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Background: Existing drugs are far from enough for investigators and patients to admin-

istrate the therapy of rheumatoid arthritis. Drug repositioning has drawn broad attention by

reusing marketed drugs and clinical candidates for new uses.

Purpose: This study attempted to predict candidate drugs for rheumatoid arthritis treatment

by mining the similarities of pathway aberrance induced by disease and various drugs, on

a personalized or customized basis.

Methods: We firstly measured the individualized pathway aberrance induced by rheumatoid

arthritis based on the microarray data and various drugs from CMap database, respectively.

Then, the similarities of pathway aberrances between RA and various drugs were calculated

using a Kolmogorov–Smirnov weighted enrichment score algorithm.

Results: Using this method, we identified 4 crucial pathways involved in rheumatoid

arthritis development and predicted 9 underlying candidate drugs for rheumatoid arthritis

treatment. Some candidates with current indications to treat other diseases might be repur-

posed to treat rheumatoid arthritis and complement the drug group for rheumatoid arthritis.

Conclusion: This study predicts candidate drugs for rheumatoid arthritis treatment through

mining the similarities of pathway aberrance induced by disease and various drugs, on a

personalized or customized basis. Our framework will provide novel insights in personalized

drug discovery for rheumatoid arthritis and contribute to the future application of custom

therapeutic decisions.

Keywords: rheumatoid arthritis, drug repositioning, individualized pathway aberrance,

differential pathway

Introduction
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint

synovial tissue inflammation associated with the disability of affected joints.1

Patients with RA have an increased mortality, and the expected survival of RA

patients is likely to decrease 3–10 years.2 Early diagnosis and effective therapy

are critical to prevent joint deterioration and unfavorable disease outcome.

Currently, the treatment of RA primarily rests on the use of disease-modifying

antirheumatic drugs, and has improved outcomes in RA patients significantly.3–5

Despite significant therapeutic advances in improving the lives of RA patients,

RA remains a hard clinical problem because of the accumulated and persistent

disease.1 The administration of RA patients needs new drugs for preventative or

curative therapies.
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Presently, drug repositioning has drawn broad attention

from the pharmaceutical companies and research institutes.

Relative to the traditional drug development process, drug

repositioning replenishes the drying out drug pipelines by

reusing marketed drugs and clinical candidates for new uses,

such as treating another disease.6 These repositioned drugs

with known bioavailability, safety profiles and well-

characterized pharmacology can enter clinical trials for alter-

native indicationsmore rapidly and less risk.7 Currently, multi-

ple computational approaches have been established for drug

repositioning.8–10 Connectivity map (CMap) has been widely

used in drug repositioning by measuring the similarity in gene

expression profiles between compounds in mammalian cell

lines.11 While current methods mainly focus on discovering

drug candidates targeting huge populations,12,13 personalized

therapeutic decisions are scarce.

Human genetics provides insight into disease pathogen-

esis and guides drug discovery for complex traits.14,15

A large body of evidence points out the influence of inher-

ited genetic factors on both susceptibility and resistance to

the disease.14–16 Currently, high-throughput genome-wide

association studies have resulted in a paradigm shift in the

way that researchers treat complex diseases. Several lines of

evidence has revealed numerous genes influencing the like-

lihood of developing RA by genome-wide analysis.17,18

While most of the biological functionality of the cell arises

from complex interactions among genes, and interpreting

the consequences on a pathway level has more powerful in

understanding how gene activity perturbations account for

disease.19,20 Moreover, personalized pathway analysis has

been proposed to perform personalized or customized inter-

pretation of disease data,21 making it possible to develop

personalized therapeutic decisions.

Here, we attempted to predict candidate drugs for RA

treatment from CMap database by mining the similarities of

pathway aberrance induced by disease and various drugs, on

a personalized or customized basis. Our study will provide

novel insights into personalized drug discovery for RA.

Materials And Methods
Data Retrieve
Transcriptome Data Of RA

Here we retrieved the transcriptome data of RA from

ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/),

under the accession number of E-GEOD-15573.17 In the

study of Teixeira et al,17 a complete genome-wide transcript

profiling of peripheral blood mononuclear cells from 18 RA

patients and 15 controls was conducted using the Illumina

Human-6v2 Expression BeadChips. The raw data and the

annotations were obtained from the manufacturer’s docu-

ments, and the probes were re-annotated to genes symbols.

CMap Data

The CMap is a collection of genome-wide transcriptome data

from cultured human cells treated with bioactive small mole-

cules and simple pattern-matching algorithms that discover

connections between drugs, genes expression changes and

disease phenotypes.11 The CMap contains more than 7000

gene expression profiles for 1309 compounds. All raw data

and the annotations were downloaded from the CMap and the

expression values for all samples were calculated by affy

package R22 with MAS 5.0 normalization. The probes were

re-annotated to genes symbols using Brainarray CDF

packages.23 Finally, the samples corresponding to the same

drugs were merged, and the gene-drug matrix was obtained

for subsequent analysis.

Pathway Data

Kyoto Encyclopedia of Genes and Genomes (KEGG,

http://www.genome.jp/kegg/) is a knowledge database for

systemic analysis of gene functional information.24 All

300 human pathways (covering 6919 genes) were down-

loaded from KEGG database.

In the present study, we retrieved transcriptome data of

RA, CMap data and KEGG pathway data. Prior to analysis,

a preprocessing procedure was performed. Firstly, the genes

obtained from three data were intersected to gain the com-

mon genes. Then, KEGG pathways containing <5 genes or

>100 genes were removed, because pathways with too

many genes might be too complex to understand, and path-

ways with too few genes may not have sufficient biological

content. Finally, a total of 6919 genes, 888 drugs, and 281

pathways were selected for subsequent analysis.

iPAS For RA
In this section, the pathway levels in each sample were calcu-

lated using iPAS algorithm by making use of the accumulated

normal data. In this study, 15 normal control samples were

combined and regarded as references (nRef). For individual

RA cases, an uniformly normalization was performed after

combining the single RA data with all nRef samples.

The gene expression value of individual RA sample

was standardized by mean and standard deviation (SD) of

the reference. For each gene a, we calculated the gene

expression level as follows:
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Za¼
gRa

�mean gnRefð Þ
SD gnRefð Þ

where gRa represented the expression value of gene a in an

individual RA subject, mean(gnRef) stood for the mean

expression value of genes a in all nRef cases, SD(gnRef)

stood for SD of the reference.

To evaluate the iPAS by nRef, Average Z algorithm was

employed, which presented well in highlighting pathway

aberrance and in revealing clinical importance.21 A vector

Z = (z1, z2, . . ., zn) represented the expression status of

a pathway, where za stood for the standardized expression

value of the a-th gene, and n represented the gene number

in the specific pathway. The iPAS value of a pathway was

calculated as follows:

iPAS ¼ Average Z ¼∑n
aZa

n

Then, the expression matrix (281 pathways × 18 RA subjects)

was obtained for each pathway in each individualized RA

subject from the nRef.

The pathway statistics for each individual RA subject

was calculated by wilcoxon-test and false discovery rate

(FDR) was used to adjust the p-value. The pathways with

p-value <0.05 were defined as differential pathways.

iPAS For Drugs
The CMap contains more than 7000 gene expression pro-

files for 1309 compounds. Each drug presents a specific

drug-induced gene expression changes of human cells,

enabling us to identify the pathway aberrance. After data

preprocessing, a total of 6919 genes, 888 drugs, and 281

pathways were selected for subsequent analysis. To iden-

tify the drug-induced pathway aberrance, iPAS algorithm

was utilized to estimate the pathway levels. For each drug,

we calculated the specific drug-induced iPAS status of

each pathway using Average Z algorithm. Then, the

expression matrix (281 pathways × 888 drugs) was

obtained for each pathway in each drug.

Prediction Of Candidate Drugs
After the above treatment, we obtained RA-induced pathway

aberrances and drug-induced pathway aberrances, respec-

tively. Then, we systematically estimate the similarities

between RA-induced pathway aberrances and drug-induced

pathway aberrances using a to select drugs that might mimic

or suppress RA. Prior to similarity analysis, we firstly built

Prototype Ranked Lists (PRLs)25 by merging all the samples

corresponding to the same drug, after converting iPAS values

to ranks (the iPAS value was used as a ranking procedure in

our analysis). The expression matrix (281 pathways × 888

drugs) of PRLs was obtained for further analysis.

Next, the pathway-drug PRL matrix was converted to

a subject-oriented matrix. Here, a rank-based pattern-

matching Enrichment Score (ES) strategy that was based

on the weighted Kolmogorov–Smirnov (KS) statistic in

Drug Set Enrichment Analysis (DSEA)26 was employed

to perform the converted procedure. Given a PRL x and an

RA subject y, the ESxy was calculated through DSEA

approach. The KS-weighted ES could quantitatively mea-

sure the enrichment of signatures in the top/bottom ranked

region. The ES value gives a range from 0 to 1. ES value

tending to 1 indicates complete similarity and the value

tending to 0 indicates the complete opposite. Finally, we

built an ES matrix (888 drugs × 18 RA samples), the row

corresponded to drug and the column represented RA

subjects.

By calculating the ES values, the drugs tending to

mimic or suppress RAwere quantified. Based on the drug-

subject matrix, we sorted each row x according to the ESxy
values of the drug x across the y = 1, . . ., Y RA subjects,

and obtained a rank-based drug matrix R. Given an ele-

ment Rxy in R, it represented the rank of drug x according

to its effect on RA subject y. In this case, the ES could sign

whether a drug was a mimic or inhibitor in the develop-

ment of RA.

The significance of a drug for RA subjects was

assessed by applying a nonparametric, rank-based proce-

dure. For each disease subject y, the rank value of drug

x was defined as:

Rankxy¼
sum EStotaljj > ESxy

����� �

leangthtotal

The larger the rank value, the greater the likelihood of

a suppressant; the smaller the rank value, the greater the

likelihood of a good mimic. In the present study, the top

1% drugs with larger rank value were predicted as ther-

apeutic drugs, and the top 1% drugs with smaller rank

value could be considered as good mimics.

Results
iPAS For RA
In the present study, 15 healthy subjects were denoted as

nRefs (reference) of 18 subjects diagnosed RA. The genes

were subjected to quantile normalization to evaluate the
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gene-level statistics. Meanwhile, a total of 281 pathways

were screened from the KEGG pathway database after data

preprocessing. By iPAS algorithm, we obtained the pathway

aberrance scores of individual RA subjects. Using the mean

value of iPAS as the pathway aberrance level of RA, 170

pathways were up-regulated and 111 pathways were down-

regulated in RA. The conditions of the altered pathways in

all RA subjects were elucidated by individual pathway ana-

lysis. The pathway statistics for each individual was tested

by wilcoxon-test and the p-value was adjusted by FDR.

Under p-value <0.05, a total of 4 pathways were regarded

as differential pathways (Table 1). In our study, cardiac

muscle contraction pathway showed the highest altered fre-

quency, which altered in 14 of 18 RA subjects, followed by

amoebiasis, amino sugar and nucleotide sugar metabolism,

and protein processing in endoplasmic reticulum pathway.

iPAS For Drugs
Similar to the identification of pathway aberrance in RA,

we analyzed the function aberrance induced by each drug

in CMap using iPAS algorithm. For each drug, we calcu-

lated the specific gene expression profiles to detect the

drug-induced iPAS status of each pathway, using untreated

human cells as nRefs (reference). After data preproces-

sing, we obtained 888 drugs from CMap database and 281

pathways from KEGG database for further analysis. After

drug iPAS analysis, we obtained a 281 pathways × 888

drugs matrix.

Prediction Of Candidate Drugs For RA
Based on the iPAS matrix of RA and drugs, a KS-weighted

ES analysis was implemented to compare similarities

between RA-induced pathway aberrances and drug-

induced pathway aberrances. Then, a non-parametric,

rank-based procedure was employed to yield a rank list

to select the drug candidates that might mimic or treat RA.

The pathway profiles for 888 drugs were merged into

a specific PRLs by ranking the aberrant pathways. Then,

pathway-oriented drug matrix was converted into an RA

subject-oriented drug matrix by measuring the ES values.

After that, each drug was given a specific ES value for

each RA subject. A drug with high ES values indicated

that the drug showed related genomic response to RA. The

candidate drugs for RA subjects were assessed by applying

the rank-based procedure, and the drug-subject matrix was

sorted row-wise to select RA-related drugs from the most

inhibiting one to the most mimicking one. Here, we iden-

tified 9 candidate drugs for RA treatment, as shown in

Table 2. Also, nine good mimics were identified based on

the similarity of pathway profiles to disease (Table 3).

Some candidates with current indications to treat other

diseases might be repurposed to treat RA.

Discussion
In response to the high attrition rates in the traditional drug

development process, drug repositioning which recaptures

marketed drugs for new indications has attracted the atten-

tion from pharmaceutical companies and medical research-

ers. Ashburn and Thor indicated that drug repositioning

might shorten the time of drug development from 10–17

years to 3–12 years.27 Previous studies have proposed

numerous methods to build predictive models and some

have shown promising results.10,12,28,29 These emerging

technologies enable investigators to identify candidate

drugs that will prevent this disease and its complications.

For example, Zhang et al30 presented a drug repositioning

strategy based on “omics” data mining to screen candi-

dates for new indications in diabetes treatment, and suc-

cessfully identified 9 drugs that might have the potential to

treat diabetes.

Existing drug repositioning methods mainly focus on

discovering candidate drugs for a kind of disease, and are

not suitable for predicting candidate drugs for an individual

sample. The drug response heterogeneity makes the raise of

new strategies that target genotypically well-characterized

subpopulations of patients, instead of targeting huge popu-

lations. This conversion drives the researchers focus to

settle personalized pathway profile by which the disease

works and how to intervene on it. In this study, we proposed

a computational method to predict candidate drugs from

CMap database for RA, in a personalized way, contributing

to revealing the molecular mechanisms and the future appli-

cation of custom therapeutic decisions.

Table 1 The Differential Pathways In Rheumatoid Arthritis

Based On The Individualized Pathway Aberrance Score

Category Pathway p Altered

Frequency

Hsa00520 Amino sugar and nucleotide

sugar metabolism

0.019 11

Hsa04260 Cardiac muscle contraction 0.021 14

Hsa04141 Protein processing in

endoplasmic reticulum

0.024 10

Hsa05146 Amoebiasis 0.047 12
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In the present study, we first identify the pathway

aberrance of individual RA subjects using iPAS algorithm,

and a total of 4 differential pathways were identified. It is

well known that RA is a kind of autoimmune disorder. Our

study identified 4 differential pathways (cardiac muscle

contraction, amoebiasis, amino sugar and nucleotide

sugar metabolism, and protein processing in endoplasmic

reticulum) in RA. Among them, cardiac muscle contrac-

tion pathway showed the highest altered frequency, which

altered in 14 of 18 RA subjects. Previous studies revealed

that RA patients had an increased risk of premature death

compared with the general population, mainly due to car-

diovascular disease, and the two diseases shared genetic

and environmental risk factors.31,32 Our result that identi-

fied cardiac muscle contraction as a differential pathway

might affirm this declaration.

Although, a rapid evolution of the care and treatment of

patients with RA has contributed to a decrease in disease

and disease-related complications. Efficient and safe drugs

are still pressing problem. By drug repositioning, several

small molecules that might suppress RA were identified,

which might be critically important for disease prevention

and early treatment. Among these candidate drugs, cele-

coxib had a current drug indication of RA, which is a COX-

2 selective nonsteroidal anti-inflammatory drug used to

treat various forms of arthritis.33 The candidate partheno-

lide showed a current drug indication of anti-inflammatory.

López-Franco et al34 indicated that parthenolide could mod-

ulate the NF-κB-mediated inflammatory responses during

vascular damage. Moreover, parthenolide has a variety of

reported in vitro biological activities, such as blocking

lipopolysaccharide-induced osteolysis,35 inducing apopto-

sis of leukemia cells,36 and activity against a parasite

Leishmania amazonensis.37 The candidate drug harmine

was reported to promote differentiation of osteoblasts38

and chondrocytes,39 and inhibit osteoclastogenesis.40

Suloctidil and prenylamine both showed a current drug

indication of vasodilator. Unfortunately, they were with-

drawn frommarket due to liver toxicity and cardiac arrhyth-

mias, respectively. The other candidate drugs predicted by

our method had current indications to treat other diseases

and might complement the drug group for RA treatment.

Given these screened potential drug for RA treatment,

previous literature have reported that some of these drugs

Table 2 The Candidate Therapeutic Drugs Of Rheumatoid Arthritis

Candidate Drug Mean ES Rank Score CAS Number Stage Current Drug Indication

Suloctidil 0.245 0.783 54063-56-8 Withdrawn Vasodilator

Prenylamine 0.245 0.783 390-64-7 Withdrawn Vasodilator

Mebendazole 0.253 0.780 31431-39-7 Approved Anthelmintic

Danazol 0.247 0.778 17230-88-5 Approved Endometriosis

Piperlongumine 0.249 0.775 20069-09-4 Investigated Anticancer

Harmine 0.254 0.773 442-51-3 Investigated Osteogenic differentiation

Celecoxib 0.247 0.770 169590-42-5 Approved Arthritis

Sanguinarine 0.246 0.769 2447-54-3 Investigated Anticancer

Parthenolide 0.250 0.767 20554-84-1 Investigated Anti-inflammatory

Abbreviation: ES, enrichment score.

Table 3 The Good Mimics Of Rheumatoid Arthritis

Candidate Drug Mean ES Rank Score CAS Number Stage Current Drug Indication

Camptothecin 0.608 0.088 2114454 Experimental Anticancer

Doxorubicin 0.583 0.104 23214-92-8 Approved Anticancer

Daunorubicin 0.582 0.132 20830-81-3 Approved Anticancer

Ampicillin 0.531 0.221 69-53-4 Approved Anti-infection

Cloxacillin 0.518 0.241 61-72-3 Approved Anti-infection

Streptomycin 0.500 0.271 57-92-1 Approved Anti-infection

Cortisone 0.501 0.271 53-06-5 Approved Anti-inflammatory

Estradiol 0.499 0.271 50-28-2 Approved Estrogen deficiency

Mitoxantrone 0.487 0.278 65271-80-9 Approved Anticancer

Abbreviation: ES, enrichment score.
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could exert certain relieved effect on RA. For instance,

Danazol has been identified that treatment of it attenuates

refractory autoimmune thrombocytopenia in rheumatic

diseases successfully.41,42 Some studies have demon-

strated that piperlongumine relieves RA through expan-

sion of myeloid-derived suppressor cells (MDSCs) and the

inhibition of the Th17 response and activation of fibro-

blast-like synoviocytes (FLS)43 represses dendritic cell

maturation by decreasing production of reactive oxygen

species,44 and suppresses proliferation, migration and

invasion of FLS45 via animal model and patient samples.

Celecoxib has been approved to treat RA and osteoarthri-

tis (OA);46,47 it, combined with Cilostazol, impedes proin-

flammatory factors in FLS of RA patients.48 These results

may provide more favorable evidence for the clinical use

of these drugs.

Meanwhile, we predicted nine mimics based on the

similarity of pathway aberrances between disease and

drugs. In this study, the drugs with higher ES values

showed more similar to disease in the matter of pathway

aberrances. Theoretically, it happened that the drugs with

high ES values might mimic the disease at the molecular

level. While it may not make sense to consider that the

pathway profiles of one drug is positively related to those

of one disease from the biological view. Thus, this study

focused on the candidate drugs for RA treatment in

a personalized way.

Conclusions
In the present study, we predicted several candidate drugs

for RA treatment, and conducted drug discovery in

a personalized way contributing to the future application

of custom therapeutic decisions.
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