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Purpose: Lead (Pb) is an environmental pollutant responsible for various organ damages 

including renal injury. It seems that OS and associated events are crucial mechanisms of lead-

induced renal dysfunction. The current study aimed to explore the potential protective effects 

of glycine against renal injury caused by lead in mice.

Materials and methods: Mature male mice (n=32) were allocated into four groups. The 

following treatment regimens were the control (vehicle-treated); Pb-acetate (20 mg/kg/day, 

gavage); Pb-acetate + glycine (500 mg/kg/day, IP); and Pb-acetate + glycine (1,000 mg/kg/day, 

IP). Pb-acetate + glycine was administered for 14 consecutive days, Pb-acetate was given first 

and then glycine at least 6 hours later. On day 15, the subjects were anesthetized, and samples 

were collected. Serum biomarkers such as BUN and serum creatinine were monitored along 

with formation of reactive oxygen species, lipid peroxidation, kidney GSH level, and histo-

pathological changes.

Results: Based on the results, BUN and serum creatinine levels significantly increased 

following exposure to lead. Glycine supplementation (500 and 1,000 mg/kg, IP) decreased 

BUN and creatinine serum levels (P<0.001). Biomarkers of OS were also reduced in renal 

tissue following glycine therapy in Pb-exposed mice (P<0.001). Histopathological changes 

were observed in mice treated with lead as tubular dilation, protein cast, vacuolization, and 

inflammation. In this regard, glycine inhibited histopathological alterations in kidney caused 

by lead exposure.

Conclusion: It was found that glycine treatment significantly mitigated Pb-induced renal injury 

most likely through alleviating OS and the associated deleterious outcomes on the kidney tissue.
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Introduction
Humans are continuously exposed to lead (Pb), a toxic heavy metal, which is an 

environmental pollutant.1 Accumulation of lead in various organs such as bone, liver, 

kidney, and reproductive system is associated with deleterious effects.2–5

One of the potential adverse effects of prolonged and high-level Pb exposure is 

renal injury and nephropathy. Pb-induced nephropathy usually occurs as a result of 

prolonged exposure to this heavy metal and constant high plasma Pb level of >60 

μg/dL. Meanwhile, prolonged Pb exposure at lower plasma levels could also cause 

nephrotoxicity.6,7 According to animal and histopathological studies, the most affected 

segment of kidney in Pb-induced renal injury is the proximal tubule.8 Tubular atrophy, 

interstitial fibrosis, hypertrophic arteriolar changes, and accumulation of inflammatory 
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cells are common histological alterations in kidney tissues in 

experimental models of Pb nephrotoxicity.9,10

In Pb-induced nephrotoxicity, different mechanisms have 

been reported.5 Among these mechanisms, OS and its asso-

ciated events are noteworthy,5,11,12 which include increased 

reactive oxygen species (ROS) levels, biological target dis-

ruption, and defects in cellular antioxidant mechanisms.12,13 

Therefore, it seems rational to use antioxidants as therapeutic 

options against Pb toxicity.

Glycine, an amino acid with the simplest structure, is an 

intricate part of protein structure. Several pharmacological 

properties are attributed to glycine. Interestingly, it was found 

that glycine supplementation could protect biological targets 

against a variety of xenobiotics.14–17 Some studies mentioned 

the nephroprotective properties of this amino acid.18 Regard-

ing its cytoprotective activity, different mechanisms are sug-

gested. Based on the findings, glycine can effectively reduce 

OS caused by xenobiotics.14–17,19

The current study aimed to evaluate the potential nephro-

protective effects of glycine against Pb nephrotoxicity in an 

animal model.

Materials and methods
Chemicals
Glycine (2-aminoacetic acid), malondialdehyde, thiobarbitu-

ric acid, dithiobis-2-nitrobenzoic acid, GSH, 2′,7′-dichloro-

fluorescein diacetate (DCFH-DA), and EDTA were provided 

by Sigma-Aldrich (St. Louis, MO, USA). Trichloroacetic acid 

(TCA), dithiothreitol (DTT), ferric chloride hexahydrate, 2, 

4, 6-Tris (2-pyridyl)-s-triazine (TPTZ), and Tris (hydroxy-

methyl) aminomethane hydrochloride were provided by 

Merck (Darmstadt, Germany).

Animals and treatments
A total of 32 adult male BALB/c mice (25–30 g) were pur-

chased from the Laboratory Animals Breeding Center, Shiraz 

University of Medical Sciences (SUMS), Shiraz, Iran, and 

kept under standard conditions (12L:12D, photo schedule; 

18–22°C; appropriate ventilation, ≈40% humidity) and fed ad 

libitum with water and commercial rodent pellets (Behparvar®, 

Tehran, Iran). The animal procedures were done at Pharmaceu-

tical Sciences Research Center, School of Pharmacy, SUMS. 

The local ethics committee of AJA University of Medical Sci-

ences, Tehran, Iran, approved this study (#97-01-36-17657).

The animals received humane care and were handled 

regarding the guidelines of the ethics committee of AJA 

University of Medical Sciences.

The subjects were allocated into four groups of eight mice 

and the following treatment regimens were introduced: the 

control (vehicle-treated); Pb-acetate (20 mg/kg/day, gavage); 

Pb-acetate (20 mg/kg/day, gavage) + glycine (500 mg/kg/day, 

IP); and Pb-acetate (20 mg/kg/day, gavage) + glycine (1,000 

mg/kg/day, IP). Pb-acetate + glycine were given for 14 con-

secutive days. Pb-acetate dose was selected based on previous 

studies that mentioned 20 mg/kg of Pb-acetate as the nephro-

toxic dose.21 Glycine was administered at least 6 hours after 

Pb-acetate administration. On day 15, samples were collected.

Sample collection
Mice were anesthetized (thiopental 80 mg/kg, IP) to drain 

blood samples from abdominal vena cava. Both kidneys 

were excised and weighed. Right kidneys were kept in 10% 

formalin for histopathological evaluations. Total antioxidant 

capacity, lipid peroxidation, ROS production, and GSH con-

tents were determined in the left kidneys.

Histopathology and organ weight index
The kidney was weighed, using the following formula: Weight 

index = [Wet weight of organ (g)/Body weight (g)]×100.

Buffered formalin solution (0.4% sodium phosphate 

monobasic [NaH
2
PO

4
], 0.64% sodium phosphate dibasic 

[Na
2
HPO

4
], and 10% formaldehyde in distilled water) was 

used to fix the kidney samples for histopathological evalua-

tions. The kidney samples were stained with H&E followed 

by paraffin embedding and cutting in 5 µm sections. Tissue 

histopathological alterations were evaluated by a pathologist 

in a blind manner using a light microscope (Olympus BX41; 

Olympus Optical Co. Ltd, Tokyo, Japan). Early proximal 

tubular vacuolization, tissue inflammation, protein cast, and 

tubular dilation were graded as mild (+), moderate (++), or 

severe (+++) in each group.

Plasma biochemistry
To obtain plasma sedimentation, blood samples were 

drained into tubes (coated with EDTA) and then centrifuged 

(10,000 g, 15 minutes, 4°C). BUN and creatinine plasma 

levels were determined using commercially available kits 

(Pars Azmun®, Tehran, Iran).22 Plasma Pb level was measured 

by an atomic absorption method.

ROS formation
In total, 200 mg of kidney samples homogenized on ice in 5 

mL Tris-HCl buffer (40 mM, pH =7.4, 4°C) was mixed with 

100 µL homogenized sample and 1 mL of Tris-HCl buffer 
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(pH 7.4) plus 10 µL of DCFH-DA until reaching 10 µM as the 

final concentration.23,24 The prepared samples were incubated 

in the dark for 15 minutes at 37°C (Gyromax™ incubator 

shaker). The sample luminescence intensity was recorded 

with a FLUOstar Omega® multifunctional microplate reader 

at λ
excitation

 =485 nm and λ
emission

 =525 nm.25

Lipid peroxidation
For this purpose, TBA reactive substances were applied; 

the reaction mixture contained 500 µL of homogenized tis-

sue (10% w/v in KCl, 1.15% w/v), 1 mL of TBA (0.375% 

w/v), and 3 mL of phosphoric acid (1% w/v, pH =2). After 

vigorously mixing the mixture and bain-marie heating for 

45 minutes at 100°C, n-butanol (2 mL) was added follow-

ing cooling of the sample.14,26,27 Then, the samples were 

centrifuged at 10,000 g for 5 minutes, followed by vigorous 

mixing. Finally, based on the developed color, the absorbance 

was measured at λ =532 nm with an EPOCH® plate reader 

(BioTek, Highland Park, VT, USA).28

Total antioxidant capacity in kidney tissue
The Ferric Reducing Antioxidant Power (FRAP)  assay 

evaluates absorbance changes at λ =595 nm based on the 

blue-colored Fe2+, tripyridyltriazine, derived from the colorless 

oxidized Fe3+ using electron-donating antioxidant activity.29 

In order to prepare the FRAP reagent freshly, acetate buffer 

(10 vol, 300 mM/L, pH 3.6) was mixed with TPTZ (1 vol, 10 

mM/L in 40 mM/L hydrochloric acid) and ferric chloride (1 

vol, 20 mM/L). The FRAP reagent was prepared on the same 

day of assessment and kept in the dark. Tris-HCl buffer (250 

mM Tris-HCl, 200 mM sucrose, and 5 mM DTT, pH 7.4, 4°C) 

was used for kidney tissue homogenesis on ice.14,26,27,30 Next, 50 

µL of the homogenized sample (50 µL) plus deionized water 

(150 µL) was added to the FRAP reagent (1.5 mL). Then, 

samples were incubated in the dark (37°C for 5 minutes), and 

the absorbance rate was read at λ =595 nm with an EPOCH® 

plate reader (BioTek). The sample’s protein content was 

measured, using Bradford method, for data standardization.31

Kidney GSH level
GSH levels were determined spectrophotometrically as the 

indicator using 5,5′-dithiobis-2-nitrobenzoic acid (DTNB).32 

For this purpose, to homogenize kidney samples, 200 mg of 

tissue was mixed with 8 mL EDTA (0.04 M, 4°C) on ice. 

Then, 5 mL of the provided homogenate was mixed with 4 

mL of distilled water (4°C) plus 1 mL TCA (50% w/v; 4°C). 

The mixture was vortexed and centrifuged (10,000 g, 4°C, 15 

minutes). Then, the supernatant (2 mL) was added to Tris-HCl 

buffer (4 mL, 40 mM, pH =8.9) plus DTNB (100 µL, 10 mM 

in methanol). The absorbance rate of the prepared solution 

was read at 412 nm with an EPOCH® plate reader (BioTek).

Data analysis
Data are presented as mean ± SD. Data were analyzed using 

one-way ANOVA with Tukey’s multiple comparison tests 

as the post hoc. The level of significance was set at P<0.05.

Results
There were no significant changes in the kidney/body weight 

ratio in the current study, when Pb-treated and control animals 

were compared (Figure 1). On the contrary, no significant 

change in the body weight of animals was detected in the 

Figure 1 Kidney weight index (A) and Pb level (B) in mice. 
Note: aSignificantly different compared with the control group (P<0.001).
Abbreviations: Glyc, glycine; ns, not significant; Pb, plasma lead.
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current study. Plasma level in lead was significantly higher in 

Pb-exposed animals compared with the controls (Figure 1). 

However, there were no significant changes in plasma Pb 

levels between glycine-supplemented and Pb-treated animals 

(Figure 1).

Pb exposure significantly increased plasma biomarkers in 

renal damage (Figure 2). BUN and creatinine plasma levels 

were significantly higher in the Pb-treated mice compared 

with the controls (Figure 2). In addition, glycine supple-

mentation significantly reduced serum BUN and creatinine 

levels (Figure 2).

OS biomarkers were significantly higher in Pb-treated 

animals (Figure 3). A significant level of ROS in addition 

to an elevated level of lipid peroxidation was observed in 

the Pb group compared with the controls (Figure 3). The 

kidney GSH content and tissue antioxidant capacity were 

significantly reduced in the Pb group (Figure 3). OS bio-

markers of renal tissue were significantly reduced following 

glycine therapy (500 and 1,000 mg/kg, IP) in Pb-exposed 

mice (Figure 3).

In Pb-treated mice, histopathological changes included 

tubular dilation, protein cast, vacuolization, and inflammation 

(Figure 4 and Table 1). Glycine therapy (500 and 1,000 mg/

kg, IP) mitigated renal histopathological alterations in mice 

exposed to lead (Figure 4 and Table 1).

Discussion
Heavy metals are toxic environmental pollutants, and exposer 

to them can be detrimental.33 Lead (Pb) is a toxic heavy 

Figure 2 Plasma biomarkers of renal injury such as BUN (A) and plasma creatinine (B) in lead (Pb)-treated  mice.
Notes: Data are given as mean ± SD (n=8). aSignificantly different compared with the control group (P<0.001). Asterisks indicate significantly different compared with Pb 
group (*P<0.05, ***P<0.001).
Abbreviations: Glyc, glycine; ns, not significant compared with Pb group; Pb, plasma lead..
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metal, which possesses a wide range of adverse effects in 

humans.34 Neurological abnormalities, dysregulation of the 

endocrine system, different types of malignancies, bone and 

skeletal disorders, reproductive toxicity, as well as hepatic 

and renal injury have been reported in association with Pb 

overexposure.35,36 Pb-induced nephrotoxicity is a complica-

tion that could lead to renal failure.37,38 Since there is no safe 

and convenient agent against renal dysfunction caused by 

lead, this study aimed to investigate the potential protective 

effects of the amino acid glycine against Pb nephrotoxicity. 

This study indicated that glycine supplementation (500 or 

1,000 mg/kg, IP) mitigated Pb-induced renal injury, possibly 

by attenuating OS and its associated complications.

Different mechanisms have been proposed for the 

adverse effects of Pb toward biological systems. Among 

these mechanisms, OS and its associated complications 

have a fundamental role.39 It has been well documented that 

Pb exposure is associated with significant ROS formation, 

defects in cellular antioxidant mechanisms, and disruption 

of biological targets such as cell membrane and different 

intracellular proteins.40 Pb-associated OS is also impor-

tant in nephrotoxicity mechanism.40,41 Some investigations 

mentioned the importance of antioxidant therapy against 

Pb-induced renal injury.39 The obtained results emphasize 

on the importance of OS and its related consequences in 

the pathogenesis of Pb nephrotoxicity. In consensus with 

previous studies, we found that Pb exposure is associated 

with significant ROS formation, lipid peroxidation, kidney 

tissue GSH depletion, and defects in the renal antioxidant 
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Figure 3 Biomarkers of OS in renal tissue of lead (Pb)-treated animals.
Notes: ROS formation (A). Lipid peroxidation (B). Total antioxidant capacity (C). Tissue GSH level (D). Data are given as mean ± SD (n=8). aSignificantly different 
compared with the control group (P<0.001). Asterisks indicate significantly different compared with Pb group (**P<0.01, ***P<0.001).
Abbreviations: DCF, dichlorofluorescein; Glyc, glycine; ns, not significant; Pb, plasma lead.
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Figure 4 Renal histopathological alterations in the lead (Pb)-exposed mice. 
Notes: Normal renal tissue architecture is shown in the control group (A). Kidney tissue histopathological changes were revealed as inflammation (green arrow), protein 
cast (blue arrow), vacuolization (yellow arrow), and tubular dilation (red arrow) in Pb-exposed mice (B–D). It was found that glycine supplementation (500 and 1,000 mg/kg, 
E and F, respectively) blunted Pb-induced histopathological alterations in renal tissue.
Abbreviation: Pb, plasma lead.
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capacity. On the contrary, glycine supplementation (500 or 

1,000 mg/kg, IP) damped off OS consequences in the kidney 

caused by lead exposure. These findings could indicate that 

the antioxidative activities of glycine might be important to 

its nephroprotective mechanisms.

Glycine is an amino acid with a simple structure, incorpo-

rated in protein structure. Glycine has different physiological 

and pharmacological features, and its anti-inflammatory, 

antioxidant, and osmoregulatory activities are reported in 

various experimental models.42,43 The impact of glycine on 

OS and its consequences are considered as its main cyto-

protective activity.15,19 This amino acid is also a component 

of the GSH as a vital cellular antioxidant defense system. In 

the current investigation, higher levels of GSH were detected 

in the glycine-treated groups (Figure 3), which might be an 

indication for higher rate of GSH synthesis in glycine-treated 

animals. We found that glycine treatment significantly reduced 

Pb-induced OS in the kidney tissue. On the contrary, no sig-

nificant increase in plasma Pb level was detected after glycine 

treatment (Figure 1). This might indicate that glycine is able to 

chelate Pb or enhance its excretion from the body (Figure 1).

Several studies showed the positive effects of glycine on 

mitochondria.14,17,20 One study showed that glycine treatment 

enhanced mitochondrial ATP content and prevented mitochon-

drial permeabilization and swelling.14 Glycine treatment also 

modulates mitochondria-mediated cell death and apoptosis.17,44 

Mitochondria is an important source of ROS.45 Hence, a pos-

sible mechanism for the antioxidative properties of glycine 

might be mediated through affecting mitochondria-facilitated 

ROS formation. The precise effect of glycine on cellular 

mitochondria and its role in renal dysfunction caused by Pb 

exposure need further studies in order to be understood clearly.

Other organs rather than kidney might also be affected 

by Pb (eg, reproductive system and the liver). Therefore, 

evaluating the mechanism of Pb toxicity and the protective 

effects of chemicals such as glycine in these organs warranted 

further investigations.

Glycine is an endogenous and safe chemical. Hence, this 

amino acid might be clinically applicable against a variety of 

complications such as Pb-induced renal injury. To understand 

the findings of the current study in clinical setting, further 

studies are warranted.

Conclusion
Based on the results, glycine therapy could significantly 

reduce renal injury in mice exposed to Pb and the probable 

mechanism is the alleviation of OS.

Abbreviations
BALB, Bagg Albino; BUN, blood urea nitrogen; FRAP, ferric 

reducing antioxidant power; GSH, glutathione; IP, intraperi-

toneal; OS, oxidative stress; TBA, thiobarbituric acid assay.
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