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Background and aim: A potent and selective vascular endothelial growth factor receptor

(VEGFR) inhibitor SU5416, has been developed for the treatment of solid human tumors.

The binding of VEGF to VEGFR plays a crucial role in the pathophysiology of respiratory

disorders. However, the impact of SU5416 on lipopolysaccharide (LPS)-induced acute lung

injury (ALI) remains unclear. Thus, this study aimed to illuminate the biofunction of SU5416

in the mouse model of ALI.

Methods: Wild-type (WT) and toll-like receptor 4 (TLR4)-deficient (TLR4−/-) C57BL/6

mice were used to establish LPS-induced ALI model. The primary pulmonary microvascular

endothelial cell (PMVEC) was extracted for detection of endothelial barrier function.

Results: LPS significantly increased the number of inflammatory cells and inflammatory

cytokines in bronchoalveolar lavage fluid (BALF). In addition, LPS increased alveolar

epithelial cells injury, inflammation infiltration and vascular permeability of PMVEC in

WT and TLR4−/- mice. Western blotting experiment indicated VEGF/VEGFR and TLR4/

NF-κB pathways were involved in the progression of LPS-stimulated ALI. Consistent

with previous research, dexamethasone treatment appeared to be an effective therapeutic

for mice with ALI. Moreover, treatment with SU5416 dramatically attenuated LPS-

induced immune responses in mice lung tissues via inhibiting VEGF/VEGFR and

TLR4/NF-κB pathways. Finally, SU5416 also decreased vascular permeability of

PMVEC in vitro.

Conclusion: SU5416 ameliorated alveolar epithelial cells injury and histopathological

changes in mice lung via inhibiting VEGF/VEGFR and TLR4/NF-κB signaling pathways.

We also confirmed that SU5416 could restrain vascular permeability in PMVEC through

improving the integrity of endothelial cell. These findings suggested that SU5416 may serve

as a potential agent for the treatment of patients with ALI.
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Introduction
Acute lung injury (ALI) is a common severe clinical phenomenon which is

characterized by expiratory dyspnea, interstitial edema, accumulation of activated

inflammatory cells, exuberant migration of activated neutrophils, and diffuse alveo-

lar damage.1,2 Clinically, it appears as acute respiratory distress syndrome (ARDS)

caused by various pathologies, including sepsis, trauma, pneumonia, and gram-

negative bacterial infection.3,4 ARDS, one of the most serious forms of ALI, is

a main cause of death in the patients with sepsis, shock or pneumonia.5
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Lipopolysaccharide (LPS) is an endotoxin derived

from gram-negative bacteria components, which have

been found to lead to ALI via induced inflammatory

reaction.6 Accumulating evidence has verified that numer-

ous signal interactions were involved in the progression of

LPS-induced ALI.7 Ras homolog family member

A (RhoA) regulated cell viability, apoptosis, and ROS

activity by activating the downstream Wnt/β-catenin sig-

naling pathway in a cell model of ALI.7 In addition,

glycogen synthase kinase-3β (GSK-3β), an important com-

ponent of Wnt signaling, is reported to be involved in

LPS-induced ALI.8 Inactivation of GSK-3β could mitigate

LPS-triggered ARDS in mice through restraining the pro-

duction of proinflammatory cytokines.8 LPS also recruits

other membrane receptors to form a complex compound

and triggered the downstream signaling cascades such as

toll-like receptor 4 (TLR4), cluster of differentiation 14

(CD14), and lymphocyte antigen 96 (MD2).9 TLRs, a

class of membrane glycoproteins, could detect a variety of

microbial compositions and trigger innate immune

responses.10 TLR4, a member of the TLR family, is crucial

for the innate immune response through activating intracel-

lular signaling pathway NF-κB.11 Once activated by LPS,

TLR4 triggers downstream MyD88/NF-κB signals leading

to the production of various proinflammatory cytokines.12

Previous studies have reported TLR4 acted as a vital

role in LPS-induced ALI by modulating the release of

inflammatory mediator.13,14 TLR-deficient mice exhibited

significant resistance to paraquat-induced ALI.15 Both

hyaluronan and echinocystic acid ameliorated LPS-

stimulated lung inflammation by inhibiting the TLR4/NF-

κB signaling pathway,3,16,17 implying targeting TLR4 or

its downstream signals is likely to be an effective treat-

ment for ALI. Vascular endothelial growth factor (VEGF)

is a sub-family of growth factors that mainly stimulates

angiogenesis during the development of an organ. In addi-

tion, VEGF overexpression contributes to many diseases

including solid cancers, vascular diseases, and ALI.18–20

However, it is ambiguous whether VEGF serves as

a protective factor or as a destructive element in the course

of ALI. VEGF exerts its biofunction through binding

irreversibly to its certain receptor VEGFR-1, VEGFR-2

and VEGFR-3.21 It has been reported that activation of

VEGFR-3 protected against endotoxin shock via restrain-

ing TLR4-NF-κB signaling.22 TLR4 is required for the

protective role of VEGF in primary endothelial cells of

the lung. Its ablation repressed VEGF/VEGFR down-

stream signaling molecules including AKT and ERK, and

caused hypersusceptibility to oxidant-induced lung injury

in mice.23

SU5416, a potent and selective tyrosine kinase inhibi-

tor, which is commonly used for inhibiting various tumor

growth by targeting VEGF/VEGFR and kit signaling

pathways.24 In addition, SU5416 could inhibit the vessel

permeability during ALI.25 However, the role of SU5416

in LPS-induced ALI remains vague. Thus, this study

aimed to illuminate the biofunction of SU5416 in the

mice with ALI.

Materials and methods
Animal model and treatment
Wild-type C57BL/6 mice (male, 8–10 weeks, 20–24 g)

and genetically engineered TLR4-deficient mice (male,

8–10 weeks, 20–22 g) were obtained from Model Animal

Research Center of Nanjing University (Nanjing, China).

All mice experiments were approved by the Institutional

Animal Care and Use Committee at Affiliated Hospital of

Hangzhou Normal University. All animals were raised in

a room under controlled light (12 hours/day) and tempera-

ture (22±2°C) conditions and housed with free access to

food and water. 30 WT and 30 TLR−/- male mice were

randomly assigned to five groups (6 mice/group), respec-

tively. Then, the mice were stimulated by intratracheal

(posterior pharyngeal instillation) administration of LPS

(5 mg/kg, 1 hour; Sigma-Aldrich Co., St Louis, MO, USA)

after anesthetization with an intraperitoneal (i.p.) injection

of tribromoethanol (0.015 ml/g). isopyknic saline-treated

mice served as blank control group. After LPS stimulation,

the experimental mice were treated with SU5416 (20 mg/

kg BW solution in DMSO, Targetmol, T2064), DXM

(DXM, 5 mg/kg BW, Sigma-Aldrich Co., D4902) or

DXM + SU5416 by oral administration for 12 hours.

DXM-treated mice were served as positive control group.

Control group (LPS-induced only)/blank control (saline-

treated) were given by gavage with isopyknic saline add-

ing equal concentration of DMSO. Later on, mice were

anesthetized by using 1% pentobarbital sodium.

Bronchoalveolar lavage fluid (BALF) and lung tissues

were collected for the subsequent experiments. National

Institutes of Health guide for the care and use of laboratory

animals were followed for the animal experiments.

Counting of neutrophil in BALF
After anesthetization, the tracheas of mice were cannulated

and lungs were lavaged three times with 1 mL saline at 4°
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C. Then, 1 mL BALF was collected for the detection of

the number of neutrophil with Abbott CD1700 automatic

blood cell analyzer (Abbott, Chicago, IL, USA).

Measurement of inflammatory cytokines
The levels of proinflammatory cytokines (TGF-β, IL-1β,
IL-6, and TNF-α) in BALF were performed according to

the instruction of ELISA kits (Abcam: ab119558,

ab100705, ab178013 and ab181421) (Abcam,

Cambridge, MA, USA). The sensitivities of ab119558,

ab100705, ab178013 and ab181421 ELSIA kits were 8,

5, 5 and 14 pg/mL, respectively.

Detection of superoxide dismutase

(SOD) and nitric oxide (NO)
After centrifugation, the supernatant fluid of BALF was

collected for SOD and NO detection. 20 μl and 100 μL
supernatant was used to detect the levels of SOD and NO

in BALF, respectively. SOD level was analyzed by SOD

assay kit (WST-1 method) in accordance to the manufac-

turer’s directions (Jiancheng Biotechnology, Nanjing,

China, A001-3). That was an activity test and the substrate

was water soluble tetrazolium salt (WST), which could be

easily reduced to purple formazan. Then, the OD value

(450 nm) was detected with a microplate reader. Activity

of SOD was calculated using the following formula: SOD

activity (U/mL)=SOD inhibition rate/50% x (reaction

volume/dilution ratio) x dilution ratio of samples before

detection. NO level was detected using NO assay kit

(microwell plate method) (Jiancheng Biotechnology,

Nanjing, China, A013-2) and evaluated by the following

formula: NO level (μmol/L)=(samples OD value – blank

OD value)/(standard OD value – blank OD value)

x standard concentration (20 μm) x dilution ratio.

Histopathology
Four percent paraformaldehyde was injected into the tra-

chea to fix the mice lung tissues. For histomorphological

evaluation, the upper left lung lobe was removed and fixed

in 3% glutaraldehyde after treatment with LPS for 24

hours. After embedding in paraffin, 4 μm-thick-sections

were used to analysis changes of ultrastructure in different

groups of mice lung tissues under transmission electron

microscope. Additionally, sections were stained with H&E

stain. The ALI score was referring to the method men-

tioned by Mikawa.26 Injury score was evaluated through

four indexes: (1) alveolar congestion, (2) haemorrhage, (3)

neutrophils infiltration, (4) alveolar septum thickness and

hyaline membrane formation. The analysis result of all

mice was scored 0–4 with 0 as no injury, 1 as mild injury,

2 as moderate injury, 3 as serious injury, 4 as very severe

injury.

Western blot assay
Total proteins were extracted from lung tissues according

to the instruction of RIPA lysis buffer kit (Sigma-Aldrich

Co.). The concentration of proteins were detected with

BCA assay (Pierce Biotechnology; Rockford, IL, USA).

Immunoblotting was conducted by using specific primary

antibodies: TLR4 (Affinity, AF7017), p-VEGFR (Affinity,

AF3279), VEGFR2 (Affinity, AF6281), pho-NF-κB p65

(p-p65) (Abcam, ab86299), NF-κB (Affinity, AF0874),

p53 (Affinity, AF0879), and BCl-2 (Affinity, AF6139). β-
actin (Boster, BM3873) was served as the internal control.

The blots were detected using the ECL reagent (Santa

Cruz Biotechnology; Santa Cruz, CA, USA). Blot images

were semiquantified in grayscale using Image J (version

2.0; National Institutes of Health, Bethesda, MD, USA).

Immunohistochemistry
Slides of lung tissues were blocked with 0.5% H2O2 in

methanol for 30 minutes. Then, slides were incubated

overnight at 37°C and stained with primary antibody

against CD31 (Affinity, AF0077) for 24 hours at 4°C.

Then, the sections were stained with second antibody for

20 minutess at room temperature. After chromogenic reac-

tion with DAB agent (Thermo Fisher Scientific, Waltham,

MA, USA), the images were photographed with

a microscope.

Measurement of ROS
The levels of ROS were analyzed using DCFH-DA fluor-

escent probe technique in mice lung. Briefly, fresh lung

tissue (1 mm3 mass) was digested with trypsin and filtered

with a 200-mesh sieve. The cells were collected and resus-

pended in PBS. After incubation with DCFH-DA or DMSO

for 60 minutes, cells were centrifuged at 5000 g. The pre-

cipitates were used for detection of fluorescence value at the

wavelength of 525 nm.

Isolation of pulmonary microvascular

endothelial cell
After anesthetization with 10% phenobarbital, mice lungs

were collected and cut into pieces. Then, pieces of lung
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tissue were mixed with DMEM and filtered with a 200-

mesh sieve. Cells (5 x 105 cells/well) were cultured with

endothelial cell medium in the dish covered with 0.1%

gelatin at 37°C in a 5% CO2 humidified atmosphere. Cell

morphology was observed using microscope and cell

purity was verified utilizing immunofluorescence staining

with factor VIII (endothelial cells marker). Then, the

isolated cells were treated with DMSO, LPS, LPS

+SU5416, LPS+DXM or LPS+SU5416+DXM for 24

hours, respectively.

Endothelial barrier function detection
Endothelial barrier function was evaluated through detect-

ing endothelial cell integrity and vascular permeability.

For endothelial cell integrity assay, cells were incubated

with fluorescein diacetate (FDA) (100 μg/mL) and propi-

dium iodide (PI) (60 μg/mL) for 10 minutes at room

temperature in darkness and photographed with

a fluorescence microscope. For vascular permeability

detection, pulmonary microvascular endothelial cells

(PMVECs) were grown in transwell at a density of 105/

cm2. After 2–3 days culture, 125 mg/L FITC-LDL was

added into upper chamber, while 600 µL DMEM was

added into the substrate of transwell. OD values of upper

chamber and substrate were measured by using microplate

reader. And vascular permeability was calculated by the

following formula: Pa (%)=(Vr × Cr)/(Vd × Cd)×100%.

Cr: FITC-LDL concentration in substrate; Cd: FITC-LDL

concentration in upper chamber; Vr: medium volume in

substrate; Vd: medium volume in upper chamber.

Immunofluorescence
PMVECs were seeded on cover glasses for 24 hours, then

fixed with 3% paraformaldehyde for 30 minutes at 4°C.

After permeabilizing with 0.1% Triton-100 for 15 minutess,

cells were incubated with factor VIII at room temperature

for 1 hour followed by incubation with a secondary anti-

body for another 1 hour. The immuno-labeled cells were

evaluated with Carl Zeiss LSM5 EXITER laser scanning

confocal microscope (Carl Zeiss, Jena, Germany).

Statistical analyses
All experiments were repeated at least three times.

Statistical analysis was processed using SPSS software

with a two-tailed Student's t-test and one-way ANOVA.

Values are presented as the mean ± SEM. Statistically

significant differences were defined at P<0.05.

Results
SU5416 suppresses immune response in

mice with ALI
Excessive activation and penetration of neutrophils is the

common pathological process in LPS-induced ALI.2

Activated neutrophils subsequently enhanced the release of

proinflammatory cytokines, which can further aggravate lung

injury.27 To determine the biofunction of SU5416 in LPS-

induced ALI, we collected BALF from the mice. In compar-

ison with saline group, LPS significantly increased neutrophil

cell numbers in BALF of WT and TLR4−/- mice, while neu-

trophil cells were significantly diminished in TLR4−/- mice

(Figure 1A, P<0.01). As a positive control, dexamethasone

(DXM) observably inhibited cell population of neutrophil in

BALF isolated from two genotype mice (P<0.01). In addition,

SU5416 exhibited the similar inhibitory effect on the popula-

tion of neutrophil cell (P<0.01). Furthermore, co-treatment

with SU5416 and DXM significantly alleviated LPS-induced

ALI (P<0.01) (Figure 1A). The levels of proinflammatory

cytokines (TGF-β, IL-1β, IL-6, and TNF-α) in BALF showed

the same trend with the level of neutrophil cells in mice.

Moreover, SU5416 and/or DXM significantly reversed LPS-

induced proinflammatory factors in BALF (Figure 1B–E).

It is known that levels of SOD and NO are the indicators

for lung injury. Compared to saline group, LPS restrained

SOD in BALF, which was obviously revered by SU5416

and/or DXM treatment (Figure 1F). Moreover, SU5416 and/

or DXM treatment dramatically remitted LPS-triggered the

production of NO in BALF (Figure 1G). Similarly, the con-

centration of BALF in each group exhibited the similar trend

(Figure 1H). These data suggested SU5416 could signifi-

cantly reverse LPS-induced ALI in mice, and exert an even

better protective effect in TLR4 knockout mice.

SU5416 attenuates LPS-mediated lung

injury in mice
As we know, accumulation of inflammatory cytokines could

damage adjacent cells and result in severe lung injury.

Transmission electron microscope examinations showed LPS

severely damaged the integrity of the alveolar epithelial cells, for

instance, cell nucleus and mitochondria swelling, mitochondria

number reduction, and osmiophilic lamellar bodies’ vacuola-

tion. (Figure 2A); and TLR4−/- mice moderately resistant to

LPS-mediated lung injury (Figure 2A, second row). Similar to

DXM, SU5416 or SU5416 plus DXM significantly reversed

LPS-induced structure disturbance of alveolar epithelial cells in
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both WT and TLR4−/- mice (Figure 2A). Next, H&E staining

was performed to assessLPS-inducedhistopathological changes

in each group. As indicated in Figure 2B, numerous neutrophil

infiltration, lung tissue injury, and alveolar wall thickening were

observed in LPS-stimulated WT and TLR4−/- mice. However,

thinning alveolarwall, normal alveolar structure, and noobvious

inflammatory infiltration were observed in SU5416 or DXM-

treated groups. In addition, co-treatment of SU5416 with DXM

showed better protective effect on LPS-treated ALI mice than

DXM alone treatment (Figure 2B). Moreover, TLR4 deletion

not only mitigated LPS-triggered histopathological disturbance

of alveolar epithelial cells, but also presented superimposed

protective effect on LPS-induced ALI after treatment with

SU5416 and/or DXM. Total ALI score analysis based on

H&E staining showed the same tendencywith histopathological

analysis (Figure 2C). Furthermore, compared to saline-treated

mice, SU5416 and/or DXM repressed the production of ROS in

lung tissues (WT and TLR4−/- mice) (Figure 2D). All these

results demonstrated that SU5416 acted as a protective agent

against LPS-induced ALI in mice.

SU5416 reverses LPS-induced ALI partly via

modulating TLR4/NF-κB signaling in mice
To analyze the role of SU5416 on LPS-induced alterations of

alveolar endothelial cells, vascular endothelial cellmarkerCD31

was detected using immumohistochemical staining. The results

indicated that CD31 was significantly reduced after LPS treat-

ment in the two genotype mice (Figure 3A, second row).

However,SU5416and/orDXMdramatically restored the reduc-

tion of CD31 expression mediated by LPS, suggesting SU5416

could rescue LPS-induced dysfunction of pulmonary endothe-

lial barrier (Figure 3A, third to fifth rows). To explore the

molecule mechanisms underlying the protective effect of

SU5416 on LPS-launched ALI, Western blots were performed.

As shown in Figure 3B–D, both p-VEGFR2 and VEGFR2

expressionswere inhibited bySU5416 inWTandTLR4−/-mice.

A study has reported that DXM could attenuate LPS-

mediated ALI through modulating NF-κB activation and

TLR4/NF-κB signaling.1 In the present study, we observed

that TLR4 ablation moderately inhibited LPS-induced upregu-

lation of VEGF/VEGFR and NF-κB pathway, and decreased

downstreammolecules p53 and Bcl-2 (Figure 3B–D). This data

indicated that TLR4 plays an important role in the process of

LPS-induced ALI. In addition, SU5416 and/or DXM sup-

pressed VEGF/VEGFR and TLR4/NF-κB signaling pathways

andupregulated the expressions of p53 andBcl-2 inLPS-treated

WT and TLR4−/- mice (Figure 3B). Furthermore, SU5416 and

DXM exhibited better protective effect in TLR4−/- mice than

WT mice implying that the anti-ALI functions of SU5416 and

DXMwere potentially independent of TLR4.

A B C

D E F

G

BA
LF

 c
on

ce
nt

ra
tio

n 
(μ

g/
m

L)

TLR4+/+ TLR4-/-
TLR4

N
O

 (
μM

)

+/+ TLR4-/-

TLR4+/+ TLR4-/- TLR4

S
O

D
 (

U
/m

L)
IL

-1
β 

(p
g/

m
L)

T
N

F
-α

 (
pg

/m
L)

T
G

F
-α

 (
pg

/m
L)

IL
-6

 (
pg

/m
L)

+/+ TLR4

TLR4 TLR4

-/-

TLR4+/+ TLR4-/-

TLR4+/+ TLR4-/-
TLR4

N
um

be
r 

of
 P

M
N

 (
10

6 /m
L)

+/+ TLR4-/-

00

1

2

3

4

0
0

200

400

600

000

2

4

6

8

500

1000

1500

2000

100

200

300

50

100

150

0

50

100

150

100

200

300

400

500
Saline

LPS

SU5416+LPS

DXM+LPS

SU5416+DXM+LPS

Saline

LPS

SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

** **
**

**

** **
**

**

ns

##
##

ns
ns

H

Figure 1 Effects of SU5416 on the levels of inflammatory factors in mice treated with LPS. (A) Numbers of neutrophil cells in BALF. Levels of proinflammatory cytokines TGF-β
(B), IL-1β (C), IL-6 (D) and TNF-α (E) of BALF in each group was detected with ELISA kits, respectively. Activity of SOD (F) and NO level (G) in BALF was measured withWST-1

method and microwell plate method, respectively. (H) The concentration of BALF was detected with BCA assay. *P<0.01; **P<0.05; ***P<0.01 vs TLR4+/+.
Abbreviations: BALF, bronchoalveolar lavage fluid; LPS, lipopolysaccharide; DXM, dexamethasone ; TLR4, toll-like receptor 4.

Dovepress Huang et al

Drug Design, Development and Therapy 2019:13 submit your manuscript | www.dovepress.com

DovePress
1767

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


A B C

D

TLR4

Lu
ng

 in
ju

ry
 s

co
re

 (0
-1

6)

+/+ TLR4-/-

TLR4+/+

TLR4+/+

TLR4-/-

TLR4-/-

TLR4

R
os

 p
ro

du
ct

io
n 

(fl
uo

re
sc

en
ce

)

+/+ TLR4-/-

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline
LPS
SU5416+LPS
DXM+LPS
SU5416+DXM+LPS

Saline

LPS

SU5416+LPS

DXM+LPS

SU5416+DXM+LPS

Saline

LPS

SU5416+LPS

DXM+LPS

SU5416+DXM+LPS

0

0

200

400

600

5

10

15

20

Figure 2 Impacts of SU5416 on LPS-induced ALI. (A) Mice pulmonary ultrastructure was observed with transmission electron microscope. White and black arrows indicate

osmiophilic multilamellar body and mitochondria, respectively. (B) Histopathologic staining images of mice lungs. Total injury score (C) and ROS production (D) in all groups

of mice lungs. *P<0.01; **P<0.05; ***P<0.01 vs TLR4+/+.

Abbreviations: TLR4, toll-like receptor 4; LPS, lipopolysaccharide; DXM, dexamethasone; ALI, acute lung injury

0.0

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

(o
f β

-a
ct

in
)

0.5

1.0

1.5

2.0

0.0

R
el

at
iv

e 
pr

ot
ei

n 
le

ve
l

(o
f β

-a
ct

in
)

0.5

1.0

1.5

2.0

TLR4

p-p65

NF-κB

p-VEGFR2

VEGFR2

p53

Bcl-2

TLR4

p-p65

NF-κB

p-VEGFR2

VEGFR2

p53

Bcl-2

β-actin

TLR4

p-p65

NF-κB

p-VEGFR2

VEGFR2

p53

Bcl-2

Sali
ne

LP
S

SU54
16

+LP
S

DXM+LP
S

SU54
16

+DXM+LP
S

Sali
ne

LP
S

SU54
16

+LP
S

DXM+LP
S

SU54
16

+DXM+LP
S

Sali
ne

LP
S

SU54
16

+LP
S

DXM+LP
S

SU54
16

+D
XM+L

PS

Sali
ne

LP
S

SU54
16

+LP
S

DXM+LP
S

SU54
16

+D
XM+L

PS

TLR
+/+

TLR-/-

TLR4+/+

TLR4+/+
TLR4-/-

TLR4-/-

Saline

LPS

SU5416+LPS

DXM+LPS

SU5416+DXM+LPS

**

**

##

**** #

## ##
##

##

#

##
##

##

##

##
##

##

**

**

** #

## ##
##

##

##
##

##

##
####

A B C

D

Figure 3 TLR4/NF-κB signaling was involved in the progression of LPS-stimulated ALI. (A) Immunohistochemical staining of CD31 in LPS-stimulated WT and TLR4−/- mice

after treatment with DXM and/or SU5416+DXM. (B) Mice were treated with DXM and/or SU5416 for 12 hours, and the expressions of TLR4, p-p65, NF-κB, p-VEGFR2,
VEGF2R, p53, Bcl-2, and β-actin in lung tissues were detected with Western blot. (C, D). Relative expressions of TLR4, p-p65, NF-κB, p-VEGFR2, VEGF2R, p53 and Bcl-2.

*P<0.01 vs saline; **P<0.05; ***P<0.01 vs LPS.

Abbreviations: TLR4, toll-like receptor 4; LPS, lipopolysaccharide; DXM, ; ALI, acute lung injury; VEGFR, vascular endothelial growth factor receptor; DXM,

dexamethasone.
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SU5416 regulates endothelial barrier

dysfunction in PMVECs
We further performed in vitro experiments to illustrate the

role of SU5416 in LPS-stimulated inflammatory responses

of PMVECs. The morphology of PMVECs isolated from

WT and TLR4−/- mice were in good condition (Figure 4A).

In addition, immunofluorescence staining indicated the

purity of PMVECs was 98% and cells were suitable for

subsequent experiments (Figure 4B).

Next, PMVECs from WT and TLR4−/- mice were

treated with DMSO, LPS, LPS+SU5416, LPS+DXM, or

LPS+SU5416+DXM, respectively. As shown in Figure

4C, LPS obviously enhanced the membrane permeability

of endothelial cells, which was prominently reversed by

SU5416 or DXM. Additionally, SU5416 plus DXM

exerted a more strongly protective effect on the membrane

permeability. Consistent with the in vivo experiments,

TLR4 deletion could further improve the endothelial bar-

rier dysfunction of PMVECs (Figure 4C).

Endothelial cell integrity was also a key determinant

for the endothelial barrier. By using FDA-PI assay, we

evaluated damage degree of endothelial cell in all groups.

As showed in Figure 5A and B, LPS severely damaged

endothelial cell integrity and promoted PMVECs apopto-

sis. Moreover, the endothelial cell integrity was modestly

improved in the TLR4−/- group compared with WT mice

(Figure 5A and B, second row). SU5416 or DXM also

exhibited protective effects on endothelial cell integrity.

Similarly, SU5416 plus DXM exerted a better protective

effect than used alone (Figure 5A and B). Furthermore,

knockout of TLR4 showed less invasive to endothelial

cells in each group. Our findings suggested SU5416

exhibited a similar protective effect as DXM on endothe-

lial cell integrity and vascular permeability in PMVECs.

Discussion
SU5416 is a potent and selective inhibitor of Flk1/KDR

(VEGFR-2). Previous study indicated that SU5416 combined

with chronic hypoxia could produce a model of severe pul-

monary arterial hypertension.28 In addition, the combined uti-

lization of radiation and SU5416 observably repressed the

survival in human umbilical vein endothelial cells

(HUVECs) via induction of apoptosis, implying that SU5416

was potentially served as an adjuvant for cancer treatment with

radiotherapy.29 In addition to tumor inhibition effective,

SU5416 mitigated bleomycin-induced pulmonary fibrosis via

targeting VEGF/VEGFR (Flk-1) signaling in mice.30 In this

study, we indicated that SU5416 could attenuate LPS-induced

ALI through modulating the VEGF/VEGFR and NF-κB path-

ways, which suggested SU5416 might be used for the treat-

ment of patients with inflammation-mediated ALI.

LPS can induce transcription and production of inflam-

matory cytokines such as IL-6, TNF-α, COX-2, and IL-1β
through activating NF-κB signaling in lung and BALF.31

Enhancement of vascular endothelium cells permeability

contributes to the secretion of inflammatory factors from

injury to the endothelium and epithelial alveolar cells in

lung, leading to inflammatory responses.3 Endothelial bar-

rier strongly depends on the concentration of NO,32 which

is required for vasodilation, platelet aggregation, and adhe-

sion of inflammatory cells to the endothelium.33,34 DXM

can attenuate the increased inflammatory factors such as IL-

6, TNF-α, and COX-2 in LPS-stimulated ALI,17 potentially

through affecting NO-dependent vascular endothelium
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permeability. In our research, we observed the increased

production of inflammatory factors, formation of SOD and

NO in BALF of LPS-treated WT and TLR4−/- mice. TLR4

knockout observably restrained the biotoxicity of LPS in

mice model of ALI. In addition, SU5416 significantly sup-

pressed LPS-triggered inflammatory responses in mice,

characteristic with the decreases of inflammatory cells, pro-

duction of inflammatory cytokines, SOD and NO in BALF.

Combination of SU5416 and DXM appeared additive inhi-

bitory effects on LPS-stimulated ALI. Furthermore, we

found SU5416 might acted as an anti-ALI drug independent

of TLR4.

Injury of alveolar epithelial cells and infiltration of

inflammatory cells are the main hallmarks of LPS-

induced ALI. LPS-TLR4 signaling activates NF-κB and

Nlrp3 inflammasome, resulting in damage to alveolar

epithelial cells and inflammation infiltration.35 A variety

of studies have verified that targeting LPS/TLR4/NF-κB
signaling pathway is crucial for treating ALI disease. It is

reported that numerous Chinese traditional medicines can

protect against LPS-induced ALI via inhibiting TLR4/NF-

κB signaling, which includes Lianqinjiedu (LQJD),36

Mogroside IIIE,37 Artesunate,38 and so on. Activation of

NF-κB promotes the production of inflammatory cytokines

mainly through the resynthesis of IκB,39,40 leading to

diffuse alveolar damage in the lung.41 Similar to these

reports, our data illustrated SU5416 could inhibit LPS-

evoked injury to alveolar epithelial cells and area of

inflammation infiltration in lung tissues. VEGF/VEGFR,

TLR4/NF-κB, and downstream signaling cascade were

restrained in LPS-stimulated WT mice after treatment

with SU5416, DXM, and co-treatment of SU5416 and

DXM. And this inhibitory effect was more obvious in

TLR4−/- mice. Possibly, SU5416 affected LPS-induced

ALI partly through VEGF/VEGFR and TLR4/NF-κB sig-

naling pathway. Other signals involving the progression of

ALI independent of TLR4, might be disturbed by SU5416

administration.
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Endothelial cell integrity and vascular permeability are

crucial for the function of the endothelial barrier, which main-

tains tissue fluid homeostasis. Increases of vascular permeabil-

ity is the main phenomenon of many inflammatory diseases.

LPS decreases p53 expression in lung, while nutlin protects

against LPS-evoked dysfunction of lung endothelial barrier via

increases p53.42 ROS formatted by neutrophils or other inflam-

matory cells activates calciumsignalingmechanisms to control

endothelial barrier function and the progression of ALI.43

Therefore, inhibition of generation of oxygen radical could

be beneficial during the pathologies of ALI and SOD, which

might play an anti-inflammatory role. All these reports suggest

that the status of the endothelial barrier is a key indicator of

lung function. Here, similar to the positive control DXM,

SU5416 inhibited vascular permeability via promoting

endothelial cell integrity in LPS-stimulated primary

PMVECs from WT and TLR4−/- mice. In accordance with

the in vivo experiments, the inhibitory effect of SU5416 or

DXM is more noticeable in primary PMVECs isolated from

TLR deletion mice. Thus, SU5416-mediated protective effects

on LPS-evoked ALI was potentially independent of TLR4. In

addition, it should be noted that targeting drugs, including

antioxidants and in particular SOD, to specific cells is being

pursued in animals using ICAM-1, ACE, APP-1, GP80, CD31

and PV1-directed carriers.44–47 However, the present study is

lacking in investigating the lung-specific treatment strategy.

Thus, further studies will be needed to explore the effects of

cell-specific intervention in the lung.

In summary, our findings demonstrated that SU5416

significantly inhibited LPS-induced lung injury and may

serve as an efficient small molecule inhibitor in the treat-

ment of patients with ALI.
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