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Abstract: The ultimate goal of phototherapy based on nanoparticles, such as photothermal 
therapy (PTT) which generates heat and photodynamic therapy (PDT) which not only 
generates reactive oxygen species (ROS) but also induces a variety of anti-tumor immunity, 
is to kill tumors. In addition, due to strong efficacy in clinical treatment with minimal 
invasion and negligible side effects, it has received extensive attention and research in recent 
years. In this paper, the generations of nanomaterials in PTT and PDT are described 
separately. In clinical application, according to the different combination pathway of nano-
particles, it can be used to treat different diseases such as tumors, melanoma, rheumatoid and 
so on. In this paper, the mechanism of pathological treatment is described in detail in terms 
of inducing apoptosis of cancer cells by ROS produced by PDT, immunogenic cell death to 
provoke the maturation of dendritic cells, which in turn activate production of CD4+ T cells, 
CD8+T cells and memory T cells, as well as inhibiting heat shock protein (HSPs), STAT3 
signal pathway and so on. 
Keywords: pathological mechanism, nanoparticles, photothermal therapy, PTT, 
photodynamic therapy, PDT

Introduction
Malignant tumors and their metastases have led to a high mortality rate in young 
people. The key is that many anti-tumor treatments, such as radiotherapy, che-
motherapy, molecular-targeted therapy and immunotherapy, have too many sys-
temic side effects; firstly, it causes severe damage to the immune system, and 
secondly, it also leads to long-term destruction of organ functions.1,2 As a result, 
few patients can be cured by clinical cancer treatment, and the disease has devel-
oped rapidly in recent years. Eventually, it can lead to serious consequences, such 
as multiple wasting death caused by organ failure, and severe malnutrition, etc.3 In 
recent years, PDT and PTT have been proposed to inactivate pathogens as new 
therapeutic regimens for tumor ablation and necrosis. PTT and PDT are mainly 
composed of near-infrared light (NIR) and nanoparticles, which, respectively, 
correspond to photosensitive (PS) and photothermal agents. The application prin-
ciple of PTT lies in the heat generated by gold nanoparticles and the activation of 
a photothermal agent under specific light wavelengths to kill cancer cells. The anti- 
tumor effect of PDT is under the interaction of the plasma nano-platform of the 
local electric field to produce single ROS and free radicals with cytotoxicity, short 
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half-life and small diffusion rate, leading to apoptosis, 
autophagy and necrosis of tumor cells.4 With the addition 
of nanoparticles, PS is delivered across the blood-brain 
barrier, and especially transport drugs to cell chambers 
such as nuclei.5 This review focuses on the pathological 
mechanism of PTT and PDT killing tumor tissue.

Progress in Clinical Application of 
PTT and PDT Based on 
Nanoparticles
Application Materials
Solid tumors have leaking blood vessels, and the gap 
between cells is from 100 nm to 780 nm, these permeable 
blood vessels allow nanoparticles to extravasate into the 
tumor matrix.6

The photothermal material system has gone through 
about four generations, as follows: The first generation is 
precious metal nanoparticles such as Au, Ag, Pt, etc., 
which have high photothermal conversion efficiency and 
imaging but are limited to expensive and rare. Gold nanor-
ods depend on adjustable size and aspect ratio and two 
unique absorption bands are transverse and longitudinal, 
which make it have unique optical properties.7 However, 
because of their large surface area, unstable surrounding 
environment and easy oxidation after long-term exposure 
to air, their application is limited, so methods to improve 
the oxygen resistance of metal nanoparticles have been 
developed such as plasma spraying, phosphating and elec-
trolyte deposition.8 One of the most ideal passivating 
methods is atomic layer deposition, which provides an 
ultra-thin layer on metal nanoparticles.9 Using branched 
poly (vinylamine) (PVA, MW=10k Da) as the best linker, 
the system was prepared on suitable thin layer hollow gold 
nanospheres (HAuNS) combined with indocyanine green 
(ICG) to maintain the fluorescence,10 significantly 
enhanced intratumoral accumulation, boost photothermal 
conversion efficiency and synchronous PTT and PDT.11

The second generation is carbon materials, for exam-
ple, graphene and carbon nanorods, which have large 
photothermal conversion area but have poor absorption 
capacity under the NIR.12 Wang et al proposed that an up- 
conversion Magnetic Agent (FeCUPs) mediated by 
Hollow carbon spheres provides a dual-function platform 
of PTT and biological imaging for tumor elimination.13

The third generation is metal and non-metallic com-
pounds such as CuS and ZnS, which are in the most 
exciting part of the research.14,15 It has high photothermal 

performance and low cost, can be easy to prepared, but it 
is usually non-fluorescent and lacks the ability of tumor- 
targeted ablation, which limits the rapid real-time fluores-
cence imaging and localization of primary tumors and 
lymph node metastases.16 Hua Shi et al presented that 
RGD-CuS-Cy5.5, a kind of fluorescent CuS nanoparticle 
that combines tumor-targeting ligand RGD and NIR 
organic dye Cy5.5, for the treatment of sentinel lymph 
node metastasis of gastric cancer by fluorescence dual- 
mode imaging.17

The fourth generation is organic and inorganic nano-
materials such as organic semiconducting pronanostimu-
lant (OSPS) and Indoline green, Prussian blue (PB), etc. 
which are in the key areas for scientists to explore.18 OSPS 
via singlet oxygen (1O2) as a cutting linker consists of 
semiconductor polymer nanoparticles (SPN) nucleus 
which is a PTT agent and immune stimulator. It can 
produce heat and 1O2 for PDT to achieve combined PTT 
that means not only suppressing tumor but also generating 
tumor-associated antigen. Moreover, due to its diffusion of 
dual electrons, it has strong NIR absorption capability. 
When exposed to NIR, the cleavage of 1O2-linkers triggers 
the long-term release of immune stimulator and regulates 
immune suppression tumor microenvironment. OSPS not 
only could fall down the expression of metastasis- 
associated proteins by mediating RNA degradation but 
also exert synergistic antitumor immunity after excellent 
PTT, inhibits growth and lung metastasis of primary or 
distant tumor.19 Experiments have verified that organic 
nanomaterials possess good biocompatibility, low toxicity 
and optical stability. Therefore, Liang Cheng et al encour-
aged researchers to explore more organic nanomaterials 
for cancer therapy applications.20 PBNPs have strong opti-
cal absorbance, excellent photothermal conversion rate 
and stability in near-infrared spectroscopy, and can be 
obtained by economical and simple synthesis process. 
However, due to the lack of functional chemical groups, 
the ability to combine with other therapeutic molecules is 
greatly inhibited.21 Sun et al researched that PB@RBC/ 
Ce6NP-mediated PDT/PTT combined therapy has 
a significant effect on tumor cell necrosis and late apopto-
sis, because of obvious intratumoral cell uptake and accu-
mulation, it has a great synergistic therapeutic effect on the 
model of in situ tumor in vivo.22

Meanwhile, PS also experienced three dynasties of 
exploration during PDT. The father of PS is hematopor-
phyrin derivative (HPD) which is highly specific to tumor 
and has obtained worldwide registration examination in 
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lung cancer, esophageal carcinoma and bladder cancer, 
etc.;23,24 however, its disadvantages include complicated 
composition, slow excretion and certain light toxicity 
which require long periods of light protection.25 JANINE 
R.SHULOK has showed that with increasing HPD dosage 
and incubation time, mitochondrial damage increased by 
producing PDT effect.26

Our country independently developed the second gen-
eration domestic new photosensitive agent has stable 
structure strong photosensitive ability, clear quickly, and 
in terms of curing digestive tract tumor, it has a good 
curative effect. The representative medicine contains 
chlorophyll degradation derivatives,27 metal 
phthalocyanine,28 benzene porphyrin, etc.29 However, bio-
compatibility is poor, and the target function also needs 
improving.30

In order to make photosensitizer targeted stronger and 
more efficient, the third generation PS emerges as the time 
requires. Generally, it is divided into four categories: a) 
actively targeting functions, for example, take immune,31 

epidermal growth factor receptor (EGFR), low-density 
lipoprotein (LDL), mRNA, etc., as targeting.32,33

b) It has functions of magnetic orientation and heat 
therapy: Fe3O4 nanoparticles are widely used in hyperther-
mia (HPT) therapy for tumor tissues under direct current 
magnetic field.34 HPT and PDT co-therapy have been 
successfully combined with HPD or zinc phthalocyanine, 
etc., in combination therapy.35

c) It has radiation therapy functions: Using these spe-
cific luminescent nanoparticles and photosensitizer combi-
nations not only not requires light sources but also 
improves radiation doses of X-rays.36

d) It has a multifunctional nanoparticle platform for 
photosensitizer. This nano-platform with polyacrylamide 
(PAA) core not only makes tumor tissue absorb photosen-
sitizer more specifically but also can realize real-time 
detection of PDT and dosage; moreover, it evaluates cura-
tive effect during and after treatment.37,38

Correlation Between PTT and PDT
This article takes the gold nanorods (AuNRs) as examples. 
When the AuNRs absorbed by the cell is excited by a light 
source whose wavelength is close to AuNRs LSP reso-
nance, this enhanced absorption can produce a strong PTT 
effect, which leads to the damage of cancer cells. By 
connecting the photosensitizer with the cell’s AuNRs 
uptake, stimulating the irradiation of the photosensitizer 
can produce PDT effect, so different effects can be 

selectively controlled by controlling the intensity of the 
light source.39 If we choose the excitation wavelength that 
can excite the photosensitizer and LSP resonance at the 
same time, the PTT and PDT effects will be produced 
synchronously, thus further destroying the target cells.40 

Ding et al designed Au-Cu9S5, an LSP-enhanced light 
absorption cross section, applicating of PTT principle, 
has the thermosensitive nanomaterial potential and ima-
ging ability of X-ray CT.41

Progress in the Field of Oncology
The researchers used this method to transfer the drug from 
the adnexal lymph nodes to the tumor lymph nodes to treat 
lymph node metastasis.42 Where there is a rich vascular 
network on the outside of the tumor, blood can reduce heat 
accumulation, which reduced the effect of PTT, at the 
same time, because of the characteristics of PDT, its appli-
cation outside the blood is very effective. So Bin Liu et al 
proposed that the prepared multifunctional GNS@CaCO3/ 
Ce6-NK cells have the bimodal functions of fluorescence 
imagery and enhance the PTT/PDT and immunotherapy of 
the target tumor tissue.43 It is well known that NKG2D 
ligands (MHC)I chain-related proteins and UL16-binding 
proteins are easily activated under any stimulation and are 
subject to cytotoxicity dominated by NK cells.44 When 
NK cells are as goods delivery nanoparticles, which aims 
to prevent virus infection via releasing of a variety of 
cytokines, such as perforin and granzyme and they have 
nothing to do with antibodies, antigen presentation or 
MHC I. In addition, due to the lack of T cell receptor 
(TCR), on the surface of NK cells, it is not necessary to 
consider graft and host disease (GVHD).45

Over recent years, with the development of nanoengi-
neering, combining molecular activates cancer immu-
notherapy has attracted more and more attention, as it 
can convert cold tumor into hot tumor to apply to PTT 
and photo-immunotherapy.46 These activated nanoparticles 
are only stimulated by internal stimulation such as acid 
PH, oxidation redox potential, hypoxia and overexpression 
of tumor (caspase and HAase) or external stimulation such 
as light ultrasound magnetic fields, which cause cascade 
effects: local reprogramming of tumor microenvironment 
and activating antitumor immunity while reducing the 
incidence of immune-associated adverse events.47 But 
there are two major challenges; generally, in blood circu-
lation processes, a large proportion of nanomedicines are 
absorbed by nonspecific cells and eventually metabolize in 
liver, kidney and other organs. Therefore, innovative 
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methods should be studied to reduce the dosage of drug 
and improve targeting bioavailability. Another challenge is 
that tumor immune microenvironment is dynamic and 
changes during treatment, so developing personalized 
adjustment intervention technologies based on different 
immune therapy stages is essential.19

Mitochondria are indispensable organelles for cell 
respiration, which can mediate apoptosis and are important 
pharmacological targets for clinical tumors.48 Xiaoyan 
Yang suggested that an imaging-guided mitochondrial tar-
geting PTT/PDT nanosystem is based on functionalized 
black phosphorus nanoscale (BPNGS).49 Because these 
materials are lipophilic enough, the carbodiimide reaction 
between amino groups can penetrate the lipid bilayer and 
promote the efficient accumulation of reagents in 
mitochondria.50

Macrophage M1 activates T cells through the expres-
sion of IL-12 and IL-23 to play an anti-tumor effect. On 
the contrary, macrophage M2 synthesizes and secretes 
nourishing tumor cells and promotes angiogenic cytokines 
to inhibit T cell proliferation and activation.51

However, the hypoxic microenvironment of the tumor 
itself polarizes macrophages to M2 phenotype, which ser-
iously hinders tumor immunotherapy.52 Therefore, the 
reversal principle of hypoxia in tumor microenvironment 
is helpful to improve the effect of macrophage 
immunotherapy.53,54 In addition, complete biocompatibil-
ity and hydrophobicity by introducing hydrophilic 
substituents.55 So Wang et al present they constructed 
a multifunctional Bi/MnPcE4 nanocomposite. In the acidic 
H2O2 environment of tumor TME, the following reaction 
processes effectively solved the anoxic environment of 
PDT, enhanced PTT, and realized in vivo fluorescence/ 
CT/magnetic resonance imaging.56 The basic reaction pro-
cess is as follows:

Mn2++2H2O2→ Mn(oH)2+2H+ (1)
Mn(OH)2 +H2O2→ MnO2+H2O (2)
MnO2+H2O2+2H+→Mn2++2H2O+O2↑ (3)

Advance for Other Medical Area 
Treatment
PTT and PDT combination therapy is used in many 
medical fields, such as. Using the most suitable laser 
NIR and ICG staining technology to provide a way to 
control fat cells and decompose fat, while reducing the 
uploading of waste in fat masses in obese people.57 

Apart from that, it also has a crucial therapy of 

rheumatoid arthritis (RA)58 and melanotic diseases.59 

Similarly, P.K. Pandey et al concluded that it has the 
following advantages: four-fold higher localization and 
sensitivity and therapeutic efficacy and no hemolytic 
toxicity and good stability.60 It is suggested that the 
method can also be applied to different doses of anti- 
inflammatory and immune regulation and other clinical 
interventions. Recently, joint application of PDT and 
PTT is a useful tool for bacterial eradication, especially 
multi-drug resistant (MDR) bacteria.61 Giza et al propose 
that Toluidine blue O (TBO) and GNP were used to kill 
bacteria.62

The Killing Mode of PDT on Tumor 
Cytokines
The killing effect of photodynamic on tumor cells is 
mainly through three ways: (1) The direct killing effect 
on tumor cells leads to its necrosis. (2) ROS produced by 
photodynamic causes apoptosis by inducing the changes of 
oxygen free radicals and irreversible damage to cells and 
microvessels. (3) Dying or dead cells caused by photody-
namic stimulate immunogenic cell death, and produce 
a series of effects and applications in the later stage.

Cell Necrotic
Cell necrosis (NE) is an unscheduled process of cell death, 
characterized by cytoplasmic expansion, severe organelle 
damage and plasma membrane rupture.63 It leads to the 
release of cell contents and inflammation. The PTT effect is 
due to the LSP resonance of gold nanoparticles.64 The way to 
cause rapid necrosis or rapid development of late apoptosis is 
to incubate the cells with only AuNRs and irradiate them 
with a 1064-nmde laser close to the LAP formant of Au to 
achieve a separate PTT strategy65 (Figure 1).

Cell Apoptosis
Due to the high metabolism of tumor and the strong ability 
to stimulate neovascularization, the tumor microenviron-
ment is in a state of hypoxia, which affects the effect of 
PDT to a great extent. Therefore, Jun Yang et al also 
presented that a non-oxygen free radical generated nano- 
system (CuFeSe2-AIPH@BSA) with bimodal absorption 
in the NIR-II region, achieving deeper tissue penetration 
and more maximum permissible exposure,66 is used for 
imaging-guided synergistic hyperthermia and toxic free 
radical generation in tumor anoxic microenvironments.
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According to the calibration of threshold laser flux, the 
pathway of cell death and the evolution rate of apoptosis 
under different cell treatments were evaluated as follows: 
early apoptosis (EA), necrotic (NE) and late apoptotic 
(LA). A cell in EA phase presents phosphatidyl serine on 
the surface of the cell. Compared with the PTT effect, PDT 
usually shows slighter, which leads to apoptosis. However, 
when the effect of ROS is too strong, it will cause cell 
necrosis. Compared with the PDT effect alone, that is, the 
transition from EA to LA in 30 minutes, only the PTT 
effect changes faster. Compared with the PT effect alone, 
when AuNRI is internalized into the cell and adsorbed on 
the cell membrane, combined with PT and PD effect, the 
transition rate becomes slower in the early stage. When 
AuNRIs is not attached to its surface, the transfer rate in 
the early stage is higher than the PDT effect alone.67 The 
way to keep the cells in the early stage of apoptosis for 
a long time is to incubate the cells with AuNRIs connected 
with AlPcs, and the light of the 1064-nm laser is reached, 
resulting in the combined effect of PTT and PDT 
(Figure 2).

The heterogeneous ligand-modified nanocarrier acti-
vates controlled cargo release through a pH tunable switch, 
which effectively avoids the side effects of normal tissue, 
the decomposition of H2O2 in tumor tissue makes it in 
a weakly acidic microenvironment, so based on this char-
acteristic, a series of PH-sensitive switch therapy measures 
are designed to specifically kill tumor cells.68 In this study, 
human serum albumin was used to load IR780, through 
protein self-assembly to form nanoparticles (HSA-IR780 

NPs), which converts part of the energy of the excited 
singlet into heat by means of vibrational relaxation or 
other non-radiative transitions.69 At the same time, the 
singlet also produces reactive oxygen species through 
interline crossover to a lower energy-excited triplet, 
which induces oxidation with surrounding biological 
macromolecules and destroys tumor cells.70

David W.C. Hunt et al found, compared with resting 
T cells, PDT changes the fluorescence and photodynamic 
properties of activated T cells due to the ability of PDT to 
chelate iron in activated T cells with photosensitizer ben-
zoporphyrin derivative monoacid ring A (BPD-MA),71 

which may contribute to the immunomodulatory effect of 
BPD-MA. Therefore, the significant sensitivity of acti-
vated T cells to photodynamic inactivation may contribute 
to the immunomodulatory effect of BPD-MA.72

Immunogenic Cell Death (ICD)
PTT and PDT not only have an obvious curative effect on 
killing tumor cells but also stimulate a series of immune 
responses to related apoptotic and necrotic tumor cells and 
inflammatory cells.73 Recently, it has been found that ROS 
produced by endoplasmic reticulum stress in PDT to fight 
against cancer by inducing apoptotic cell death subroutine 
mode of active immunity, which is called ICD whose 
prerequisites are calcium reticulin surface exposure (ecto- 
CA LR), accompanied by IFNG production, ATP secre-
tion, dendritic cell maturation (DCs) and stimulation of 
T cells.74 After that, injury-related molecular models 
(DAMPS) can be induced, including calreticulin (CRT), 

Nanoparticles 

Nuclear t heat 

Cell Necrosis  NIR  
Laser 
1064nm 
 
 

Figure 1 Mechanism of tumor necrosis caused by PTT based on nanomaterials.
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heat shock proteins (HSP70 and HSP90), high mobility 
box 1 (HMGB1) and so on.75 As an antigen model, it 
activates the host immune system for anticancer therapy 
by stimulating the antigen presentation of dendritic cell 
(DC) and the proliferation of cytotoxic T lymphocytes 
(CD8+T cells).76 One of the disadvantages of PDT is the 
oxygen consumption process, so the nanosystem is mod-
ified by ER targeting Pardaxin peptides (FAL- 
ICGHAuNS) and oxygen transfer hemoglobin (FAL-HB 
liposomes) to reverse hypoxia. ROS generated by PDT in 
turn trigger ER stress and cause downstream DAMP/dan-
ger signal pathway which can be more effectively 
promoted.77 So Deng et al proposed that Ds-sP/TCPP- 
TERNPs can selectively accumulate in ER, locally pro-
duce ROS, to induce ER stress, magnify ICD and activate 
immune cells, resulting in enhanced immunotherapy 
effect.78 In addition, photooxidation of (phox) stress- 
induced loss of ATP2A2 function, disruption of ER-Ca2+ 

homeostasis and induction of phox-ER Stress. Phox-ER 

stress is characterized by activating EIF2AK3-EIF2A- 
ATF4 branches and ERN1-XBP1 branch of the unfolded 
protein response and ultimately culminates into BAX and 
BAK1-dependent mitochondrial apoptosis. In the absence 
of IL10, it is accompanied by the production of IL1B and 
induces effective anti-tumor immunity in vivo.79 However, 
D. Garg et al believe that a large number of experiments, 
such as ATG5 gene knockout, have proved that under mild 
hyperthermia ROS-induced autophagy of cancer cells can 
help to escape the determinants of ICD.80

In tumor microenvironment (TME), the high expres-
sion of indoleamine 2-dioxygenase induced by IFN-γ 
leads to excessive consumption of L-tryptophan and 
accumulation of canine in γ, which can inhibit mTOR 
pathway to interfere with P-S6K phosphorylation and 
induce regulatory T cell (Foxp3+Treg), to inhibit 
CD8+T cell activation,81 which is the main cause of 
severe immunosuppression. Type I interferon, exogen-
ous and endogenous IFN-α/β play an important role in 

Figure 2 The mechanism of tumor apoptosis and necrosis caused by PTT/PDT/combined therapy based on nanoparticles was explained scientifically.

Hou et al                                                                                                                                                              Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 6832

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


tumor immune monitoring and tumor control. Up- 
regulation of IFN-α/β transcription coexists with IRF-3 
phosphorylation, which effectively activates STAT182 

(Figure3).
CD47 is a transmembrane protein overexpressed in 

most tumors. In order to limit the phagocytic function 
of macrophages, it interacts with macrophage signal reg-
ulatory protein α (sirp α).82 Zhaoming Guo et al devel-
oped CD47-targeted Ab-PEG-Bi2Se3 were developed, 
which can specifically block the crosstalk between 
CD47 and SIRP α, enhance the phagocytosis of macro-
phages to tumor cells, and achieve improved PTT.83 

Recent reports have found that ICD inducers can kill 
tumor cells, convert them into vaccines, and release 
immunostimulatory vaccines. The success of anticancer 
vaccination is related to the immunogenicity potential of 
dead/dead cells as an antigen/auxiliary source.84

The Pathway of Tumor Death 
Caused by PTT and PDT
HSPs (Heat shock proteins), especially HSP70, are ubiqui-
tous molecular chaperones that promote correct protein 
folding and are more expressive at high temperatures.85 

Hsp70 also plays an anti-apoptotic effect by inhibiting the 
activation of caspase-3 and blocking the stress-activated 
kinase pathway.86 Down-regulation of HSP70 and BAG3 
can reduce the complex formation of anti-apoptosis-related 
proteins and Wang et al presented that by inhibiting HSP 
induced by PTT and weakening anti-apoptotic signal, 
Cantharidin (CTD)-TSL@GNPs obtained efficient PTT 
effect on A431 cells and had clinically acceptable irradia-
tion power.87 According to the previous work, the inhibi-
tion of HSP function can destroy the cell homeostasis and 
interfere with the integrity of protein interaction, thus 

Figure 3 Standardized explanation of anticancer effect induced by endoplasmic reticulum and mitochondria-targeting PTT/PDT therapy and immunogenic cell death.
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reducing the cell thermotolerance and improving the effi-
ciency of photothermal therapy.88

Moustafa R.K. Ali et al presented that in terms of the 
relative level and results of HSP70, the HSP70 level of 
Huh7.5 cells was 10 times lower than that of HSC and 
MCF-7 cells. However, compared with the other two cell 
lines, the apoptosis of Huh7.5 cells increased significantly 
after PPT.85 Therefore, inhibition of HSP70 is 
a recognized target in cancer therapy, which may make 
cancer cells sensitive to PTT. Hsp72 is also a basic mem-
ber of the molecular chaperone family. Compared with the 
low expression in normal cells, the expression level in 
tumor tissues was significantly increased to avoid the 
stimulation of apoptosis. So Wang et al designed nanoscale 
system for HSP72 (SiHSP72)/hyaluronic acid (HA), gold 
nanoscale (GNS)/SiRNA, was successfully constructed by 
the layer-by-layer method.89

JAK/STAT, especially STAT3, participates in tumorigen-
esis and development by regulating TARGE gene: Cell cycle 
regulators (such as c-fos, meks, cMyc, cyclinD1) and apopto-
sis inhibitors (such as Survivin, Bcl-xL) are fast signal trans-
duction pathways from extracellular to nuclear.STAT3 should 
be an oncogene, and its activation and overexpression are 
related to the malignant transformation of cells.90 The Bcl-2 
family is divided into two families in apoptosis: They are anti- 
apoptotic proteins such as START3 downstream target genes 
Bcl-2 and Bcl-xl which undergo conformational changes from 
the cytoplasm to the organelles of the membrane structure, 
especially the outer membrane of the mitochondria when cells 
are activated by death signals and pro-apoptotic proteins Bax 
and Bak when the cell is in a steady state, respectively.91 Their 
experiments showed that overexpression of STAT3 could sig-
nificantly reduce the inhibitory effect of ALA-PDT(70). Dose- 
dependent and light-dependent cellular uptake compound 
STAT3 dimer has become a sensitive and rapid indicator of 
the efficacy of PDT in vitro and in vivo and can be used as 
biomarkers to evaluate and optimize existing and new PDT 
candidate therapeutic parameters in vivo. Therefore, so Li et al 
think the combination of ALA-PDT and STAT3-siRNA in the 
treatment of squamous cell carcinoma has good tumor tissue 
selectivity, no pain and no scar formation.92 EGFR is 
a receptor tyrosine kinase that protects apoptosis through 
important cellular functions such as phosphatidylinositol 
3’kinase (PI3K)/AKT, proliferation-mediated cell cycle pro-
gression and survival, mitogen-activated protein kinase 
(MAPK) and STAT3.91 Christine Edmonds also found that 
PDT stimulates tyrosine phosphorylation and nuclear 

translocation of EGFR. Therefore, erlotinib which is the inhi-
bition of EGFR signal, Combining PDT, can increase the 
cytotoxicity of PDT by up-regulating the mechanism of apop-
totic cell death.93

In order to target residual tumor cells and metastatic can-
cer, PTT combined with additional immune intervention is 
needed to initiate the communication of the whole body’s 
effective immune system. Zhou et al have also developed 
interventional photothermal therapy combined with immune 
adjuvants. It is reported that chitosan is the precursor of GC, 
which can not only promote the maturation of DC by inducing 
type I interferon-induced antigen-specific Th1 response but 
also stimulate the secretion of interferon-γ and tumor necrosis 
factor-α. However, the immunomodulatory function of GC 
needs to be further determined in the future.94 Greater matura-
tion of dendritic cells triggered by Yining Zhu designed Al- 
BSA-Ce6NPs translates into higher levels of tumor and lymph 
node infiltration through CD8+ and CD4+ T cells which aims 
to compete for melanoma by albumin-biomineralized nano-
particles to synergize PTT and immunotherapy.95

Conclusion and Future Outlook
In short, phototherapy based on nanoparticles can not only 
directly eliminate undetectable tumors and metastatic can-
cers but also treat other diseases, melanoma, reverse drug 
resistance, etc., and initiate the systemic immune response 
by regulating the tumor microenvironment. The purpose of 
tumor treatment is summarized in three levels: stimulating 
the secretion of cytokines, regulating the death pathway of 
cancer cells and with the help of follow-up immune adju-
vants. Although phototherapy based on nanoparticles and 
a combination of various treatments have been widely 
studied, many projects are still in the stage of scholars’ 
exploration and there are still many deficiencies that need 
to be improved. For example, the safety of long-term 
metabolism in human body, biocompatibility and 
Efficient targeting of target cells by PTT and PDT based 
on nanoparticles must be considered, and the clinical 
applicability of their binding mode to various diseases in 
human body must be further discussed. The intensity and 
controllability of the induced immune response must also 
be addressed. In addition, the clarified mechanism of 
immune response induced by PTT and PDT in vivo is 
rare, and the clinical application methods based on immu-
nity are not yet fully understood. This new type of PDT, 
PTT and the combination of various technologies are 
expected to provide new methods for the treatment of 
tumors and other medical fields.
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