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Purpose: To develop and validate neural network (NN) vs logistic regression (LR) diagnostic 

prediction models in patients with suspected giant cell arteritis (GCA). Design: Multicenter 

retrospective chart review.

Methods: An audit of consecutive patients undergoing temporal artery biopsy (TABx) for 

suspected GCA was conducted at 14 international medical centers. The outcome variable was 

biopsy-proven GCA. The predictor variables were age, gender, headache, clinical temporal artery 

abnormality, jaw claudication, vision loss, diplopia, erythrocyte sedimentation rate, C-reactive 

protein, and platelet level. The data were divided into three groups to train, validate, and test 

the models. The NN model with the lowest false-negative rate was chosen. Internal and external 

validations were performed.

Results: Of 1,833 patients who underwent TABx, there was complete information on 

1,201 patients, 300 (25%) of whom had a positive TABx. On multivariable LR age, platelets, jaw 

claudication, vision loss, log C-reactive protein, log erythrocyte sedimentation rate, headache, and 

clinical temporal artery abnormality were statistically significant predictors of a positive TABx 

(P#0.05). The area under the receiver operating characteristic curve/Hosmer–Lemeshow P for 

LR was 0.867 (95% CI, 0.794, 0.917)/0.119 vs NN 0.860 (95% CI, 0.786, 0.911)/0.805, with no 

statistically significant difference of the area under the curves (P=0.316). The misclassification 

rate/false-negative rate of LR was 20.6%/47.5% vs 18.1%/30.5% for NN. Missing data analysis 

did not change the results.

Conclusion: Statistical models can aid in the triage of patients with suspected GCA. Misclas-

sification remains a concern, but cutoff values for 95% and 99% sensitivities are provided 

(https://goo.gl/THCnuU).

Keywords: giant cell arteritis, temporal artery biopsy, neural network, logistic regression, 

prediction models, ophthalmology, rheumatology

Introduction
Giant cell arteritis (GCA) is the most common primary vasculitis in the elderly and 

can cause blindness or occasionally have life-threatening consequences.1 Although the 

diagnosis of GCA is initially based on clinical manifestations and usually confirmed by 

temporal artery biopsy (TABx), at times it can be difficult to diagnose because of GCA’s 

protean manifestations and systemically occult presentation.2 In addition, whereas the 

reference standard for the diagnosis of GCA is a positive TABx, this is an invasive 

procedure. Also, the primary treatment of GCA, systemic glucocorticoids, has many 

potential complications. As such, the decision to perform TABx and initiate gluco-

corticoids can be difficult when there are multiple risk factors of varying importance.
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Meehl’s disturbing little book, Clinical Versus Statistical 

Prediction,3 showed that statistical models can outperform 

clinical experts. Humans are prone to making biased predic-

tions based on heuristic methods and may have difficulty 

synthesizing the cumulative risk of, and interactions among, 

multiple predictor variables.4 Properly formulated regres-

sion equations usually surpass human experts because the 

mathematical algorithms can better calculate the appropriate 

weights that should be placed on individual predictor 

variables.5 Although no prediction rule can be substituted 

for a TABx, it is advantageous to have an objective, accurate 

prediction model, based on commonly used clinical criteria, 

to estimate the risk of GCA prior to TABx.

Logistic regression (LR), and artificial neural networks 

or neural networks (NN) are two of the most commonly used 

clinical prediction models for data classification. LR is the 

most widely applied prediction model for binary classifica-

tion. The coefficients from this parametric method show the 

association of the input variables with the outcome and can 

suggest a causal inference. NN are processing algorithms 

modeled after the neural connections of the brain. Just as 

neuronal connections can be bolstered or decreased through 

repeated activation, NN can perform an analogous process 

through mathematical weighting to activate pathways that 

connect with the desired output. NN is a semi-parametric 

“black box” method that shares some similarities with LR but 

has a hidden layer(s) that makes it difficult to delineate the 

relationship between a predictor variable and the outcome. 

The advantages of NN compared with LR include the ability 

to detect automatically complex nonlinear relationships 

between predictor and outcome variables, and to implicitly 

discern interactions among independent variables.6

There are many risk prediction models for GCA,7–11 but 

few have sufficient size or design to meet the guidelines for 

transparent reporting of a multivariable prediction model 

for individual diagnosis (TRIPOD).12 Our group recently 

published a 10-factor multivariable LR rule7 in a cohort of 

530 subjects. This LR model had fair discrimination and 

calibration but an 18% misclassification rate and a false-

negative (FN) rate of 54%. FN errors are least desirable in 

a GCA prediction model due to the potential risks of vision 

loss (VL) and aortitis.

A sample size calculation for NN is difficult to accurately 

accomplish, but typically NN perform well with only large 

datasets,13 and may require thousands of examples for a 

nonlinear algorithm.14 After developing a prediction rule, 

an additional test set (holdout set) of patients is required for 

external validation. The aim of this study was to gather a large 

set of patients with suspected GCA from multiple centers and 

develop LR and NN models and externally validate them. 

We chose the NN model with the lowest FN rate. On review 

of the Pubmed, Embase, and Google Scholar databases in 

September 2018, using the search terms “giant cell arteritis” 

and “neural networks”, there is only one previous NN predic-

tion model for GCA. This was intended for the classification 

rather than diagnosis of GCA and analyzed an exclusive 

database of known vasculitis patients.15

Methods
This study was approved by the Michael Garron Hospital 

Research Ethics Board and by the Institutional Review 

Boards from each contributing center, and was compliant 

with the Declaration of Helsinki. Patient consent was not 

required by the ethics boards as there was no patient random-

ization, there was no allocation to treatment groups, there 

were no new treatments, and because the study involved no 

more than record analysis. The chart review was not blinded.

A retrospective chart audit of consecutive adult patients 

who had TABx for suspected GCA was conducted at 

14 secondary and tertiary care medical centers in Canada 

(Toronto, ON; Kingston, ON; London, ON; Ottawa, ON; 

Hamilton, ON; Montreal, QC; Winnipeg, MB; Vancouver, 

BC), the United States (Baltimore, MD; Boston, MA; 

Rochester, MN; Fisherville, VA; and Tampa, FL), and 

Zurich, Switzerland.16

Our outcome variable for this study was biopsy-proven 

GCA, ie, the pathologic diagnosis from TABx was considered 

the final diagnosis. Indeterminate TABx were regarded as 

negative TABx. Healed arteritis was considered a positive 

TABx if glucocorticoid improved the patient’s symp-

toms, and long-term steroid treatment was prescribed (see 

Supplementary material).

The predictor variables were chosen from clinical judg-

ment and the literature.7 The predictor variables were age, 

gender, new onset headache (HA), clinical temporal artery 

abnormality (TAabn), jaw claudication (JC), permanent 

retinal, optic nerve or visual pathway ischemic VL, diplopia, 

pre-steroid erythrocyte sedimentation rate (ESR), pre-steroid 

C-reactive protein (CRP) divided by the upper limit of normal 

(for vasculitis) for each lab, and pre-steroid platelet level. For 

this study, we did not consider transient VL without fundus 

abnormality as VL.

The dose and duration of glucocorticoid treatment prior to 

TABx was recorded, as was the length of the biopsy. Because 

our end point was biopsy-proven GCA, subjects who did 

not have TABx within 2 weeks of glucocorticoid initiation 
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were excluded. TABx may remain positive for 2–6 weeks 

after commencement of treatment17 but the 2-week cutoff 

was chosen to minimize the chances of FN pathology, and 

because the histologic findings of GCA may begin to alter 

only after 4 days of glucocorticoid treatment.18 Bloodwork 

values that were not obtained prior to glucocorticoid initiation 

were not used for analysis, but patients were still considered 

for the missing data analysis (MDA). In patients who had 

bilateral TABx, the sum of the biopsy lengths was recorded 

as the biopsy length.

From our original study,7 polymyalgia rheumatica (PMR) 

was not included as a predictor variable as it can be a nonspe-

cific clinical manifestation, with overlapping age and acute 

phase response characteristics with GCA. The distinction 

of PMR from osteoarthritis flare can be difficult. Reports of 

joint X-rays were not uniformly available in this study.7 Also, 

rotator cuff injury and fibromyalgia may have overlapping 

clinical features with PMR.

Race/ethnicity was excluded as a study variable because 

it can be difficult to define and is an indeterminate proxy 

for genetic similarity. Many scholars view racial identity 

as primarily a social construct and one that can misdirect 

the categorization of participants in biomedical research.19 

In addition, many of our charts did not identify ethnicity or 

race. Furthermore, using the internal biologic effect of an 

individual study participant’s self-reported race/ethnicity 

is thought to have low potential validity in observational 

research.20

Our minimum required sample size was 600 patients, 

to allow for 100 events and 200 nonevents in each of the 

development and validation sets, as recommended for 

external validation of LR prediction rules.21 A formal sample 

size calculation for an NN is exceedingly difficult to make. 

Our aim was to acquire at least 1,000 subjects for an NN, 

to facilitate the development training, validation, and test 

(holdout) sets. Internal validation and geographic external 

validation were performed.

The individual patient was the unit of analysis for the 

statistical models. Statistical evaluations were performed 

using Stata 15.1 (StataCorp LLC, College Station, TX, 

USA), JMP Pro13.2 (JMP SAS Institute, Marlow, Buck-

inghamshire, UK), and R 3.5.0 (R Foundation for Statistical 

Computing, 2018, Vienna, Austria). An α=0.05 was used for 

statistical significance.

The continuous variables were graphed. Histogram of 

the CRP and ESR data showed a right skew distribution 

(see Supplementary material). A logarithmic transform was 

used to normalize the CRP and ESR and improve the LR 

model. In the NN, the program’s “transform covariates” 

option was selected.

The NN was designed in JMP Pro 13.2 with a single 

hidden layer and the hyperbolic tangent activation function 

(Figure 1). The number of nodes in the hidden layer was 

determined from a preliminary analysis of the minimum 

root mean square error (RMSE)22 of models with one to nine 

nodes in the hidden layer; four nodes provided the lowest 

RMSE. To fit the NN, we transformed covariates, used the 

absolute penalty method, and performed 20 tours. Continu-

ous variables were transformed using the Johnson distribu-

tion to minimize the negative effects of outliers or highly 

skewed distributions. The absolute penalty method further 

decreased the chance of overfitting and was chosen over the 

squared penalty method because our previous LR analysis7 

had showed that the ten input variables had unequal predic-

tive ability. The 20 tours or runs mitigate the issue with local 

minimums.23 The NN analysis with one hidden layer, four 

hidden units, transformed covariates, and squared penalty 

method was run 25 times. The NN with the least number of 

FNs was chosen as the final model.

Internal validation using tenfold cross validation was 

performed. For the LR, the c-statistic was averaged for each 

fold with bootstrapping of the cross-validated area under the 

curve.24 Tenfold cross validation was also performed for the 

NN using JMP Pro for internal validation with a random 

seed of zero.

The LR was performed with the same data partitioning 

as the NN model. Model performance was reported for 

discrimination, calibration, and clinical utility. Receiver 

operating characteristic curves (ROC) analysis and c-statistic 

was performed in JMP Pro to determine the discrimination 

of each model. Calibration was performed with the Hosmer–

Lemeshow test and calibration plots using Stata. Overall 

performance measures were reported using the Brier score 

and generalized R2. The clinical utility of the models was 

determined with decision curve analysis (DCA).

MDA was performed with the “informative missing” 

option in JMP Pro for LR and NN using mean imputation 

for continuous effects. For categorical effects, the missing 

value was coded as a separate level of the effect. Multiple 

imputation (MI) with chained equations with 30 imputations 

was performed using Stata for the LR and R for the NN. Stata 

does not perform NN analysis.

Results
We retrieved the records of 1,833 patients who under-

went TABx at the 14 centers, 465 (25%) of whom had 
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biopsy-proven GCA. The dates of the TABx at the various 

centers ranged from January 2006 to June 2018. There 

was information for complete-case analysis (CCA) in 

1,201 patients, 300 (25%) of whom had a positive TABx 

and 901 (75%) of whom had a negative TABx.

The characteristics of the patients with negative vs 

positive TABx are shown in Table 1. Patients with positive 

TABx were older, had more temporal artery tenderness/

pulselessness/nodularity, JC, VL, and higher levels of ESR, 

CRP, and platelets (all P,0.001).

In 1,501/1,833 (82%) of subjects, the biopsy length was 

readily available. The average length was 2.25 cm (±0.95) 

in the 1,142 subjects with a negative TABx, and 2.32 cm 

(±0.90) in the 359 with a positive TABx, with no statistically 

Table 1 Characteristics of subjects with positive vs negative temporal artery biopsy

Factor Negative biopsy Positive biopsy P-value Value range

n 1,368 465

Age, years, µ (SD) 72.8 (10.4) 77.2 (8.2) ,0.001 38, 98

Female 933 (68.7%) 329 (71.2%) 0.31

Headache, new onset 957 (73.3%) 313 (74.5%) 0.61

TAabn 441 (34.3%) 193 (46.6%) ,0.001

Jaw claudication 257 (19.9%) 215 (49.8%) ,0.001

Vision loss 235 (18.1%) 126 (29.5%) ,0.001

Diplopia 105 (8.1%) 47 (11.0%) 0.071

ESR, µ (SD) 41.2 (30.1) 55.2 (30.1) ,0.001 0.01, 224

CRP, µ (SD) 5.7 (12.1) 11.6 (14.4) ,0.001 0.01, 212

Platelets, ×109/L, µ (SD) 282.6 (104.9) 371.8 (142.9) ,0.001 27, 1,199

Biopsy length, cm, µ (SD) 2.3 (1.0) 2.3 (.90) 0.24 0.3, 7.5

Abbreviations: CRP, C-reactive protein divided by upper limit of normal for each lab; ESR, erythrocyte sedimentation rate; µ, mean; n, number of subjects; TAabn, 
tenderness or decreased pulsation of temporal artery.

Figure 1 Neural network design.
Notes: This neural network had ten input variables: age, sex, headache, clinical temporal artery abnormality, jaw claudication, vision loss, diplopia, ESR, C-reactive protein, 
and platelets. There was one hidden layer with four nodes (H1_1 to H1_4), each of which used the hyperbolic tangent activation function. The output was the biopsy result 
(bx_result). The equations and weights used for the neural network risk score are shown on the right.
Abbreviations: CRP_ULN, C-reactive protein divided by upper limit of normal of each lab; ESR, erythrocyte sedimentation rate; TAabn, temporal artery tenderness, 
pulselessness, or nodularity.
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significant difference (P=0.24). Of the 1,105 subjects who 

had information on unilateral vs bilateral biopsy, 437 (40%) 

had a bilateral TABx. The proportion of positive TABx in 

the unilateral biopsy group was 162/667 (24.3%), and that in 

the bilateral biopsy group was 109/437 (24.9%), which was 

not a statistically significant difference (P=0.80).

Thirty-one patients (1.7% of all the patients) were diag-

nosed as having healed arteritis on pathology, and were 

included for analysis because the abnormal TABx result 

confirmed the clinical impression of GCA.

In 681 charts, the referral source was documented; 319 

(46.8%) originated from internal medicine or primary care 

physicians.

There were 361 patients with ischemic VL; in 171 

(47.3%), further details of fundoscopy and the ophthalmic 

history were available (Table 2). Of these 171 patients, 59 

had biopsy-proven GCA and 112 did not. In the 59 patients 

with biopsy-proven GCA, 49 (83%) had anterior ischemic 

optic neuropathy (AION) and 4 (7%) subjects had bilateral 

AION; the average age of these patients was 77.9 years and 

59% were female. Of the 112 patients with negative TABx, 

64 (57%) were deemed to have non-arteritic AION (NAION), 

and there were no cases of bilateral simultaneous AION. 

The average age of this group was 74.1 years, and 61% were 

female. Six patients (10%) in the TABx-positive group had 

central retinal artery occlusion. Twenty-six patients (23%) 

in the biopsy-negative group had a retinal arterial occlusion, 

23 central, 1 hemi-retinal, and 2 branch.

Normal serology (the combination of ESR ,50 mm/hour, 

plus CRP and platelets at or below their upper limit of normal) 

was seen in 30 of the 300 subjects with complete information 

and biopsy-proven GCA. Six of these “seronegative” GCA 

patients (6/30=20%) were diagnosed as healed arteritis.

To facilitate geographic external validation, the data 

were allocated into a training set and validation set which 

together comprised 81.4% of our data (2,122 patients), and 

a test (holdout) set with 18.6% of the data (315 subjects). 

The allocation of the datasets is shown in Table A of the 

Supplementary material.

The LR model had no model misspecification and no 

multicollinearity, with mean variance inflation factor 1.17, 

and the variance inflation factors for ESR, CRP, and platelets 

were 1.42, 1.54, and 1.18, respectively (see Supplementary 

material). Multivariable LR showed that platelets, age, JC, 

VL, log CRP, logESR, TAabn, and HA were statistically 

significant predictors of biopsy-proven GCA (see Table 3).

Internal validation of the LR model with tenfold cross 

validation and bootstrap was consistent with good predictive 

performance with an area under the receiving operating char-

acteristic (AUROC) of 0.806 (95% CI, 0.777, 0.836). Internal 

validation of the NN model with tenfold cross validation, 

with one hidden layer and four nodes, with transform covari-

ates with absolute penalty method showed an AUROC of 

0.8505 (95% CI 0.8234, 0.8740; see Supplementary material).

External validation was performed on the holdout set 

and the results are shown in Table 4. The NN had higher 

sensitivity and accuracy than the LR, with a 17% lower 

FN rate. On Hosmer–Lemeshow testing, the calibrations 

of the LR (P=0.119) and NN (P=0.805) models were 

acceptable. The discrimination of the LR and NN mod-

els was good at 0.867 (0.794, 0.917) and 0.860 (0.786, 

0.911), respectively. The area under the curve (AUC) dif-

ference was 0.007 higher for the LR than the NN, but not 

statistically significant on comparison of the ROC curves 

Table 3 Multivariable logistic regression for the outcome of a 
positive temporal artery biopsy with complete-case analysis

Variables OR P-value 95% CI,  
OR

Age 1.060 ,0.001 1.036, 1.085

Female 0.923 0.686 0.627, 1.359

Headache 1.540 0.035 1.030, 2.301

TAabn 1.466 0.019 1.064, 2.017

Jaw claud 3.398 ,0.001 2.314, 4.991

Vision loss 2.611 0.005 1.327, 5.138

Diplopia 1.127 0.606 0.714, 1.780

log(ESR) 1.200 0.043 1.005, 1.433

log(CRP/ULN) 1.370 ,0.001 1.246, 1.507

Platelets 1.005 ,0.001 1.003, 1.006

Constant 0.000

Notes: n=1,201; McFaddens R2=0.243, log pseudolikelihood=510.985. 
Abbreviations: CRP/ULN, C-reactive protein divided by upper limit normal 
of each lab; ESR, erythrocyte sedimentation rate; Jaw Claud, jaw claudication; 
log, natural logarithm; R2, pseudo R square; TAabn, clinical temporal artery 
abnormality.

Table 2 Documented causes of vision loss

Details Negative TABx Positive TABx

n 112 59

AION 64 (57%) 49 (83%)

PION 10 (9%) 3 (5%)

CRAO/BRAO 26 (23%) 6 (10%)

Stroke 10 (9%)  

CRVO 1 (~1%) 1 (~2%)

CAR 1 (~1%)

Abbreviations: AION, anterior ischemic optic neuropathy; BRAO, branch retinal 
artery occlusion; CAR, cancer-associated retinopathy; CRAO, central retinal artery 
occlusion; CRVO, central retinal vein occlusion; n, number of subjects; PION, 
posterior ischemic optic neuropathy; TABx, temporal artery biopsy.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://docs.google.com/document/d/1kHVMxFmFDE-1UdSGMc65juD_h5Vd7mQCvAGR3s3bPJ4/edit?usp=sharing
https://docs.google.com/document/d/1kHVMxFmFDE-1UdSGMc65juD_h5Vd7mQCvAGR3s3bPJ4/edit?usp=sharing
https://docs.google.com/document/d/1kHVMxFmFDE-1UdSGMc65juD_h5Vd7mQCvAGR3s3bPJ4/edit?usp=sharing
https://docs.google.com/document/d/1kHVMxFmFDE-1UdSGMc65juD_h5Vd7mQCvAGR3s3bPJ4/edit?usp=sharing


Clinical Ophthalmology 2019:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

426

Ing et al

(P=0.317; see Figure 2). The misclassification rate of LR 

was 20.6% vs 18.1% for NN. There were 47.5% FNs with 

LR, and 30.5% with NN.

DCA uses a net benefit approach that incorporates clinical 

consequences to determine whether basing clinical deci-

sions on a model would do more good than harm.25 With 

DCA, the strategy with the highest net benefit at a particular 

threshold probability has the highest clinical value.25 The 

threshold probability (P
t
) on the x-axis is the probability 

where the expected benefit of performing TABx is equal to 

the expected benefit of avoiding TABx. For our DCA, we 

assumed there was no harm in performing a TABx, although 

it is invasive with risks of facial nerve palsy, infection, and 

bleeding. TABx is also time-consuming, and incurs a moder-

ate expense. DCA (see Table 4) showed that both the LR and 

NN models had clinical utility for a wide range of threshold 

probabilities (P
t
). Both models were equivalent or better than 

a “biopsy-all strategy” for all P
t
, and superior to a “biopsy 

none” strategy up to P
t
,0.81.

The comparative risk scores for CCA of the LR and NN 

models in subjects with positive vs negative TABx are shown 

in Figure 3. The interquartile range of the negative biopsy 

group is ,0.5, but there are still some high scoring outliers 

that contribute to the false positives. In the positive biopsy 

group, the subjects with scores ,0.5 are the FNs, and much 

of the interquartile range involves the FN region. However, 

the median score of the NN in the positive biopsy group is 

higher than its LR counterpart, reflecting the greater sensitiv-

ity of the NN vs LR model. Using the LR coefficients and NN 

weights from JMP Pro, an online spreadsheet calculator for 

the prediction models was made (https://goo.gl/THCnuU). 

A list of high-, medium-, and low-risk clinical scenarios for 

GCA and their risk score profiles are shown in Table B of 

the Supplementary material.

The probability cut point for a predicted positive result 

defaults at 0.5 in the models, but the sensitivity can be 

improved by adjusting the cutoff score. Table C of the 

Supplementary material shows the risk score cut points 

Table 4 Comparison of model performance: logistic regression vs neural network with CCA and MDA on the test (Holdout) set

Model Logistic regression
(CCA)

Neural network 
(CCA)

Logistic regression
(MDA)

Neural network
(MDA)

Sensitivity 0.525 0.695 0.531 0.602

Specificity 0.951 0.891 0.904 0.838

PLR 10.610 6.380 5.500 3.710

NLR 0.500 0.340 0.520 0.480

PPV 0.861 0.789 0.732 0.648

NPV 0.774 0.833 0.794 0.809

Accuracy 0.794 0.819 0.780 0.760

MCR 0.206 0.181 0.220 0.241

FNR 0.475 0.305 0.469 0.398

Calibration H–L P 0.119 0.805 0.420 0.987

Calibration plot
Observed proportion (blue circle)
Predicted proportion (red line)

0
0

0.2

0.2 0.4 0.6

Predicled (proportion)
0.8

0.4

0.6

0.8

0
0

0.2

0.2 0.4 0.6

Predicled (proportion)
0.8

0.4

0.6

0.8

1

0
0

0.2

0.2 0.4 0.6

Predicled (proportion)
0.8

0.4

0.6

0.8

0
0

0.2

0.2 0.4 0.6

Predicled (proportion)
0.8

0.4

0.6

0.8

Discrimination (c)
(95% CI)

0.867
(0.794, 0.917)

0.860
(0.786, 0.911)

0.827
(0.772, 0.870)

0.809
(0.752, 0.855)

Brier score 0.148 0.143 0.153 0.162

Generalized R2 0.446 0.458 0.373 0.337

Decision curve analysis
Net benefit

Biopsy all (blue)
Biopsy none (red)
Prediction rule (green)

Abbreviations: c, concordance statistic or the area under receiving operating curve; CCA, complete-case analysis; FNR, false-negative rate; H–L P, probability of Hosmer–
Lemeshow test (calibration is acceptable if P.0.05); MCR, misclassification rate; MDA, missing data analysis; n, number of subjects; NLR, negative likelihood ratio; NPV, 
negative predictive value; PLR, positive likelihood ratio; PPV, positive predictive value; R2, square or percent of variance explained by the model; ROC, receiver operating 
characteristic.
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required to achieve sensitivities of 99%, 95%, and 90%, and 

the associated change in specificity.

The missing data pattern is shown in the Supplementary 

material. Overall, 66% of the charts had data for CCA. The 

most common cause for missing data was unavailability of 

one or more of the bloodwork values, which accounted for 

59% of the missing data.

As expected, the AUROC from MDA was less robust 

than from CCA, with an AUC decrement of 0.051 for NN 

and 0.040 for LR (see Figure 2). The ROC for both missing 

data models remained good with NN
MDA

 at 0.809 (95% CI, 

0.752, 0.855) and LR
MDA

 at 0.827 (95% CI, 0.772, 0.870). 

The accuracy of the MDA models decreased by 1.4% for 

the LR
MDA

 and 5.9% for the NN
MDA

. The other performance 

characteristics of the models with missing data are shown 

in Table 4. The LR
MDA

 showed that JC, platelets, age, VL, 

log CRP, HA, and TAabn remained statistically significant 

at the P=0.05 level which was similar to the LR
CCA

 (see 

Supplementary material).

MI with 30 imputations was performed for the LR model 

using the nonpartitioned dataset. The non-log transformed 

covariates did not show substantive differences from CCA. 

Age, TAabn, JC, VL, and ESR retained statistical signifi-

cance after MI with P,0.05, but HA did not (P
CCA

=0.041 → 

P
MI

=0.414). CRP became statistically significant after MI 

analysis. (P
CCA

=0.060 → P
MI

=0.049). Gender and diplopia 

were not statistically significant predictors before or after MI.

MI was performed for the NN using R (see Supplementary 

material). For NN
MDA

, this revealed AUROC 0.838 

(95% CI 0.791, 0.884) with misclassification rate 20.5% and 

FN rate 47.8%. Comparing the NN
CCA

 and NN
MDA

 models, 

the misclassification rates were comparable but the FN rate 

was higher in the NN
MDA

 model. We were unable to com-

pare changes in the relationship of the predictor variables to 

outcome in the “black box” of NN.

Discussion
LR and artificial NNs are two of the most commonly employed 

statistical prediction models for clinical risk estimation. LR is 

a parametric method in which coefficients and intercepts are 

explicable, and is best applied to “linearly separable” classes. 

NN is a semiparametric “black box” method the multiple 

weights from which are difficult to interpret. The advantages 

of NN over LR include the ability to implicitly detect complex 

nonlinear relationships between dependent and independent 

variables and the ability to detect all possible interactions 

between predictor variables.6 One prior article explored NN for 

GCA, but this was developed from a database of 807 patients 

all known to have vasculitis, and of whom 214 had the diagno-

sis of GCA.15 The authors of this article used their NN to clas-

sify GCA versus other vasculitides, and not for the diagnosis in 

individual patients. Their NN required the result of the TABx, 

had no external validation, assigned missing data a value of 

Figure 2 Receiver operating characteristic curves for the LR and NN models.
Notes: Both the NN and LR models had good discrimination. The solid lines 
represent the CCA and the dotted lines represent the MDA. The darker lines are 
the NN, and the lighter ones the LR.
Abbreviations: AUC, area under the curve; CCA, complete-case analysis; 
LR, logistic regression; MDA, missing data analysis; NN, neural network.

Figure 3 Boxplot of predicted risk scores for the neural network and logistic 
regression models for the positive and negative temporal artery biopsy groups.
Notes: Risk scores $0.5 predict a positive temporal artery biopsy result. The 
horizontal line inside the box is the median value. The lower hinge of the box is 
the 25th percentile and the upper hinge of the box is the 75th percentile. The dots 
indicate the outliers with high-risk scores in the negative biopsy group.
Abbreviations: LR_model, logistic regression prediction model; NN_model, 
neural network prediction model.
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zero, did not examine CRP or platelets, did not maintain age 

or bloodwork values as continuous variables, did not consider 

VL (one of the most feared complications of GCA), and used 

a database almost half the size of that in our study.

The strengths of this study include its size, generaliz-

ability, external validation, compliance with TRIPOD guide-

lines, the prediction of GCA risk prior to TABx, combined 

application of clinical predictors such as VL plus bloodwork, 

maintenance of continuous variables, online calculator for 

the LR and NN models, the consistency of our utility rate 

and biopsy lengths with the published literature, and perfor-

mance on DCA.

Our study is the largest diagnostic multivariable predic-

tion rule for biopsy-proven GCA. We exceeded the 10 events 

per predictor variable suggested for LR, by more than four-

fold. Our model complies with the TRIPOD guidelines with 

an analysis of missing data and external validation. Miss-

ing data analyses including MI did not suggest significant 

difference from our CCA. Our combined validation and 

holdout sets, derived from multiple centers had 177 events 

and 475 nonevents, exceeded the minimum sample size 

recommendations for external validation.21,26

The results of this multicenter study are generalizable to 

patients with suspected GCA who have no ocular symptoms 

as 79% of the subjects in our database had neither VL nor 

diplopia. Also, in the 681 patients (37% of total n) with an 

identified referral source, 46% of the patients originated from 

rheumatology, internal medicine, primary care, or other non-

eye care practitioners.

Unlike some other algorithms,8,15 our model predicts the 

risk of GCA prior to TABx. Some prediction models only 

examine serology or neglect critical factors such as VL.9 

This study emphasizes the advantages of both clinical and 

bloodwork variables.

To optimize statistical power, age and bloodwork values 

were maintained as continuous variables. Much information 

is lost when continuous variables are dichotomized.27 Many 

other prediction rules dichotomize a platelet level of $400 × 

109/L as abnormal, rendering a platelet level of 399 × 109/L 

as “normal”, even though this portends a higher risk for 

GCA than a platelet level of 150 × 109/L. In this study, the 

average platelet level for the positive TABx group was 372 × 

109/L (±143), which is below the commonly used cutoff for 

thrombocytosis.

The seemingly small odds ratios associated with con-

tinuous variables such as age and bloodwork should not be 

misconstrued as contributing less to the risk score than binary 

variables with a larger odds ratio. Age has an odds ratio of 

1.06, and platelets 1.005. For every one-unit increase in age, 

there is a 6% increase in the odds of a positive TABx; for each 

unit increase in platelets, the odds of a positive TABx increases 

0.5%. This concept is better visualized on a nomogram.28

Some prediction models for TABx require extensive cal-

culations, eg, multiple likelihood ratios.11 Our user-friendly 

model has an online spreadsheet to calculate the risk score 

for the LR and NN models (https://goo.gl/THCnuU).

In this study, we find that the NN had a higher sensitivity 

and accuracy than the LR in predicting biopsy-proven GCA, 

with a substantially lower FN rate. Our models had a good 

internal validity on cross-validation tests, and our TABx 

data also support the reliability of our conclusions. The 

positive yield of TABx (utility rate) in this study was 25.4%, 

consistent with the 25% (95% CI 21, 27) median utility 

rate from a systematic review of the TABx literature29 and 

other studies.30 Although skip lesions on TABx may bias 

the results, our average biopsy length was 2.3 cm, which 

exceeds the 0.5–1.5 cm optimum length thresholds recom-

mended by large TABx pathology series.31–33 Although the 

European League Against Rheumatism (EULAR) Vasculitis 

Study Group guidelines do not recommend routine bilateral 

TABx,34 the rate of discordant TABx has been reported 

from 3% to 12.7%.35,36 The utility rate of our unilateral (60% 

of our cases with 24.2% positive yield) vs bilateral TABx 

(40% of our cases with 24.9% positive yield) showed no 

statistically significant difference and likely did not influ-

ence our findings.

DCA allows the determination of net benefit by incor-

porating the relative consequences of false positives and 

negatives in order to evaluate the potential clinical useful-

ness of the model.37 On DCA, our prediction model is better 

than “biopsy all” or “biopsy none” strategies for a useful and 

large range of decision cut points. This prediction model may 

support a decision to forego TABx in frail, infirm patients 

with very high P
t
. However, given the many side effects 

of long-term glucocorticoids, many clinicians would still 

advocate confirmatory TABx.

The weaknesses of this study include its retrospective 

nature (see discussion in our initial article7), misclassifica-

tion error, and confinement to biopsy-proven GCA. TABx 

is the reference standard for the diagnosis of GCA,38 but 

GCA remains a clinical diagnosis. Although classification 

criteria for GCA exist, diagnostic criteria confirmed by large 

studies are pending. The NN and LR models are subject to 

misclassification error because of the overlapping symptoms 

and signs that GCA shares with other diseases, including pri-

mary HA syndrome, other autoimmune diseases,39 infection, 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://goo.gl/THCnuU


Clinical Ophthalmology 2019:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

429

Ing et al

polymyalgia, fibromyalgia, amyloidosis,40 herpes zoster,41 

and NAION.10 In addition, we did not document the final 

diagnoses of the patients from the 14 centers, and we did not 

consider variables such as PMR and race for reasons outlined 

in the “Methods” section. Although there were missing data 

in 34% of the subjects (predominantly bloodwork results), MI 

analysis supported the results of the complete case analysis.

TABx has long been regarded as the reference standard 

test for GCA. However, the most recent EULAR recom-

mendations suggest color doppler ultrasound or magnetic 

resonance imaging as the lead investigation for cranial GCA, 

in centers with imaging expertise.42 Our prediction model 

can be used in conjunction with imaging and emerging tests 

such as HLA-DRB1*04/genetic tests,43 dynamic contour 

tonometry of the eye44 or possibly wide-field, swept source 

optical coherence tomography angiography of the eye in 

making patient decisions for steroid initiation and TABx. 

In the future, larger datasets incorporating the aforemen-

tioned variables may further enhance the NN performance.

We acknowledge that many other statistical models can 

be applied to GCA. (Random forest decision tree provided 

limited discrimination in our group of patients, see Supple-

mentary material.) Although Lee et al found that a support 

vector machine (SVM) algorithm accurately predicted 

GCA,45 we did not find SVM to be superior to LR.46 Com-

pared with LR, NN is a “black box” technique because the 

intermediate hidden layer(s) do not provide a direct route 

from the input variables to the output. The NN had 17% 

fewer FNs than LR. Given the morbidity of possible blind-

ness, FN errors were more objectionable than false-positive 

predictions which might lead to unnecessary TABx.

Conclusion
Both the NN and LR prediction models had good discrimina-

tion, but the NN model had fewer FNs. Prediction models 

aid in the objective triage of patients with suspected GCA 

and can improve the diagnostic yield of TABx, but they are 

not a substitute for TABx. No prediction model is infallible 

and misclassification is an ongoing concern, especially in a 

disease such as GCA with protean clinical manifestations 

and occasional occult presentation.

Disclosure
The authors report no conflicts of interest in this work.

References
1.	 Aouba A, Gonzalez Chiappe S, Eb M, et al. Mortality causes and trends 

associated with giant cell arteritis: analysis of the French national death 
certificate database (1980–2011). Rheumatology. 2018;57(6):1047–1055.

	 2.	 Hayreh SS, Podhajsky PA, Zimmerman B. Occult giant cell arteritis: 
ocular manifestations. Am J Ophthalmol. 1998;125(4):521–526.

	 3.	 Meehl P. Clinical Versus Statistical Prediction: A Theoretical Analysis 
and a Review of the Evidence. Minneapolis, MN: University of 
Minnesota Press; 1954.

	 4.	 Ayer T, Chhatwal J, Alagoz O, Kahn CE, Woods RW, Burnside ES. 
Informatics in radiology: comparison of logistic regression and artificial 
neural network models in breast cancer risk estimation. Radiographics. 
2010;30(1):13–22.

	 5.	 Ayres I. Experts versus equations. Super Crunchers. Toronto, Canada: 
Bantam Books; 2007:103–128.

	 6.	 Tu JV. Advantages and disadvantages of using artificial neural networks 
versus logistic regression for predicting medical outcomes. J Clin 
Epidemiol. 1996;49(11):1225–1231.

	 7.	 Ing EB, Lahaie Luna G, Toren A, et al. Multivariable prediction model 
for suspected giant cell arteritis: development and validation. Clin 
Ophthalmol. 2017;11:2031–2042.

	 8.	 González-López JJ, González-Moraleja J, Rebolleda G, Muñoz-Negrete FJ. 
A calculator for temporal artery biopsy result prediction in giant cell 
arteritis suspects. Eur J Intern Med. 2014;25(8):e98–e100.

	 9.	 Weis E, Toren A, Jordan D, Patel V, Gilberg S. Development of a 
predictive model for temporal artery biopsies. Can J Ophthalmol. 
2017;52(6):599–605.

	10.	 El-Dairi MA, Chang L, Proia AD, Cummings TJ, Stinnett SS, Bhatti MT. 
Diagnostic algorithm for patients with suspected giant cell arteritis. 
J Neuroophthalmol. 2015;35(3):246–253.

	11.	 Niederkohr RD, Levin LA. Management of the patient with suspected 
temporal arteritis a decision-analytic approach. Ophthalmology. 2005; 
112(5):744–756.

	12.	 Reitsma JB, Collins GS, Collins GS, Altman DG, Moons KG. Trans-
parent reporting of a multivariable prediction model for individual 
prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015; 
162(1):55–63.

	13.	 Grayson J, Gardner S, Stephens ML. Building Better Models with 
JMP pro. Cary, NC: SAS Institute; 2015.

	14.	 Brownlee J. Machine learning mastery; 2017. Available from: https://
machinelearningmastery.com/much-training-data-required-machine-
learning/. Accessed September 8, 2018.

	15.	 Astion ML, Wener MH, Thomas RG, Hunder GG, Bloch DA. Appli-
cation of neural networks to the classification of giant cell arteritis. 
Arthritis Rheum. 1994;37(5):760–770.

	16.	 Knecht PB, Bachmann LM, Thiel MA, Landau K, Kaufmann C. Ocu-
lar pulse amplitude as a diagnostic adjunct in giant cell arteritis. Eye. 
2015;29(7):860–866.

	17.	 Dasgupta B, Borg FA, Hassan N, et al. BSR and BHPR guidelines 
for the management of giant cell arteritis. Rheumatology. 2010;49(8): 
1594–1597.

	18.	 Font RL, Prabhakaran VC. Histological parameters helpful in recog-
nising steroid-treated temporal arteritis: an analysis of 35 cases. Br J 
Ophthalmol. 2007;91(2):204–209.

	19.	 Caulfield T, Fullerton SM, Ali-Khan SE, et al. Race and ancestry in 
biomedical research: exploring the challenges. Genome Med. 2009; 
1(1):8.

	20.	 Kaufman JS, Cooper RS. Commentary: considerations for use of 
racial/ethnic classification in etiologic research. Am J Epidemiol. 2001; 
154(4):291–298.

	21.	 Vergouwe Y, Steyerberg EW, Eijkemans MJ, Habbema JD. Substantial 
effective sample sizes were required for external validation studies of 
predictive logistic regression models. J Clin Epidemiol. 2005;58(5): 
475–483.

	22.	 Fuqua D. What’s the bottom line? How to compare models. Duke Fuqua 
school of business; 2007. Available from: https://faculty.fuqua.duke.
edu/~rnau/Decision411_2007/compare.htm. Accessed September 4, 
2018.

	23.	 Lavery R. An Introduction to Neural Nets: An Animated Guide. 2016. 
Available from: https://www.lexjansen.com/nesug/nesug13/37_Final_
Paper.pdf. Accessed September 1, 2018.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com
https://docs.google.com/document/d/1kHVMxFmFDE-1UdSGMc65juD_h5Vd7mQCvAGR3s3bPJ4/edit?usp=sharing
https://docs.google.com/document/d/1kHVMxFmFDE-1UdSGMc65juD_h5Vd7mQCvAGR3s3bPJ4/edit?usp=sharing
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://machinelearningmastery.com/much-training-data-required-machine-learning/
https://faculty.fuqua.duke.edu/~rnau/Decision411_2007/compare.htm
https://faculty.fuqua.duke.edu/~rnau/Decision411_2007/compare.htm
https://www.lexjansen.com/nesug/nesug13/37_Final_Paper.pdf
https://www.lexjansen.com/nesug/nesug13/37_Final_Paper.pdf


Clinical Ophthalmology

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/clinical-ophthalmology-journal

Clinical Ophthalmology is an international, peer-reviewed journal 
covering all subspecialties within ophthalmology. Key topics include: 
Optometry; Visual science; Pharmacology and drug therapy in eye 
diseases; Basic Sciences; Primary and Secondary eye care; Patient 
Safety and Quality of Care Improvements. This journal is indexed on 

PubMed Central and CAS, and is the official journal of The Society of 
Clinical Ophthalmology (SCO). The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/
testimonials.php to read real quotes from published authors.

Clinical Ophthalmology 2019:13submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

430

Ing et al

	24.	 Luque-Fernandez MA, Maringe C, Nelson P. CVAUROC: Stata module 
to compute cross-validated area under the curve for ROC analysis after 
predictive modelling for binary outcomes; 2017. Available from: https://
www.researchgate.net/publication/316232933_CVAUROC_Stata_
module_to_compute_Cross-validated_Area_Under_the_Curve_for_
ROC_Analysis_after_Predictive_Modelling_for_Binary_Outcomes. 
Accessed September 1, 2018.

	25.	 Vickers AJ, van Calster B, Steyerberg EW. Net benefit approaches to 
the evaluation of prediction models, molecular markers, and diagnostic 
tests. BMJ. 2016;352(i6):i6.

	26.	 Collins GS, Ogundimu EO, Altman DG. Sample size considerations for 
the external validation of a multivariable prognostic model: a resampling 
study. Stat Med. 2016;35(2):214–226.

	27.	 Altman DG, Royston P. The cost of dichotomising continuous variables. 
BMJ. 2006;332(7549):1080.

	28.	 Ing EB, Ing R. The use of a nomogram to visually interpret a logistic 
regression prediction model for giant cell arteritis. Neuroophthalmology. 
2018;42(5):284–286.

	29.	 Ing EB, Wang DN, Kirubarajan A, et al. Systematic review of the 
yield of temporal artery biopsy for suspected giant cell arteritis. 
Neuroophthalmology. 2018;43(1):18–25.

	30.	 Ing EB, Lahaie Luna G, Pagnoux C, et al. The incidence of giant cell 
arteritis in Ontario, Canada. Can J Ophthalmol. In press. 2018.

	31.	 Mahr A, Saba M, Kambouchner M, et al. Temporal artery biopsy for 
diagnosing giant cell arteritis: the longer, the better? Ann Rheum Dis. 
2006;65(6):826–828.

	32.	 Ypsilantis E, Courtney ED, Chopra N, et al. Importance of specimen 
length during temporal artery biopsy. Br J Surg. 2011;98(11):1556–1560.

	33.	 Oh LJ, Wong E, Gill AJ, McCluskey P, Smith JEH. Value of temporal 
artery biopsy length in diagnosing giant cell arteritis. ANZ J Surg. 2018; 
88(3):191–195.

	34.	 Mukhtyar C, Guillevin L, Cid MC, et al. EULAR recommendations 
for the management of large vessel vasculitis. Ann Rheum Dis. 2009; 
68(3):318–323.

	35.	 Breuer GS, Nesher G, Nesher R. Rate of discordant findings in bilateral 
temporal artery biopsy to diagnose giant cell arteritis. J Rheumatol. 
2009;36(4):794–796.

	36.	 Boyev LR, Miller NR, Green WR. Efficacy of unilateral versus bilateral 
temporal artery biopsies for the diagnosis of giant cell arteritis. Am J 
Ophthalmol. 1999;128(2):211–215.

	37.	 Van Calster B, Vickers AJ. Calibration of risk prediction models. Med 
Decis Making. 2015;35(2):162–169.

	38.	 Frohman L, Wong AB, Matheos K, Leon-Alvarado LG, Danesh-
Meyer HV. New developments in giant cell arteritis. Surv Ophthalmol. 
2016;61(4):400–421.

	39.	 Ong Tone S, Godra A, Ing E. Polyangiitis overlap syndrome with 
granulomatosis with polyangiitis (Wegener’s) and giant cell arteritis. 
Can J Ophthalmol. 2013;48(1):e6–e8.

	40.	 Ing EB, Woolf IZ, Younge BR, Bjornsson J, Leavitt JA. Systemic 
amyloidosis with temporal artery involvement mimicking temporal 
arteritis. Ophthalmic Surg Lasers. 1997;28(4):328–331.

	41.	 Ing EB, Ing R, Liu X, et al. Does herpes zoster predispose to giant cell 
arteritis: a geo-epidemiologic study. Clin Ophthalmol. 2018;12:113–118.

	42.	 Dejaco C, Ramiro S, Duftner C, et al. EULAR recommendations for 
the use of imaging in large vessel vasculitis in clinical practice. Ann 
Rheum Dis. 2018;77(5):636–643.

	43.	 Carmona FD, Gonzalez-Gay MA, Martin J. Genetic component of giant 
cell arteritis. Rheumatology. 2014;53(1):6–18.

	44.	 Ing E, Pagnoux C, Tyndel F, et al. Lower ocular pulse amplitude with 
dynamic contour tonometry is associated with biopsy-proven giant cell 
arteritis. Can J Ophthalmol. 2018;53(3):215–221.

	45.	 Lee M, De Smit E, Wong Ten Yuen A, Sarossy M. The use of statistical 
modeling to predict temporal artery biopsy outcome from presenting 
symptoms and laboratory results. Acta Ophthalmologica. 2014;92:s253.

	46.	 Ing E, Su W, Schonlau M, Torun N. Comparison of support vector 
machines and logistic regression to predict temporal artery biopsy 
outcomes. Can J Ophthalmol. 2018.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/clinical-ophthalmology-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com
https://www.researchgate.net/publication/316232933_CVAUROC_Stata_module_to_compute_Cross-validated_Area_Under_the_Curve_for_ROC_Analysis_after_Predictive_Modelling_for_Binary_Outcomes
https://www.researchgate.net/publication/316232933_CVAUROC_Stata_module_to_compute_Cross-validated_Area_Under_the_Curve_for_ROC_Analysis_after_Predictive_Modelling_for_Binary_Outcomes
https://www.researchgate.net/publication/316232933_CVAUROC_Stata_module_to_compute_Cross-validated_Area_Under_the_Curve_for_ROC_Analysis_after_Predictive_Modelling_for_Binary_Outcomes
https://www.researchgate.net/publication/316232933_CVAUROC_Stata_module_to_compute_Cross-validated_Area_Under_the_Curve_for_ROC_Analysis_after_Predictive_Modelling_for_Binary_Outcomes

