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Abstract: Liver kinase B1 (LKB1) also referred to as serine/threonine kinase 11 (STK11)

encodes a 50 kDa evolutionary conserved serine/threonine kinase that is ubiquitously

expressed in adult and fetal tissues. LKB1 is a master kinase known to phosphorylate and

activate several kinases including AMP-activated protein kinase, a crucial cellular energy

sensor. LKB1 shows pleiotropic activity playing diverse roles in multiple processes,

including cell polarity and other processes relevant in cancer pathology, such as energy

metabolism, proliferation and apoptosis. In spite of the fact that LKB1 is often consid-

ered a tumor suppressor in a wide variety of organs, in the last years, several studies

have shown that LKB1 is unexpectedly high in hepatocellular carcinoma (HCC), the

most common type of primary liver cancer. Post-translational modifications of LKB1 are

potentially relevant in HCC. Herein, we provide a comprehensive revision of post-

translational modifications of LKB1 in HCC and how they modulate LKB1 function by

different mechanisms such as regulation of its activity, localization or stability. Overall,

the signature post-translational modifications of LKB1 in HCC appear to play an impor-

tant role in the rather unique role of LKB1 as an oncogenic driver in liver cancer and

may provide an alternative valuable therapeutic approach to regulate LKB1 expression

and/or activity in HCC.
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Introduction
Liver kinase B1 (LKB1) also referred to as serine/threonine kinase11 (STK11)

(located on chromosome 19p13.3) encodes a 50 kDa evolutionary conserved

serine/threonine kinase that is ubiquitously expressed in adult and fetal tissues,

particularly in pancreas, liver, testis and skeletal muscle (Figure 1).1,2 LKB1

possesses a nuclear localization sequence at its N-terminal noncatalytic region

that can promote the shuttling of LKB1 between the cytoplasm and the nucleus.3

Lacking a nuclear export domain of its own, LKB1 cellular localization is mediated

by cofactors, such as the pseudokinase Ste20-related adaptor (STRADα) and the

scaffolding protein MO25.4–6 STRADα adopts a closed conformation typical of

active protein kinases and binds LKB1 as a pseudosubstrate. STRADα promotes the

active conformation of LKB1 which is stabilized by MO25 interacting with the

LKB1 activation loop.7 Binding of LKB1 to STRADα–MO25 complex induces

relocalization of LKB1 from the nucleus to the cytoplasm stimulating its catalytic

activity.4,5 Moreover, by facilitating the binding of exportins to LKB1 and acting as
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a competitor for importin-α/β, STRADα prevents the

nuclear relocalization of LKB1 (Figure 2).8 The cellular

localization of LKB1 plays an essential role on its activity.

Liver kinase B1 in cancer
LKB1 shows pleiotropic activity being involved in the

regulation of cell polarity and the regulation of energy

metabolism, proliferation and apoptosis. LKB1 is a master

kinase known to phosphorylate and activate 14 kinases,

including AMP-activated protein kinase (AMPK) and

microtubule-associated protein/microtubule affinity-regu-

lating kinases (MARK).9 AMPK is a crucial nutrient and

cellular energy sensor that maintains energy homeostasis

mainly by regulating metabolism and favoring the expres-

sion of proteins involved in catabolism and switching off

biosynthetic pathways under falling of energy status.10 In

cells bearing intact LKB1/AMPK signaling, energy deple-

tion promotes growth arrest, whereas cells lacking LKB1,

often showing chronic AMPK activation, dysregulated

cellular proliferation occurs. Therefore, a role for LKB1

in cancer has been suggested in the last years. Indeed,

LKB1 was first identified as a tumor-suppressor gene as

germline mutations or deletions in the LKB1 gene were

found to be responsible for the Peutz–Jeghers syndrome

(PJS), an inherited cancer-prone disorder.1 Moreover,

somatic mutations of LKB1 are involved in the develop-

ment of non-small-cell lung cancer,11 cervical cancer,12

and prostate cancer,13 among others. Although LKB1 is

classified as a tumor suppressor, some recent evidence

highlight that LKB1 may exhibit cell type-specific func-

tions and an ambivalent role in tumorigenesis.
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Figure 1 Liver kinase B1 (LKB1) is ubiquitously expressed in adult tissues.

Distribution of LKB1 by immunohistochemistry staining in mouse tissues. Arrows

indicate LKB1 staining.
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Figure 2 The nucleocytoplasmic shuttling of liver kinase B1 (LKB1) is a tightly regulated process important in the modulation of its activity. The cellular localization of LKB1

plays an essential role in its activity and ability to activate AMP-activated protein kinase (AMPK). LKB1 cellular localization is mediated by cofactors, such as the Ste20-related

adaptor (STRADα) and MO25. Binding of LKB1 to STRADα–MO25 complex induces relocalization of LKB1 from the nucleus to the cytoplasm stimulating its catalytic

activity, for example promoting the phosphorylation of AMPK. Although LKB1 is imported into the nucleus by importin-alpha/beta, STRADα and MO25 passively diffuse

between the nucleus and the cytoplasm. STRADα facilitates nuclear export of LKB1 by serving as an adaptor between LKB1 and exportins CRM1 and exportin7.4,5,8
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Liver cancer is the sixth most prevailing cancer

worldwide.14 Common risk factors for hepatocellular carci-

noma (HCC), the most common types of primary liver cancer

include chronic hepatitis B or C infection, metabolic syn-

drome, Type 2 diabetes and alcohol consumption.15 Of special

concern, HCC patients have a poor and gloomy prognosis,

with a 5-year survival rate of less than 10%, making liver

cancer the second leading cause of global cancer-related

deaths.16 In the last years, we and others have shown that

LKB1 is unexpectedly high both in animal models of HCC

and in liver biopsies of HCC patients.17–19 To date, the levels

of LKB1 in HCC have been addressed without taking into

consideration the etiology of HCC, being that in most studies

presented samples from hepatitis C, alcoholic steatohepatitis

(ASH) and nonalcoholic steatohepatitis (NASH) have been

used.17,20 Further studies should be undertaken to address the

expression of LKB1 inHCC samples from different etiologies.

Moreover, LKB1 knockdown in hepatoma cells induces tumor

cell death,17,21 whereas in vivo silencing of LKB1 in a xeno-

graftmousemodel ameliorated hepatoma tumor growth.17 The

mechanisms underlying the overexpression of LKB1 in HCC

will be further explored.

Liver kinase B1 regulation in HCC
Protein expression may be modulated in several ways, from

the DNA–RNA transcription step to post-translational mod-

ification of a protein. Although previous studies have shown

that the biallelic inactivation of the Lkb1 gene in mice leads

to multiple hepatic nodular foci and HCC,22 genetic altera-

tions of the LKB1 gene together with one LKB1 missense

mutation and allelic loss were only sporadically found in

clinical HCC.23 Likewise, the frequencies of DNA methyla-

tion, a hallmark of many cancer cells, were similar between

HCC and the corresponding noncancerous tissues.24

Therefore, other mechanisms, such as post-translational

modifications of LKB1, are potentially relevant in HCC.

Post-translational modifications of
liver kinase B1 in HCC
Post-translational modifications are considered key

mechanisms regulating protein homeostasis and function

in eukaryotic cells. These modifications extend the diver-

sity of the proteome by inducing structural and functional

changes in proteins through different mechanisms like

covalent binding of functional groups, cleavage of regula-

tory subunits and degradation of other proteins. The most

common post-translational modifications include

phosphorylation, methylation, acetylation, glycosylation,

ubiquitination and ubiquitin-like protein (UBLs)-mediated

post-translational modifications.

Phosphorylation of liver kinase B1 in
HCC
Reversible protein phosphorylation, mainly on serine,

threonine or tyrosine residues, is one of the most well-

studied post-translational modifications. In the context of

liver cancer, phosphorylation of LKB1 at Ser428 was

previously observed in liver tumors of mice that sponta-

neously develop HCC, the mice deficient in methionine

adenosyl transferase 1 (Mat1A-/-). Likewise, SAMe-D

(SAMe-Deficient) cells, a cell line derived from Mat1A-/-

mice, OKER cells, hepatic tumor cells derived from the

HCC mouse model deficient in glycine N-methyltransfer-

ase (Gnmt) (Gnmt−/- mice), together with several human

hepatoma cells lines, express high levels of phosphory-

lated LKB1 at Ser428.17,21 In hepatoma SAMe-D cells,

LKB1 phosphorylation regulates Akt-mediated survival in

a process regulated by p53, HAUSP and HuR.21

Moreover, Ras-mediated hyperphosphorylation of LKB1,

concomitant with expression of Ras guanyl-releasing pro-

tein-3 (RASGRP3), promoted proliferation of OKER

hepatoma cells and required mitogen-activated protein

kinase-2 (ERK) and ribosomal protein S6 kinase polypep-

tide-2 (p90RSK).17 Importantly, HCC tumors with the

poorer prognosis have the highest levels of phosphorylated

LKB1 (Ser428).21 Overall, these results suggest that LKB1

phosphorylation at Ser428 is involved in a pro-survival

mechanism of hepatoma cells accounting for aberrant

tumor growth.

Ubiquitination of liver kinase B1 in
HCC
The ubiquitination of proteins is a post-translational mod-

ification that is involved in many different cellular pro-

cesses in addition to its well-known function during

protein degradation. LKB1 ubiquitination has been impli-

cated in HCC. The polyubiquitination of LKB1 takes place

on five lysine residues (K41, K44, K48, K62 and K63) at

the N-terminus of LKB1. Indeed, Lee et al have described

that LKB1 is polyubiquitinated by the Skp2-SCF ubiquitin

ligase being that overexpression of Skp2 and LKB1 is

observed in late-stage HCC, and their overexpression pre-

dicts poor survival outcomes.19 Mechanistically, the poly-

ubiquitination of LKB1 is crucial by maintaining the
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integrity of the LKB1-STRADα–Mo25 complex, which

plays an important role in the regulation of LKB1 nucleo-

cytoplasmic export and concomitant kinase activity.

Furthermore, oncogenic Ras acts upstream of Skp2 to

promote LKB1 polyubiquitination by activating Skp2-

SCF ubiquitin ligase.19 In summary, ubiquitination of

LKB1 is a hallmark of late stages HCC.

Neddylation of liver kinase B1 inHCC
The NEDD8 conjugation pathway, NEDDylation, is similar

to that described for ubiquitination, resulting in the reversible

covalent conjugation of a molecule of NEDD8 to a lysine

residue of the substrate protein. NEDDylation conjugation

was shown to be aberrant in liver biopsies of HCC patients in

comparison with healthy controls,18,25 where a strong posi-

tive correlation was observed between the levels of LKB1

and NEDD8.18 Indeed, Barbier-Torres et al have performed

some in vitro experiments in pro-tumoral mouse hepatocytes,

suggesting that LKB1 is directly NEDDylated and that

NEDD8 directly stabilizes LKB1 in HCC.18 Further studies

are necessary to find the enzymes involved in the

NEDDylation and deNEDDylation pathway of LKB1

together with the residues that are relevant for

NEDDylation. Importantly, when pre-tumoral hepatocytes

were treated either with Pevonedistat,26 a small pharmacolo-

gical inhibitor of NEDDylation, or by silencing NEDD8

using molecular approaches, LKB1 levels were reduced

and tumor cell death was induced.18 Likewise, when liver

tumor-bearing mice were treated with Pevonedistat, the

levels of LKB1 fell.18 Liver tumor cell apoptosis induced

by Pevonedistat was reduced by overexpressing LKB1, sec-

onding the important role of LKB1 as an oncogenic driver in

HCC. Overall, NEDD8-mediated post-translational modifi-

cations of LKB1 are relevant in HCC and offer a novel

druggable therapeutic approach for the regulation of LKB1

levels.

Sumoylation of liver kinase B1 inHCC
Small ubiquitin-related modifier (SUMO)-mediated modifi-

cations appear to be upregulated in many types of cancer,

including HCC.27–29 LKB1 contains 3 high scoring sites for

possible SUMO-binding sites in its amino acid sequence.

Recently, Ritho et al have described for the first time LKB1

SUMO-mediated modifications and its implication under

metabolic stress circumstances.30 Moreover, a recent report

by Zubiete-Franco et al highlights that in human hepatoma

cells and preclinical mouse models of liver cancer as well as

in clinical biopsies of HCC patients, LKB1 is modified by the

SUMO-2 paralogue in the Lys178. Noteworthy, LKB1

SUMOylation, which is more prevalent during hypoxic sti-

muli, offers growth advantage to hepatoma cells and is a

signature of more aggressive HCC clinical tumors. Under

these circumstances, LKB1 SUMOylation appears to hamper

the binding of LKB1 to STRADα, thereby diminishing the

LKB1 nucleocytoplasmic shuttling and reducing LKB1

kinase activity.20 Even though LKB1 functions in the nucleus

are not totally understood to date, they appear to play an

important role in the regulation of HCC tumor cell growth

and survival during hypoxia. Further studies are necessary to

fully understand the mechanisms underlying the oncogenic

role of SUMOylated LKB1 in HCC.

Acetylation of liver kinase B1 in HCC
LKB1 has been shown to be acetylated in rat liver. Indeed,

LKB1 activity was 33% higher and its total acetylation at

Lys48 was 60% lower in the liver of starved rats where

LKB1 acetylation at Lys48 prevents LKB1 binding to

STRADα hampering LKB1 nucleocytoplasmic export.31

It is well-described that protein acetylation can compete

with SUMO-mediated modifications for the same lysine

residue, resulting in a SUMO/acetylation switch32 or in

opposite, acetylation switch can regulate SUMO-depen-

dent interaction networks.33 In human hepatoma cells, we

have recently shown that LKB1 acetylation at Lys48 is

essential for its posterior SUMOylation at Lys178 by

SUMO-2.20 On this basis, unpublished data from our

laboratory indicate that in human hepatoma cells during

hypoxia, LKB1 acetylation is not reduced (data not

shown). More studies are necessary to unequivocally

address the role of LKB1 acetylation in HCC.

Conclusion
Although LKB1 has been previously described in a wide

variety of organs as a tumor suppressor, in the last years,

several groups have shown that LKB1 expression is aug-

mented in HCC. Under these conditions, LKB1 overexpres-

sion does not appear to be regulated at the transcriptional

level being that post-translational modifications of LKB1

appear to play a role in the regulation of the levels of LKB1

in HCC. To date, five different post-translational modifica-

tions of LKB1 have been implicated in HCC which appear

to regulate the life cycle of LKB1 (Figure 3). The time

course relative to disease progression and the nature of the

relationship (competition/collaboration) between the post-

translational modifications of LKB1 in HCC is not comple-

tely known. We although we can hypothesize that NEDD8-

Delgado et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Journal of Hepatocellular Carcinoma 2019:688

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


stabilization of LKB1, a process occurring very early in the

progression of chronic liver disease and HCC18,34,35

increasing the protein half-life time, may result that LKB1

is a more easily accessible target to other post-translational

modifications in HCC. On this basis, NEDDylated LKB1

could be further acetylated and then SUMOylated, being

that LKB1 SUMOylation promotes a more predominant

nuclear localization of LKB1 associated with growth and

survival advantage to the tumor cells and inducing tumor

growth.20 Taking into consideration the nuclear localization

of LKB1 and the fact that nucleocytoplasmic shuttling is a

mechanism relevant in the mediation of the transcriptional

response, the role of LKB1 as a modulator of the transcrip-

tional activity should be further explored. In alternative,

NEDDylated LKB1 can also be phosphorylated17,21 or

polyubiquitinated19 inducing proliferation and survival. In

the near future, more research should focus on the study of

the intermediates and players involved in these post-transla-

tional modifications of LKB1 in HCC. The recent advances

on the development of pharmacological inhibitors of post-

translational modifications, such as Pevonedistat, a specific

inhibitor of NEDDylation,26 several small molecule inhibi-

tors of the ubiquitination cascade,36 and inhibitors targeting

the SUMO pathway37 further support these studies in order

to find novel therapeutic targets to tackle HCC.
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