
OR I G I N A L R E S E A R C H

Effects of an intrathecal TRPV1 antagonist,

SB366791, on morphine-induced itch, body

temperature, and antinociception in mice
This article was published in the following Dove Press journal:

Journal of Pain Research

Satoshi Sakakibara

Noritaka Imamachi

Manabu Sakakihara

Yukiko Katsube

Mai Hattori

Yoji Saito

Department of Anesthesiology, Shimane

University Faculty of Medicine, Shimane,

Japan

Purpose: Transient receptor potential vanilloid 1 (TRPV1) not only is activated by multiple

stimuli but also is involved with histamine-induced itch. The effects of TRPV1 on morphine-

induced itch are unknown. We examined the effects of intrathecal administration of TRPV1

antagonist on morphine-induced itch, body temperature, and antinociception for mice.

Methods: Each C57/BL6j mouse was intrathecally administered with one of the following

solutions: morphine, SB366791 (as the TRPV1 antagonist), morphine + SB366791, saline, or

vehicle. For each mouse, each instance of observed scratching behavior was counted, the

body temperature was measured, and the nociceptive threshold was determined using the

tail-immersion test.

Results: SB366791 dose-dependently reduced the scratching behavior induced by the

administration of morphine. SB366791 and the morphine + SB366791 groups did not

manifest an increase in body temperature. Antinociceptive effects were observed to occur

dose-dependently for morphine but not for SB366791. Compared with morphine alone, the

administration of morphine + SB366791 did not reduce significant antinociceptive effects.

Conclusion: We propose that an intrathecal TRPV1 antagonist, SB366791, reduced mor-

phine-induced itch without causing hyperthermia and did not suppress morphine-induced

antinociception for mice.
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Introduction
Although morphine is indispensable and widely used for pain management, it

presents some adverse effects, including nausea, vomiting, and respiratory depres-

sion, with itch being a major effect. The frequency and severity of morphine-

induced itch vary with the dose and route of administration.1 The incidence of

neuraxial morphine-induced itch is sometimes severe, ranging from 30% to 90% in

patients receiving morphine.1 Previously, histamine antagonists have failed to

suppress morphine-induced itch.2,3 Conversely, opioid receptor antagonists can

block morphine-induced itch but are not clinically available because they inhibit

opioids’ antinociceptive effects. Therefore, there is no standard treatment for

morphine-induced itch.

Transient receptor potential vanilloid 1 (TRPV1) is the first cloned TRP family

member channel.4 Recently, some TRP channels were considered as the molecular

sensors of chemical, thermal, and mechanical noxious stimuli that evoke pain and

itch.5 TRPV1 is activated by multiple stimuli, including capsaicin, heat, pH,
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endocannabinoids, and endogenous lipids.6 TRPV1

antagonists have shown antinociceptive effects in several

pain models including inflammatory, cancer, and post-

operative pain model.7–9 We previously demonstrated the

important role of TRPV1 on histamine-induced itch.10

However, hyperthermia is a major side effect of the sys-

temic administration of TRPV1 antagonists.11–13

The effects of an intrathecal TRPV1 antagonist on

morphine-induced itch without causing hyperthermia

remain unknown. Herein, we examined the effects of an

intrathecal TRPV1 antagonist on morphine-induced itch,

body temperature, and antinociception for mice.

Materials and methods
Animals
All experiments were approved by the Animal Care and Use

Committee of Shimane university (No. IZ 27–117, 139) and

conducted according to the regulations for animal experiment

at Shimane university. The studies were conducted on male

C57/BL6j mice (21–27 g), which were housed in light (lit

from 8:00 to 20:00) and temperature-controlled (23–25°C)

environment. Food and water were freely available.

Drugs
Morphine hydrochloride (Takeda Pharmaceutical, Tokyo,

Japan) was dissolved in physiologic saline. Morphine hydro-

chloride was dissolved in vehicle consisting of ethanol and

saline at a 1:9 dilutionwhenwe studied the effect of intrathecal

SB366791 onmorphine-induced itch. The dosage ofmorphine

was determined based on the method described in a previous

study.14 SB366791 (Wako Pure Chemical Industries, Osaka,

Japan), the TRPV1 antagonist to be used in this study, was

dissolved in a vehicle, and its dosage was determined as

previously described.15 SB366791 cannot be dissolved in

physiologic saline. Therefore, we used the vehicle.

Intrathecal injection method
Lumbar punctures were performed as previously

described.16 The experiments were performed only after

each administrator had achieved a success rate of >90% in

intrathecal injection training sessions, which involved the

administration of 5 μL lidocaine (2%). The volume of each

drug was 5 μL.

Scratching behavior
This experiment was conducted from 9:00 to 16:00.

Scratching behavior was counted as previously

described.17 Two days before starting this study, the mice

were habituated each day under the same conditions of

observation. After acclimation for 30 mins, each mouse

was intrathecally administered with one of the following

solutions: morphine (0.1, 0.3, or 1.0 nmol) dissolved in

saline, 0.3-nmol morphine dissolved in vehicle, SB366791

0.1 nmol, 0.3-nmol morphine + SB366791 (0.01, 0.03, or

0.1 nmol), saline, or vehicle. After intrathecal solution

administration, the scratching behavior of each mouse

was videotaped for 60 mins under unmanned conditions.

The temporal and total numbers of scratches performed by

the individual mouse’s hind paws during the first 60 mins

after intrathecal injection were counted. This test was

performed in a blinded manner.

Observation of body temperature
This experiment was performed from 9:00 to 16:00. The

mice were habituated every day for 2 days under the same

conditions of observation. Each mouse received an intrathe-

cal injection of one of the following agents: 0.3-nmol mor-

phine dissolved in saline, 0.1-nmol SB, 0.3-nmol morphine

+0.1-nmol SB, saline, or vehicle. The body temperature was

measured using an infrared thermometer (Ubi-x, CISE 99TS,

Tokyo, Japan) on the back of eachmouse (the area shaved for

intrathecal injection)18 at 10, 20, 30, 40, 50, and 60mins after

the performance of the intrathecal injection. This test was

performed in a blinded manner.

Tail-immersion test
This experiment was performed from 9:00 to 17:00. The

mice were habituated every day for 2 days under the

same conditions of observation. The nociceptive thresh-

old was determined as previously described.14 The tail

of each mouse was submerged in water at 48.0±0.5°C,

and the time to tail withdrawal was observed. On the

testing day, each mouse was gently held in a soft cloth,

and its tail was immersed in the heated water before and

after 5, 15, 30, 60, 90, 120, and 150 mins of the

performance of the intrathecal injection of one of the

following solutions: morphine (0.1, 0.3, or 1.0 nmol)

dissolved in saline, SB366791 (0.01, 0.03, or 0.1 nmol),

0.3-nmol morphine +0.1-nmol SB366791, saline, or

vehicle. If a mouse did not remove its tail from the

heated water, a 20 s cut-off was used to prevent tissue

damage and an upper limit of latency of 20 s was

recorded. This test was performed in a blinded manner.
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Statistical analysis
The number of scratches, body temperature, and latencies of

the tail-immersion test are presented as the mean ± standard

error of the mean. The total number of scratches was analyzed

using one-way analysis of variance (ANOVA), followed by

Scheffe’s test. Changes in the number of scratches, body

temperature, and tail-withdrawal latencies were analyzed

using two-way repeated-measures ANOVA, followed by

Scheffe’s test. Statistical analyses were performed by using

Stat-View 5.0 (Abacus Concepts, Inc. Berkley, CA, USA).

Differences were considered significant at P<0.05.

Results
The total number of mice used in all of the experiments

was 156; the number of mice observed was 62 for scratch-

ing behavior, 40 for body temperature, and 54 for the tail-

immersion test. We used eight mice for vehicle group of

scratching behavior and all groups of body temperature.

We used six mice for the other groups of scratching

behavior and all groups of the tail-immersion test. No

mouse showed any neurologic deficits resulting from

intrathecal injection. No mouse was excluded from this

study.

Scratching behavior
In the saline, 0.1-nmol morphine, and 1.0-nmol morphine

groups, the total numbers of scratches were 12.7±1.7, 33.8

±13.2, and 66.2±19.5, respectively. The number of

scratches was significantly higher in the 0.3-nmol mor-

phine group than in the saline group (127.5±23.2;

P=0.001; F3,20=9.2) (Figure 1A). The peak of scratching

behavior was seen at 10–20 mins after undergoing an

intrathecal administration in the mice of the 0.3-nmol

morphine group and at 0–10 mins after undergoing an

intrathecal administration in the mice of the 1.0-nmol

morphine group; the number of scratches decreased after

these times in all of the groups (Figure 1B).

The scratching behavior of the 0.1-nmol SB366791

group (10.2±1.0) was not significantly different from that

of the vehicle group (9.8±2.2; P>0.99) (Figure 2).

Scratching behavior was significantly increased for the

0.3-nmol morphine dissolved in vehicle (0.3-nmol mor-

phine + vehicle) group (122.7±26.7) in comparison to that

of the vehicle group (P=0.002). In contrast, compared with

the vehicle group, the 0.3-nmol morphine +0.01-nmol,

0.03-nmol, and 0.1-nmol SB366791 groups did not exhibit

significant increases in the number of scratches (68.3±12.5;

P=0.12, 42.5±18.3; P=0.71, 29.2±10.7; P=0.95, respec-

tively; F5,32=9.3). SB366791 dose-dependently reduced

the scratching behavior that was induced by morphine at

0.3 nmol. In addition, the total numbers of scratches for the

groups receiving 0.3-nmol morphine +0.03-nmol or 0.1-

nmol SB366791 were significantly decreased compared

with that of scratches of the 0.3-nmol morphine + vehicle

group (P=0.02 and P=0.004, respectively) (Figure 2).

Body temperature
The body temperature of the mice ranged from 35.8°C to

36.2°C, among all of the groups for 60 mins after the

intrathecal injection (P=0.087). Compared with the body-

temperature measurements for the vehicle group, those of

the SB366791 group and the morphine + SB366791 group

did not manifest an increase in body temperature (Figure 3).

Tail-immersion test
Intrathecal morphine dose-dependently produced antinoci-

ceptive effects. The latency of withdrawal of the tail fol-

lowing tail immersion in heated water was significantly

prolonged from 5 to 15 mins after administration for the

0.3-nmol morphine group (P=0.007 and P=0.0423,

respectively) and from 5 to 90 mins and to 150 mins

after administration for the 1.0-nmol morphine group,

compared with the latency observed for the saline group

(P=0.0001–0.044) (Figure 4A). Intrathecally administered

SB366791 did not produce thermal antinociceptive effects,

in comparison with the effects observed for the vehicle

group (P=0.95) (Figure 4B). The latency was significantly

prolonged from 5 to 120 mins after administration for the

0.3-nmol morphine group, compared with that for the

saline group (P=0.001–0.015) (Figure 4C). Morphine at

0.3 nmol + SB366791 at 0.1 nmol produced antinocicep-

tive effects corresponding to a latency increase from 5 to

120 mins, compared with the effects observed for the

vehicle group (P<0.0001–0.025). Morphine at 0.3 nmol

+ SB366791 at 0.1 nmol did not produce significant ther-

mal antinociceptive effects, compared with the effects

observed for the 0.3-nmol morphine group (P=0.21–0.99)

(Figure 4C).

Discussion
Three main findings were observed in this study. First,

intrathecally administered SB366791, which is a TRPV1

antagonist, dose-dependently inhibited morphine-induced

itch following an intrathecal administration in mice.

Second, intrathecal SB366791 did not raise body
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temperature. Third, intrathecal SB366791 did not suppress

morphine-induced antinociception of a thermal stimulus.

Therefore, an intrathecal TRPV1 antagonist, SB366791,

produced potent antipruritic effects for intrathecal mor-

phine-induced itch, without serious adverse effects such

as hyperthermia.

In clinical studies, several drugs have been used to treat

morphine-induced itch.14,19–23 5-HT-receptor antagonists

may relieve morphine-induced itch, although the results

of clinical trials are debatable.19,20 Some reports have

indicated that a subanesthetic dose of propofol resulted

in antipruritic effects on morphine-induced itch; however,

the efficacy of propofol for morphine-induced itch remains

controversial.21,22 In both basic research and clinical stu-

dies, the administration of kappa-opioid receptor agonists

was found to have antipruritic effects on morphine-

induced itch,14,23 although the mice retained some scratch-

ing behavior;14 additionally, 50% of the patients continued

to suffer from opioids-induced itch.23 There is no standard

therapy for morphine-induced itch. It is well known that

the systemic administration of morphine has a sedative

effect.24 We showed that the intrathecal administration of

high-dose morphine also causes sedation with a decrease

in the scratching behavior in mice.14 Therefore, intrathecal
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Figure 1 Scratching behavior induced by the intrathecal administration of morphine.

Notes: (A) The total number of scratches was significantly higher for the 0.3-nmol morphine group than for the saline group (P=0.001). (B) The time course of scratching

behavior after the administration of saline or morphine (0.1, 0.3, or 1.0 nmol). The peak of scratching behavior was at 10–20 mins after undergoing an intrathecal

administration for the mice of the 0.3-nmol morphine group and at 0–10 mins after undergoing an intrathecal administration for the mice of the 1.0-nmol morphine group.

Data are presented as the mean ± standard error of the mean (SEM) for the 6–8 mice in each group. *P<0.05 compared with the saline group. One-way analysis of variance

(ANOVA), followed by Scheffe’s test in (A), two-way repeated-measures ANOVA, followed by Scheffe’s test in (B).
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morphine administration did not produce scratching beha-

vior dose-dependently. Furthermore, 0.3-nmol morphine

was selected as a combination dose with SB366791. To

the best of our knowledge, no studies have reported the

ability of intrathecal TRPV1 antagonists to attenuate mor-

phine-induced itch. This study demonstrated that an

intrathecal TRPV1 antagonist inhibited intrathecal mor-

phine-induced itch.

The molecular mechanisms of morphine-induced itch

are not completely understood, but the mu-opioid recep-

tor (MOR) isoform MOR1D and the gastrin-releasing

peptide receptor (GRPR) are known to play a critical

Figure 2 Scratching behavior induced by the intrathecal administration of morphine or/and SB366791.

Notes: The total numbers of scratches for the groups receiving 0.3-nmol morphine +0.03-nmol or 0.1-nmol SB366791 were significantly decreased compared with the total

number of scratches of the 0.3-nmol morphine group (P=0.02 and P=0.004, respectively). Data are presented as the mean ± SEM for the six mice in each group. *P<0.05
compared with the vehicle group. †P<0.05 compared with the 0.3-nmol morphine dissolved in vehicle group. One-way analysis of variance (ANOVA), followed by Scheffe’s test.

Abbreviation: SB, SB366791.

Figure 3 Time course of body temperature over the first 60 mins following the administration of saline, vehicle, 0.3-nmol morphine, 0.1-nmol SB366791, or 0.3-nmol

morphine +0.1-nmol SB366791.

Notes: The body temperature of the mice ranged from 35.8°C to 36.2°C in all groups for 60 mins after intrathecal injection (P=0.087). Data are presented as the mean ±

SEM for the six mice in each group. Two-way repeated-measures analysis of variance.

Abbreviations: SB, SB366791; ns, not significant.
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role in these mechanisms. MOR1D and GRPR are colo-

calized in the dorsal horn of the spinal cord.25 Morphine

induces heterodimerization and co-internalization of

MOR1D and GRPR. GRPR activates the phospholipase

C (PLC)/inositol 1, 4, 5 triphosphate (IP3)/calcium sig-

naling pathway. This PLC/IP3/calcium signaling path-

way evokes morphine-induced itch.25

Although the mechanisms of antipruritic effects of

TRPV1 antagonists on morphine-induced itch are

unknown, possible mechanism may include as followed.

TRPV1 is mainly expressed in the central and peripheral

terminals of primary sensory neurons.26 The central term-

inal of the primary sensory neurons lies in the dorsal horn

of the spinal cord and is concentrated in the superficial

laminae. MOR and TRPV1 are colocalized in the

superficial laminae of dorsal horn.26 Furthermore,

TRPV1-expressing neurons release gastrin-releasing pep-

tide (GRP) in the dorsal horn of the spinal cord, resulting

in the evocation of the GRP–GRPR signaling pathway.27

These studies and our results indicate the possibility that

TRPV1 interact between MOR1D and GRPR in the spinal

cord.

Although SB366791 is not a pure TRPV1 antagonist,

SB366791 is a potent and high selectivity TRPV1

antagonist which has little or no effect on the activity

against a wide range of receptors, including opioids.28

In our data, SB366791 did not inhibit morphine-induced

antinociception. Therefore, we suggest that SB366791

produces antipruritic effects through TRPV1 and

not MOR.
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Abbreviations: SB, SB366791; ns, not significant.
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It has been reported that a TRPV1 antagonist produces

little or no antinociceptive effects in naïve models.29

Consistent with this report,29 an intrathecal TRPV1 antago-

nist did not produce antinociceptive effects in naïve mice in

our study. However, TRPV1 antagonists have shown anti-

nociceptive effects in several pain models.7–9 TRPV1

expression was increased in bone cancer pain mice model.30

In addition, TRPV1 is functionally upregulated in post-

operative pain mice model.31 This difference between

naïve models and pain models may depend on the activation

of TRPV1, including the increase of TRPV1 expression or

its up-regulation in the pain models.30,31 The antinocicep-

tive effects of morphine vary depending on the animal

models. Morphine is effective against postoperative and

inflammatory pain compared with neuropathic pain.32,33

Bone cancer pain is resistant to morphine compared with

inflammatory pain.34 Downregulation of MOR expression

is thought to attenuate sensitivity of bone cancer pain to

morphine.33 It has been reported that the combination of

morphine and TRPV1 antagonists has potent analgesic

effect on bone cancer model.35

Although TRPV1 antagonists have been widely

accepted as next-generation pain therapies, many clinical

studies of TRPV1 antagonists have been put on hold,

mainly because of adverse events.36,37 In fact, the systemic

use of TRPV1 antagonists in basic research studies has

been shown to cause hyperthermia.11–13 The present study

showed that an intrathecal TRPV1 antagonist did not

affect the body temperature of mice.

There are some limitations to our study. First, the

mechanisms of the antipruritic effects observed after the

intrathecal administration of SB366791 combined with

morphine were not clear. Further studies are needed to

address these issues. Second, although no mice exhib-

ited any side effects, such as motor dysfunction, after

the intrathecal administration of SB366791, the neuro-

toxicity of SB366791 at the spinal level was not

clarified.

Conclusion
This study demonstrated that intrathecal SB366791

reduced intrathecal morphine-induced itch without causing

hyperthermia and did not suppress morphine-induced anti-

nociception for mice.
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