS-stimulated primary human macrophages

 
 

Control DM2 DPN

Nonstimulated LPS Nonstimulated LPS Nonstimulated LPS

Cytokines       
il-10 58.8±24.7 3,128±2,180* 42.6±25.8 3,163±2,770* 17.31±9 2,866±2,473*
TgF-β 553.2±183 1,968±2,067* 625.2±173.5 2,864±2,512* 921.4±569.8 3,244±2,536*
scD163 36.2±26.2 180±173.7* 23.7±11.5 214.2±157* 19.45±17.2 247±219.6*

Note: *P<0.05 vs their respective nonstimulated group.
Abbreviations: DM2, diabetes mellitus type 2; DPn, diabetic peripheral neuropathy; lPs, lipopolysaccharide.

from the control group (Figure 2D–F). The levels of TNF-α, 

MCP-1, and IL-6 were similar in macrophages stimulated 

with LPS between the DM2 and DPN groups. Macrophages 

from the DM2 and DPN groups stimulated with LPS pro-

duced similar levels of IL-1β, and these levels were not 

different from the control group (Figure 2G).

effects of cD163 overexpression on 
cytokine profile of LPS-stimulated 
primary human macrophages
Using Man-PEI nanoparticles we overexpressed CD163 in 

LPS-stimulated primary human macrophages from healthy 

subjects (control group), patients with DM2, and patients 

with DPN (Figure 3A–C, respectively).

When anti-inflammatory cytokines were measured, 

CD163-overexpressing macrophages (pCD163 group) from 

healthy control subjects produced similar levels of IL-10, 

TGF-β, and sCD163 (Figure 4A–C) when compared to the 

pEmpty group. However, CD163-overexpressing macro-

phages (pCD163 group) from patients with DM2 or DPN 

produced lower levels of IL-10 (Figure 4A) when compared 

to their respective pEmpty group. CD163-overexpressing 

macrophages (pCD163 group) from patients with DM2 or 

DPN produced similar levels of TGF-β and sCD163 (Figure 

4B and C) when compared to their respective pEmpty group.

When proinflammatory cytokines were measured, 

CD163-overexpressing macrophages (pCD163 group) from 

healthy control subjects produced lower levels of TNF-α 

and IL-6 (Figure 4D and F) and similar levels of MCP-1 

and IL-β (Figure 4E and G) when compared to the pEmpty 

group (Tables 4 and 5).

CD163-overexpressing macrophages (pCD163 group) 

from patients with DM2 produced lower levels of MCP-1 

(Figure 4E) and no changes in the concentration of TNF-α, 

IL-6, and IL-β (Figure 4D, F and G) when compared to the 

pEmpty group.

CD163-overexpressing macrophages (pCD163 group) 

from patients with DPN produced lower levels of IL-6 
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Figure 2 cytokine concentration in lPs-stimulated primary human macrophages.
Notes: Quantification for IL-10 (A), TgF-β (B), scD163 (C), TnF-α (D), McP-1 (E), il-6 (F), and il-1β (G) protein concentration in lPs-stimulated primary human 
macrophages from control, diabetic patients, and patients with DPn. Data shown are mean±sD; n=5–13. *P<0.05, vs the control group by student’s t-test.
Abbreviations: DM2, diabetes mellitus type 2; DPn, diabetic peripheral neuropathy; lPs, lipopolysaccharide; TnF-α, tumor necrosis factor-alpha; McP-1, monocyte 
chemoattractant protein-1.
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Table 3 Levels of proinflammatory cytokines in LPS-stimulated primary human macrophages

Control DM2 DPN 

Nonstimulated LPS Nonstimulated LPS Nonstimulated LPS

Cytokines       
TnF-α 4.8±1.6 1,150±583.8* 4.6±3 572.2±311.9* 5.4±2 442.7±248.2*
McP-1 25,448±19,836 69,304±23,016* 16,200±14,076 40,324±16,558* 10,149±4,566 43,592±25,168*
il-6 605.3±312.1 19,740±2,769* 1,612±778.8 8,466±7,239* 646.7±512.5 8,126±8,084*

Note: *P<0.05 vs their respective nonstimulated group.
Abbreviations: DM2, diabetes mellitus type 2; DPn, diabetic peripheral neuropathy; lPs, lipopolysaccharide; TnF-α, tumor necrosis factor-alpha; McP-1, monocyte 
chemoattractant protein-1.

(Figure 4F) and no changes in the concentration of TNF-α, 

MCP-1, and IL-β (Figure 4D, E and G) when compared to 

the pEmpty group (Tables 6 and 7).

Discussion
The major findings of our studies are as follows: 1) mac-

rophages from diabetic patients displayed elevated levels 

of IL-6, indicative of a primed proinflammatory phenotype 

under basal conditions; 2) macrophages from DPN patients 

displayed a dysfunctional cytokine production repertoire 

under basal conditions, characterized by a lower produc-

tion of IL-10 and MCP-1; 3) macrophages from patients 

with DM2 or DPN displayed a proinflammatory phenotype 

following LPS challenge; however, this phenotype shows a 

deficient cytokine production repertoire under inflammatory 

stimulation that affects mostly proinflammatory cytokines, 

such as TNF-α, MCP-1, and IL-6; and 4) the overexpression 

of CD163 in macrophages from patients with DM2 or DPN 

results in a differential and partial reduction of their proin-

flammatory phenotype. Our data indicate that the dysfunc-

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com


Journal of Pain Research 2019:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

75

altered cytokine release in macrophages from patients with diabetes

Figure 3 Overexpression of cD163 in human primary macrophages from healthy, diabetic patients, and DPn patients.
Notes: Quantification of CD163 protein expression in primary human macrophages from control (A), diabetic patients (B), or diabetic patients with DPn (C) transfected 
with a plasmid encoding for CD163 gene (pCD163, blue symbols) or the empty vector (pEmpty, pink symbols). The fluorescence intensity of CD163 was normalized to the 
control group (pempty), which was assigned a value equal to 1. Data shown are mean±sD; n=3–4. *P<0.05 vs their respective pempty group by student’s t-test.
Abbreviations: DM2, diabetes mellitus type 2; DPn, diabetic peripheral neuropathy.
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Figure 4 cytokine expression in cD163-overexpressing macrophages from healthy, diabetic patients, and DPn patients.
Notes: Quantification for IL-10 (A), TgF-β (B), scD163 (C), TnF-α (D), McP-1 (E), il-6 (F), and il-1β (G) protein concentration in primary human macrophages from 
healthy (control), diabetic patients, and patients with DPn. The macrophages were transfected with a cD163 gene (pcD163, blue symbols) or an empty vector (pempty, pink 
symbols). The concentration of each cytokine/chemokine was normalized to the control group (pempty), which was assigned a value equal to 1. Data shown are mean±sD; 
n=6–13. *P<0.05 vs their respective pempty group by student’s t-test.
Abbreviations: DM2, diabetes mellitus type 2; DPn, diabetic peripheral neuropathy; TnF-α, tumor necrosis factor-alpha; McP-1, monocyte chemoattractant protein-1.
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tional phenotype of diabetic macrophages regarding cytokine 

production differs from DM2 with or without DPN under 

nonstimulatory conditions; however, macrophages from both 

types of patients have a similar but dysfunctional capability 

to respond to a proinflammatory challenge. Surprisingly, 

this altered proinflammatory phenotype induced by LPS is 

differentially modulated by CD163 in DM2 with or without 

DPN. Even though these data demonstrate the complexity 
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of the dysfunctional mechanisms of macrophages in diabetic 

conditions, the induction of CD163 could produce different 

therapeutic effects in either DM2 or DPN patients.

We have shown that culturing THP-1 macrophages under 

high glucose in vitro conditions induces a dysfunctional 

cellular phenotype following a proinflammatory challenge 

(LPS).18 Our current outcomes reflect the effects imprinted 

in monocyte phenotypes induced by long exposure to hyper-

glycemic conditions that persist upon differentiation to mac-

rophages under normal glucose conditions. In consequence, 

our system captures phenotypic changes that arguably would 

not revert by the normalization of glycemic levels in patients 

with DM2. The clinical relevance of our findings is that 

DM2 patients with controlled glycemia might still be at the 

risk of developing complications derived from a proinflam-

matory priming phenotype of monocyte/macrophages, ie, 

following an infection, a cut, surgery, ulcer, or potentially the 

development of cardiovascular conditions or painful DNP as 

discussed subsequently.

Our findings indicate that the basal dysfunctional phe-

notype of macrophages from DM2 patients with no DPN is 

characterized by a higher production of IL-6 (with no changes 

in TNF-α, MCP-1, or major anti-inflammatory cytokines) 

when compared to healthy macrophages. Since our group 

populations differ in body mass index (BMI, healthy vs DM2 

or DPN), this is a potential confounding factor in our studies. 

Macrophages infiltrate adipose tissue in a body mass-depen-

dent manner,25 and these cells could be the source of high IL-6 

serum levels observed in obese individuals.26 Curiously, high 

serum levels of MCP-1 are positively correlated with BMI 

(obesity) in patients with DM2 vs lean, healthy subjects,27 

but we did not observe changes in MCP-1 in patients with 

DM2, which argues against a potential effect of BMI on our 

cytokine levels in these patient population. Similarly, we did 

not observe higher production of IL-6, TNF-α, MCP-1, or any 

major anti-inflammatory cytokine in patients with DPN, who 

also have a higher BMI that is comparable to patients with 

DM2 without DPN. These findings suggest that even though 

obesity or high BMI could influence the production of IL-6 

(or other cytokines) in macrophages, DM2 and the presence 

or absence of DPN can also display changes in monocyte/

macrophage phenotype under basal non-inflammatory condi-

tions (perhaps due to the disease stage).

TNF-α has been shown to participate in the pathogen-

esis of insulin resistance and DM2,28,29 and high TNF-α 

expression levels in circulating macrophages have been 

associated with higher risk of developing painful diabetic 

neuropathy.9 Therefore, it was surprising that we did not 

observe  differences in TNF-α production in DM2 or DPN 

macrophage groups when compared to macrophages from 

the healthy group. A potential explanation of this discrepancy 

is the inclusion of patients without painful DPN and/or the 

possibility that TNF-α has a more relevant role in the initia-

tion of the development of DM2.

The relevance of our finding related to IL-6 in the context 

of diabetes is that high levels of IL-6 are positively related 

to insulin resistance in humans with obesity.26 Obesity and 

diabetes are associated with cardiovascular complications that 

initiate as atheromas. Interestingly, human atheromas or ath-

erosclerotic lesions have high levels of IL-6 (and TNF-α).30–32 

These vascular changes can promote a reduction in nutrients 

and oxygen supply to peripheral small neuronal fibers and 

therefore promote DPN and chronic pain in these patients. 

Interestingly, IL-6 production was not altered in DPN mac-

rophages when compared to healthy cells, perhaps indicating 

that this cytokine is more relevant at previous DPN stages in 

patients with DM2 but not during neuropathic complications.

The level of dysfunction of macrophages from DPN patients 

involves both anti- and proinflammatory factors. The macro-

phage phenotype of patients with DPN was characterized by a 

reduced production of the proinflammatory chemokine MCP-1 

and the anti-inflammatory cytokine, IL-10. MCP-1 is a strong 

chemoattractant for macrophages,33 and IL-10 is a potent mol-

ecule that induces resolution of the inflammatory process.34,35 

These findings are in accordance with the higher risk (12-fold) 

of patients with DPN to develop chronic foot ulcers,36 which 

could be explained by the lack of a proper chemoattractant 

response (driven by MCP-1) and inadequate restraint signaling 

to acquire an M2 phenotype (driven by IL-10).

The dysfunctional phenotype observed in macrophages 

from these diabetic populations prompted us to examine their 

response capabilities upon a proinflammatory challenge using 

bacterial LPS. The responsiveness of macrophages to external 

stimulus in patients with diabetes is clinically relevant in the 

presence of open tissue damage, such as surgeries or foot 

ulcers, as LPS and microbacterial particles are present in 

patients with diabetic foot ulcers.37 Despite LPS inducing a 

higher production of all cytokines studied, we found that the 

magnitude of the production of proinflammatory cytokines 

(TNF-α, MCP1, and IL-6) was significantly lower in DM2 

and DPN than in healthy macrophages. Interestingly, it has 

been reported that in a mouse with diabetes (rodent model), 

there is a reduced immune response (IL-6 and substance P), 

which is associated with a delayed wound healing process.38 

On the other hand, an altered M1 proinflammatory phenotype 

seems to be sustained in time in diabetic chronic ulcers,10 
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and its restrained ability toward the acquisition of an M2 

phenotype further complicates wound healing.39,40

We have previously shown that the induction of CD163 

overexpression in primary macrophages from healthy humans 

stimulated with LPS promotes a transition from M1 to an 

alternative anti-inflammatory cellular phenotype. We have 

confirmed those findings in this study (reduction of TNF-α 

and IL-6). We anticipated observing similar effects in macro-

phages from our patient populations. Surprisingly, we found 

that these effects were only partially and differentially induced 

in macrophages from patients with DM2 (reduction only in 

IL-6) and DPN (reduction only in MCP-1), reflecting again the 

differential and complex phenotype that macrophages display 

in DM2 patients without neuropathy and in a more advanced 

stage of the disease with complications such as DPN.

The development of a cell-directed gene therapy based 

on the nanoparticle used in this study has been shown to be 

effective for gene induction and safe in HIV patients.41,42 Our 

approach to induce an alternative macrophage phenotype 

via CD163 induction to promote a more efficient resolution 

of inflammation and induction of wound healing would be 

suitable for patients with diabetes who have monocytes/

macrophages in a persistent proinflammatory phenotype. 

This primed phenotype could predispose patients to have a 

suboptimal resolution of inflammation or wound healing fol-

lowing tissue damage such as foot ulcers. Thus, even though 

the induction of CD163 in macrophages from patients with 

DM2 or DPN was partial, a reduction of either MCP-1 or IL-6 

may be beneficial during the healing process of chronic ulcers 

in these patients, where these cytokines should be reduced. 

Both MCP-1 and IL-6 serum levels are elevated in patients 

with chronic foot ulcers.43,44 In chronic stages in diabetic 

ulcers, the strong chemoattractant effects of MCP-133 could 

recruit more macrophages, which are persistently primed and 

dysfunctional, whereas IL-6 could promote the activation of 

naïve T cells.45,46 Therefore, these cytokines could perpetuate 

the inflammatory process in the local ulcer environment, pre-

venting a proper wound healing.39,40 Thus, the local modula-

tion of MCP-1 or IL-6 by CD163 induction in macrophages 

could promote a prowound healing environment.

One of the limitations of this study is that our in vitro 

setting might not completely mimic the complex systems 

found under diabetic conditions since different cell types 

contribute to the microenvironment in vivo. For instance, 

the effect of T cells on the regulation of the inflammatory 

environment during wound healing is well documented.47 

In fact, in patients with diabetic complications such as foot 

ulceration48 or retinopathy,49 there is a dysregulation of 

effector and regulatory T cells. Whether the manipulation of 

the macrophage phenotype affects other cell types in vivo 

remains to be elucidated. However, our current studies are 

necessary to characterize our technique before exploring it 

in vivo and before moving it to clinical studies.

Patients with diabetic foot ulcers also present higher lev-

els of TNF-α (and MCP-1 and IL-6) than patients with dia-

betes without foot ulcers.43,44 Interestingly, CD163 induction 

did not modify TNF-α in macrophages from either the DM2 

or the DPN group. Whether this would impact the therapeutic 

potential of our approach remains to be elucidated.

Conclusion
Our data once again show that DM2 alters the phenotype of 

monocytes that persist after their differentiation to macro-

phages, and this phenotype is partially resistant to CD163 

induction.
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