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Abstract: The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was 
firstly identified as being able to induce in vitro the proliferation and differentiation of bone 
marrow progenitors into granulocytes and macrophages. Much preclinical data have indi-
cated that GM-CSF has a wide range of functions across different tissues in its action on 
myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an 
important therapeutic target in several inflammatory and autoimmune disorders, for example, 
rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some 
current issues and questions pertaining to this biology, summarize the results from preclinical 
models of a range of inflammatory and autoimmune disorders and list the latest clinical trials 
evaluating GM-CSF blockade in such disorders. 
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Introduction
Granulocyte macrophage-colony stimulating factor (GM-CSF, CSF2) was origin-
ally defined as a hemopoietic growth factor due to its ability to form colonies of 
granulocytes and macrophages in vitro by proliferation and differentiation of bone 
marrow progenitor cells.1 A number of reports have revealed that GM-CSF and the 
GM-CSF receptor (GM-CSFR) levels are elevated and correlated with disease 
severity in many inflammatory/autoimmune diseases, for example, rheumatoid 
arthritis (RA).2 In addition, there is much preclinical data providing a strong 
rationale for the involvement of GM-CSF in such diseases. As a result, GM-CSF 
and GM-CSFR have both attracted great interest as potential therapeutic targets. 
This review provides a brief overview of the pleiotropic biology of GM-CSF and 
outlines some of the most recent preclinical findings and in particular the resultant 
clinical studies using GM-CSF- or GM-CSFR-targeting monoclonal antibodies 
(mAbs) in various diseases. It also summarizes some of the contentious issues 
and outstanding questions pertaining to GM-CSF biology. This review cannot 
obviously cover all aspect of the broad topic and further background information 
on GM-CSF biology and targeting can be found in earlier reviews (see, for 
example,2–6).

GM-CSF Biology
GM-CSF Receptor and Signaling
GM-CSF binds to the multimeric GM-CSFR, comprising a specific low-affinity ligand- 
binding α subunit (GM-CSFRα) and a signal-transducing β subunit (GM-CSFRβ), the 
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latter shared with the interleukin-3 (IL-3) and IL-5 receptors. 
The activation of GM-CSFR triggers (i) phosphorylation of 
the GM-CSFRβ subunit, which commonly leads to the bind-
ing of signal transducer and activator of transcription 5 
(STAT5) thereby initiating Janus Kinase (JAK) 2 
signaling7–9 and (ii) activation of the MEK/ERK, phosphati-
dylinositol 3 kinase (PI3K) and NFκB pathways.10,11

The hemopoietic-specific transcription factor, interferon 
regulatory factor 4 (IRF4), is a key signaling molecule for 
the adoption of dendritic cell (DC)-like properties in GM-CSF 
-treated precursors, such as monocytes.12–16 Recently, it was 
reported that the GM-CSF stimulation of monocytes/macro-
phages in vitro leads to the formation of CCL17 via IRF4 as an 
important pathway, termed the GM-CSF/CCL17 axis (see 
below).17 Mechanistically, GM-CSF up-regulates IRF4 
expression by enhancing JMJD3 demethylase activity.17 

Additionally, GM-CSF-IRF4 signaling favours the polariza-
tion of pro-inflammatory macrophages and increased antigen 
presentation capability (ie increased MHC class II expression) 
during in vivo inflammation.18 In contrast, some literature 
indicates IRF5, but not IRF4, to be important for GM-CSF- 
induced macrophage polarization19,20 and IRF4 has been con-
sidered to have an anti-inflammatory role in macrophages (for 
example, enhanced interleukin (IL)-10 and reduced TNF 
production).21–23

GM-CSF and the Lung
While GM-CSF appears to be dispensable for steady state 
myeloid cell development in vivo,24 GM-CSF directly reg-
ulates the differentiation of liver-derived fetal monocytes 
into immature alveolar macrophages during embryonic 
development25 and also promotes the development of func-
tional alveolar macrophages via PU.1.25,26 GM-CSF gene- 
deficient mice develop pulmonary alveolar proteinosis,24,27 

which can also occur in humans due to genetic mutations or 
endogenous neutralizing antibody (53).28 This pathology 
results from compromised alveolar macrophage functions.29 

In addition, GM-CSF deficient mice have been reported to be 
more susceptible to lung infections.30,31 Inhaled GM-CSF 
can protect mice from such infections30,32 via enhancing 
macrophage and DC function.30,31 These studies suggest 
that the availability of excess GM-CSF could be beneficial 
in certain circumstances.

Sources of GM-CSF in Inflammation
A wide range of cells can produce GM-CSF.2–6 During 
inflammation, major sources of GM-CSF are both 

hematopoietic, for example, T and B cells, and non- 
hematopoietic, for example, tissue resident cells.

T Cells
GM-CSF has been reported to be produced by TH1 and TH 

17 cells via STAT signaling33–35 and shown to be crucial 
for encephalitogenicity.33 A distinct subset of T cells, 
known as GM-CSF-producing TH cells, has recently been 
identified.35 GM-CSF-producing TH cells express unde-
tectable T-bet, GATA-3, or RORγt and do not express 
a cytokine signature that other T cell subsets express.35,36 

In humans, GM-CSF-producing TH cells can be identified 
as CCR10+ CCR4+ CXCR3− CCR6− cells.36 GM-CSF- 
producing TH cells have been implicated in autoimmune 
brain disease as fewer GM-CSF-producing TH cells corre-
lated with less severe experimental autoimmune encepha-
lomyelitis (EAE).35

Innate Lymphoid Cells
The innate lymphoid cell (ILC) family encompasses the 
classic cytotoxic natural killer (NK) cells and the non- 
cytotoxic ILCs.37,38 NK cells have been recently reported 
to produce GM-CSF when infiltrating into joints for the 
maintenance of inflammatory arthritis.39 Among the sub-
sets of ILCs, type 3 ILCs have been shown to secrete GM- 
CSF in intestinal inflammation.40–42 In spondyloarthritis, 
type 3 ILCs are found to be enriched in the inflamed joint 
and are the predominate source of GM-CSF.43

B Cells
A subset of B cells, namely innate response activator (IRA) 
B cells, resides in nonlymphoid sites, such as the peritoneal 
and pleural cavities, and provides a first line of defense against 
infection.44 In a model of Toll-like receptor (TLR)-induced 
sepsis, IRA B cells, which produce GM-CSF and also reported 
to express the GM-CSFR, mediate a GM-CSF-dependent IgM 
protective mechanism against septic shock.44–46 Mixed chi-
meric mice with B cell-restricted GM-CSF deficiency had 
high bacterial titer morbidity after infection but did not 
develop alveolar proteinosis,44 indicating that B cell-derived 
GM-CSF is dispensable for surfactant clearance by alveolar 
macrophages. Memory B cells isolated from multiple sclerosis 
(MS) patients produce high levels of GM-CSF, termed GM- 
CSF+ B cells, and co-culture of these cells with macrophage- 
colony stimulating factor (M-CSF)-generated, human blood 
monocyte-derived macrophages initiates proinflammatory 
responses.47 Interestingly, dimethyl fumarate ameliorates MS 
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and depletes GM-CSF-producing B cells in these patients48,49 

consistent with a pathogenic role for these cells.

Tissue Resident Cells
Tissue resident cells can also be a potential source of GM- 
CSF during inflammation. For example, it has been shown 
that fibroblast-like synoviocytes are important for the 
initiation of experimental autoimmune arthritis via their 
GM-CSF production.50 GM-CSF has been reported to be 
expressed by cardiac fibroblasts in models of Kawasaki 
disease and myocarditis.51,52 Epithelial cells can produce 
GM-CSF in response to allergenic stimuli53,54 and such 
production can restore alveolar barrier function.55 In addi-
tion, studies also reported that endothelial cells can pro-
duce GM-CSF in response to pro-inflammatory cytokine 
stimulation.56–58

GM-CSF-Responsive Cells
In vitro, GM-CSF can regulate proliferation and/or activa-
tion of myeloid cells, namely monocytes, macrophages, 
DCs, neutrophils and eosinophils. At sites of inflamma-
tion, GM-CSF can be proinflammatory through recruit-
ment of myeloid cells and/or by enhancing their survival 
and activation.6,59 However, it has been reported that pro-
longed exposure to GM-CSF can lead to the generation of 
monocyte-derived suppressor cells.60

In addition to being able to control the development of 
monocytes and macrophages from bone marrow precursors 
in vitro, GM-CSF can regulate multiple functions in the 
differentiated cells, including cell survival, proliferation 
and maturation, via transcription factors, such as PU.1 and 
IRF4.17,26,61 During infection, GM-CSF has been shown to 
boost macrophage antimicrobial functions, such as 
enhanced phagocytosis62 and increased production of reac-
tive oxygen species.63,64 GM-CSF stimulates monocytes/ 
macrophages to secrete some pro-inflammatory cytokines 
(for example, IL-6, IL-23 and CCL17)17,65–67 and these 
cells are often hyperinflammatory (“primed”) when they 
encounter a second stimulus (for example, lipopolysacchar-
ide (LPS)).68–70 Macrophages are remarkably plastic cells 
and have been classified into various so-called “polarization 
states” (for example, M1 vs M2) in different diseased tis-
sues. As regards the expression of certain pro-inflammatory 
cytokines, GM-CSF has been considered to shift the phe-
notype of macrophages into a M1-like, pro-inflammatory 
polarization state;71 however, such cells have also been 
considered to have dual M1/M2 characteristics,53,67 and 
GM-CSF-activated monocytes have been reported to 

alleviate experimental colitis.67 As a result, it has been 
recommended that the M1/M2 polarization terminology 
not be applied to GM-CSF action.2,17,61,72

GM-CSF also promotes the development of migratory 
CD103+ CD11b+ DCs,40,73 while negatively regulating the 
development of resident CD8+ DCs.74 GM-CSF, often in 
combination with IL-4, is widely used to generate in vitro 
murine and human DC populations from bone marrow 
precursors and blood monocytes, respectively.11,75–77 

Heterogeneity in GM-CSF-induced bone marrow DCs has 
been reported, comprising at least two populations, namely 
the Fms-like tyrosine kinase 3 (FLT-3)+ DC or the CD11c+ 

MHCII+ CD115+ monocyte-derived DC (MoDC).78 There 
has been debate in the literature regarding the role of GM- 
CSF in the in vivo generation of MoDCs.79–85 Some studies 
have shown GM-CSF to be dispensable for the differentia-
tion of MoDCs;82 in contrast, it has been demonstrated that 
NFκB-dependent GM-CSF production in CD4+ T cells is 
required for the generation of MoDCs.81,83,84 Very recently, 
to add fuel to this debate GM-CSF has been proposed86 to 
differentiate a population of DC3s independently of con-
ventional DCs (cDCs) or monocyte-restricted progenitors. 
Besides the regulation of DC numbers, there is evidence 
that GM-CSF also regulates their function, including anti-
gen presentation (as indicated by increased MHCII 
expression78) and inflammatory responses (as indicated by 
increased IL-6 and IL-23 secretion87).

Neutrophils
GM-CSF can enhance the survival, adhesion and trafficking 
of neutrophils.88,89 During infection, GM-CSF also upregu-
lates the antimicrobial functions of neutrophils, such as 
phagocytosis90 and formation of extracellular traps.91 One 
study reported that the expression of PU.1 in neutrophils of 
pulmonary alveolar proteinosis patients was normal, indi-
cating that GM-CSF is not involved in steady state neutro-
phil development.89

GM-CSF/CCL17 Axis
The chemokine, CCL17 (formerly called thymus and activa-
tion-regulated chemokine [TARC]) was originally implicated 
in the preferential attraction of TH2 cells;92 however, it can 
also attract regulatory T cells.93 Its most recognized receptor is 
CCR494 although the atypical chemokine receptor 2 (ACR2) 
has also been reported to be a CCL17 receptor.95 As men-
tioned above, GM-CSF in vitro upregulates CCL17 formation 
via an IRF4/JMJD3-dependent mechanism in human and 
mouse monocytes/macrophages,17 as well as in inflammation 
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models.18,80 It is to be noted that GM-CSF is not the only 
mediator that regulates CCL17 production in these popula-
tions; for example, IL-4 also upregulates the CCL17 expres-
sion in human monocytes and mouse macrophages via 
a similar mechanism.96 This GM-CSF/CCL17 axis has been 
found to be important in controlling inflammatory arthritic and 
osteoarthritic pain in pre-clinical models;17,80,97–99 impor-
tantly, this axis appears to be active in humans, since 
a neutralizing GM-CSFR mAb in RA patients leads to 
a sustained reduction in circulating CCL17 levels.100 

Preclinical studies suggest that CCL17 may not necessarily 
be acting as a T cell chemokine in its control of inflammation 
and its associated pain.17,80,97–99 Mechanistically, whether 
CCL17 has a direct effect on neurons for pain induction 
remains an open question101 – there are conflicting reports as 
to whether CCR4, the CCL17 receptor, is expressed on 
neurons.101–104 However, whatever the mechanism, it is clear 
that neutralizing CCL17 peripherally with a mAb ameliorates 
inflammatory arthritic99 and osteoarthritic97,98 pain. 
Additionally, other studies have also reported a non- 
chemotactic role for CCL17, for example, a role(s) in regulat-
ing inflammation by restricting regulatory T cell 
expansion.105,106

GM-CSF Biology: Current Issues 
and Questions
There are still a number of issues and questions pertaining to 
GM-CSF biology, which need to be addressed as they have 
potential implications for the clinical targeting of GM-CSF in 
inflammation and autoimmunity. It should be borne in mind 
that this biology may vary depending on the processes and 
tissues involved in the particular clinical indication in ques-
tion. Which responding cell type(s) is relevant and whether 
GM-CSF regulates their number and/or activation/differentia-
tion status are important considerations ― the latter issue may 
have implications for therapeutic delivery and dosing since the 
extent of GM-CSF neutralization/depletion is likely to be 
critical.6 There is still plenty of controversy around the role 
of GM-CSF in DC development in vivo.79–85 It would also be 
worth knowing how significant is GM-CSF-dependent IRF4 
signaling in monocytes/macrophages, including the so-called 
GM-CSF/CCL17 axis discussed above. Depending on the 
particular model of inflammation/autoimmunity being studied, 
the relevant cell type(s) producing GM-CSF varies, again with 
possible implications for therapeutic strategies. GM-CSF 
administration systemically can have pro-inflammatory and 
anti-inflammatory effects ― as discussed previously, these 

responses to exogenous GM-CSF may or may not be predic-
tive of the findings when endogenous (locally acting?) GM- 
CSF is neutralized/depleted.2

GM-CSF has been documented for its role in periph-
eral pain.17,99,107,108 However, whether in this capacity 
GM-CSF is acting directly on neurons (nociceptors), 
including acting centrally, remains unclear as conflicting 
reports have been published.101,109–115 Additionally, GM- 
CSF has also been reported to have neuroprotective effects 
following nerve injury.116,117 Further research is obviously 
needed to clarify how GM-CSF interacts with the nervous 
system.

GM-CSF in Disease
Inflammatory Arthritis
Early studies measuring cytokines in synovial fluid and blood 
from patients with RA showed increased GM-CSF levels, as 
well as increased expression of GM-CSFR, in inflamed 
synovial tissue.118,119 Administration of GM-CSF to RA 
patients led to disease flares.120 A genome-wide association 
study revealed that mutations in CSF2 (the gene that encodes 
GM-CSF) contribute to genetic susceptibility in RA.121 

Based in part on the priming of blood monocytes with GM- 
CSF, it was recently suggested that GM-CSF neutralization 
be considered as a potential therapeutic approach for the 
treatment of ankylosing spondylitis.122

The contribution of GM-CSF to the pathogenesis of 
experimental inflammatory arthritis is well documented in 
the literature. GM-CSF-deficient mice fail to develop 
arthritis and associated pain in several inflammatory arthri-
tis models, including collagen-induced arthritis (CIA), 
antigen-induced arthritis (AIA), zymosan-induced 
arthritis (ZIA) and K/BxN serum-transfer arthritis 
(STA).17,39,108,123 The administration of neutralizing GM- 
CSF mAbs ameliorated existing disease in these 
models.99,124 Regarding the relevance of GM-CSF to 
arthritic pain, as mentioned earlier GM-CSF is implicated 
in regulating inflammatory and arthritic pain via down-
stream CCL17.17,98,99 Interestingly, high levels of circulat-
ing GM-CSF have been shown to correlate with the 
responsiveness of RA patients to anti-TNF agents.125 

Consistent with the concept of the GM-CSF/CCL17 axis 
(see above), RA patients treated with anti-GM-CSFR mAb 
(mavrilimumab) have reduced circulating CCL17 levels, 
suggesting that CCL17 could be a biomarker for anti-GM- 
CSF or anti-GM-CSFR treatment.100

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                         

ImmunoTargets and Therapy 2020:9 228

Lee et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Osteoarthritis
Osteoarthritis (OA) was once considered a non- 
inflammatory arthropathy; however, it is now well- 
recognized that there can be a significant inflammatory 
component contributing to OA clinical symptoms, for 
example, chronic pain. The expression of GM-CSF and its 
receptor have been found in OA synovial tissue126,127 and 
reported to be negatively correlated with pain.126 In con-
trast, in a collagenase-induced, joint instability OA model, 
GM-CSF-deficient mice were protected from associated 
pain and osteophyte development.107 Consistent with this 
data, neutralizing anti-GM-CSF mAb effectively amelio-
rated pain in the same model.97,107 This pain amelioration 
was observed when the neutralizing mAb was administered 
early or late in this model but early administration was 
needed for it to be effective on joint damage.97 This data 
has led to clinical trials in OA for targeting GM-CSF (see 
below) or CCL17 (https://clinicaltrials.gov/show/ 
NCT03485365). Synovial inflammation, characterized by 
macrophage infiltration, is often more prominent in early 
OA lesions, while advanced OA is more commonly asso-
ciated with structural changes (for example, cartilage 
degeneration and/or osteophyte formation).128–130 Given 
that GM-CSF regulates a wide range of macrophage func-
tions (see above), it could be that optimal clinical improve-
ment might be seen in patients with early OA as opposed to 
patients with advanced OA disease.

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic autoimmune/inflamma-
tory disease of the central nervous system (CNS) and is 
characterized by demyelination and subsequent axonal 
degeneration. While it is widely believed that TH17 cells 
are the main encephalitogenic population in EAE,131 the 
most widely used MS model, it was reported that their key 
secreted cytokine, IL-17, is dispensable for the development 
of EAE.132,133 Instead, it was later shown that GM-CSF 
secreted by TH17 cells is the main cytokine contributing to 
encephalitogenicity134 via the activation of microglia within 
the CNS.135 GM-CSF-activated microglia adopt a M1-like 
(inflammatory) phenotype136 and produce highly neurotoxic 
molecules such as tumor necrosis factor (TNF), IL-1 and IL- 
6.137 It has been proposed that GM-CSF promotes the break-
down of the blood brain barrier enabling entry of circulating 
Ly6Chi monocytes and stimulates the differentiation of 
monocyte-derived antigen-presenting cells.138,139 These dif-
ferentiated cells share a similar phenotype to macrophages 

found in active MS lesions.140,141 Additional mouse studies 
have demonstrated that GM-CSF deletion results in fewer 
monocyte-derived cells in the CNS parenchyma following 
EAE induction,142 and GM-CSF administration leads to 
more cells migrating into the CNS parenchyma.143 Elevated 
GM-CSF levels have been reported in the cerebrospinal fluid 
of patients with active MS.144,145 Glatiramer acetate, a FDA- 
approved drug to treat MS, has been shown to upregulate 
regulatory T cells and reduce GM-CSF levels in mice with 
EAE.146 These reports demonstrate that GM-CSF plays 
a central role in EAE and indicate that GM-CSF might be 
a therapeutic target in MS.

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a chronic immune- 
mediated disease affecting the gastrointestinal tract con-
sisting of two main subtypes: Crohn’s disease (CD) and 
ulcerative colitis (UC).147 Impaired innate immunity plays 
a critical pathogenic role in IBD.148 GM-CSF has been 
identified as a key mediator of chronic inflammation in 
models of colitis.41,149,150 Other studies using dextran 
sodium sulfate (DSS)-induced colitis reported that GM- 
CSF-deficient mice developed more severe colitis;151,152 

mechanistically, it has been claimed that type 3 ILC- 
derived GM-CSF modulates the macrophage phenotype 
to prevent intestinal fibrosis.42 In line with a potential 
beneficial role of GM-CSF in IBD, GM-CSF administra-
tion can improve IBD experimentally153 and in some 
patients;152,154 also, high levels of circulating anti-GM- 
CSF autoantibodies have been found to correlate with 
worse CD prognosis.155,156

Interstitial Lung Disease
Interstitial lung disease (ILD) comprise heterogenous inflam-
matory lung parenchyma disorders that can lead to alveolitis 
and ultimately fibrosis.157 It is also a serious complication 
associated with systemic rheumatic diseases.157 

Experimentally, the SKG mouse with a mutation in the 
Zap-70 gene158,159 develops spontaneous arthritis, ILD and 
IBD.160 The lungs of SKG mice develop fibrosis associated 
with intense infiltrates of GM-CSF+ IL-17A+ neutrophils, 
pathological features that are reminiscent of human ILD.161 

GM-CSF blockade reduces these features, including the 
degree of fibrosis, in SKG mice, with IL-17 blockade being 
less effective.162 Interestingly, CCL17-expressing macro-
phages have been implicated in mediating peritoneal 
fibrosis.163 Given these findings, together with the data in 
lung inflammation models wherein GM-CSF blockade 

ImmunoTargets and Therapy 2020:9                                                                                        submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
229

Dovepress                                                                                                                                                              Lee et al

Powered by TCPDF (www.tcpdf.org)

https://clinicaltrials.gov/show/NCT03485365
https://clinicaltrials.gov/show/NCT03485365
http://www.dovepress.com
http://www.dovepress.com


impaired CCL17 expression in alveolar macrophages,80 in 
our view further studies examining the role of the GM-CSF 
/CCL17 axis in lung fibrosis are warranted.

Aortic Aneurysm
Dissecting aortic aneurysm is an important and often life- 
threatening condition. It was reported that mice deficient 
in Kif6, the gene encoding the transcription factor, 
Krueppel-like factor 6, developed worse aortic 
aneurysm.164 In the same study, GM-CSF was identified 
to be an effector molecule downstream of Krueppel-like 
factor 6 and the administration of GM-CSF exacerbated 
aortic aneurysm formation, with GM-CSF antagonism 
having the opposite effect.164 In the aortic root GM-CSF 
induces CD11b+ Gr-1+ Ly6Chi inflammatory monocyte 
accumulation, with anti-GM-CSF mAb administration 
resulting in reduced inflammation and dilation.165 These 
findings suggest that GM-CSF blockade might be an effec-
tive therapeutic approach in aortic aneurysm.

Allergic Disease
GM-CSF has been reported to be involved in the TH2 
response in allergic airway inflammation via activation of 
DCs.53,166,167 In a mouse model of asthma, allergen- 
exposed epithelial cells secrete GM-CSF, which activates 
DCs and also prolongs eosinophil survival.53,168 

Administration of a GM-CSF neutralizing mAb also led 
to reduced allergic hyperresponsiveness.167,168 As a result, 
an anti-GM-CSF mAb has been tested in a Phase II trial 
for severe asthma (see below). Interestingly, it has been 
reported that alveolar DC-derived CCL17 is critical for 
airway inflammation169,170 and CCL17 airway expression 
correlates with asthmatic disease severity.171,172 In our 
view these data warrant a detailed study examining the 
role of the GM-CSF/CCL17 axis in asthma, with CCL17 
being a potential target for treating allergic disease and/or 
a biomarker for patient selection.

Obesity and Its Associated 
Meta-Inflammation
Obesity is now widely considered as a low-grade, chronic 
inflammatory disease that contributes to metabolic dysfunc-
tion, ectopic lipid deposition and insulin resistance.173,174 

With progressive obesity, adipose tissue macrophages 
(ATMs) have been considered to be a key cell type con-
tributing to metabolic inflammation, insulin resistance and 
the impairment of adipocyte function.175–177 In response to 

diet-induced obesity (DIO) in mice, elevated GM-CSF 
levels can be detected in serum,178 peritoneal fluid,179 and 
adipose tissue;180 moreover, GM-CSF is required for DIO- 
induced adipose tissue inflammation, as GM-CSF gene- 
deficient mice had reduced number of infiltrating ATMs 
and crown-like features in adipose tissue,180 in spite of 
increased adiposity and body weight.181,182 It was also 
reported that GM-CSF gene-deficient mice exhibited 
improved metabolic status, namely insulin sensitivity to 
glucose, compared with their wild-type counterparts,180 

and that GM-CSF-responsive myeloid cells play a key 
role in this improvement.181 As a result, GM-CSF has 
been proposed to be a key mediator whose actions might 
explain the difference between obese individuals with nor-
mal glucose tolerance (metabolically “healthy”) and those 
with type 2 diabetes (metabolically “unhealthy”).181 In 
addition to type 2 diabetes, GM-CSF has also been impli-
cated in other obesity-exacerbated diseases, for example, in 
the obesity-mediated enhancement of breast cancer 
metastasis.183 How GM-CSF plays a role during obesity- 
induced meta-inflammation remains to be explored.

Covid-19
In coronavirus disease 2019 (COVID-19), caused by 
severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2), there is a characteristic hyperactive immune 
response that leads to an overwhelming infiltration of 
inflammatory myeloid cells (particularly monocytes, 
macrophages and neutrophils) into the lungs.184–190 

More recent studies have questioned the validity of refer-
ring to the COVID-19 hyperactive immune response as 
the “cytokine storm” seen in chimeric antigen receptor 
(CAR) T cell-related cytokine release syndrome 
(CRS).191,192 The COVID-19-related hyperactive immune 
response resembles a phenotype of secondary haemopha-
gocytic lymphohistiocytosis, often referred to as “macro-
phage activation syndrome”.184–189 In COVID-19 
patients, increased percentages of GM-CSF-expressing 
leukocytes have been found in the blood.193 Inhibition 
of GM-CSF activity in models of hyperinflammatory 
conditions that share similar pathology to late stages of 
COVID-19, such as CAR T cell-related CRS and 
neurotoxicity,194 graft versus host disease-associated 
CRS195 and inflammatory lung diseases,162,196–198 was 
shown to be beneficial. The relevance of GM-CSF to 
COVID-19 and its potential as a therapeutic target have 
been reviewed recently.199,200
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Clinical Studies with the Blockade of 
GM-CSF and Its Receptor
A number of clinical trials neutralizing GM-CSF (see 
Table 1) or GM-CSFR (see Table 2) using mAbs have 
been/are being carried out. Encouragingly, no serious 
adverse events have been noted so far, for example infec-
tions and compromised lung function, with the data from 

a long-term open label extension (OLE) study in RA 
patients being particularly promising in this regard.100

Otilimab
Otilimab (formerly known as MOR-103 and GSK3196165) 
is an IgG1 mAb, developed by MorphoSys AG, that binds to 
GM-CSF and prevents its interaction with GM-CSFRα; it is 

Table 1 Past and Current Status of GM-CSF-Based Therapies

Drug Company Indication Phase Status ClinicalTrials.gov Identifier

Otilimab GlaxoSmithKline RA I/II Completed NCT01023256
RA II Completed NCT02799472

RA II Completed NCT02504671

RA III Recruiting NCT03970837
RA III Recruiting NCT03980483

RA III Recruiting NCT04134728

RA III Recruiting NCT04333147
OA II Completed NCT02683785

MS I/II Completed NCT01517282
COVID-19 II Recruiting NCT04376684

Lenzilumab Humanigen RA II Terminated NCT00995449
CMML I Completed NCT02546284

Asthma II Completed NCT01603277

COVID-19 III Recruiting NCT04351152
Large B-cell lymphoma I/II Recruiting NCT04314843

TJM2 I-Mab Healthy adult subjects I Completed NCT03794180
RA I Recruiting NCT04457856

COVID-19 I/II Recruiting NCT04341116

Namilumab Izana Healthy adult subjects I Completed NCT02354599

RA I Completed NCT01317797

RA II Completed NCT02379091
RA II Terminated NCT02393378

Psoriasis II Completed NCT02129777

Axial Spondyloarthritis II Completed NCT03622658

Gimsilumab Roivant Ankylosing Spondylitis I Completed NCT04205851

COVID19 II Recruiting NCT04351243

Abbreviations: RA, rheumatoid arthritis; OA, osteoarthritis; MS, multiple sclerosis; CMML, chronic myelomonocytic leukemia.

Table 2 Past and Current Status of GM-CSFR-Based Therapies

Drug Company Indication Phase Status ClinicalTrials.gov Identifier

Mavrilimumab Kiniksa RA I Completed NCT00771420

RA II Completed NCT01706926

RA II Completed NCT01715896
RA II Terminated NCT01712399

Giant cell arteritis II Active, not recruiting NCT03827018

COVID-19 II Recruiting NCT04399980
COVID-19 II Not yet recruiting NCT04397497

Abbreviation: RA, rheumatoid arthritis.
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currently being produced by GSK for use in several rando-
mized controlled trials (RCTs).

A short-term, dose-escalation phase Ib/IIa trial in ran-
domized RA patients (n=96, NCT01023256) showed 
improved efficacy in all outcomes (ACR and European 
League Against Rheumatism (EULAR) response) com-
pared with placebo with no pulmonary function test 
abnormalities being reported.201 The subsequent double- 
blind, placebo-controlled phase IIa (NCT02799472) and 
IIb (NCT02504671) trials consistently showed clinical 
improvement in RA patients receiving otilimab and it was 
well tolerated. Circulating CCL17 levels declined only in 
the otilimab group, supporting the existence of the GM-CSF 
/CCL17 axis in humans. GSK has announced the start of 
a clinical development program (ContRAst) embracing 
three Phase III trials aiming to evaluate the efficacy and 
safety of otilimab in RA patients with inadequate response 
to i) conventional synthetic/biologic disease modifying 
anti-rheumatic drugs (DMARDs) (NCT03970837), ii) 
methotrexate (NCT03980483) and (iii) biologic DMARDs 
and/or JAK inhibitors (NCT04134728). A long-term safety 
and efficacy study with otilimab has also commenced 
(NCT04333147).

The results of an exploratory, 12-week, phase IIa study of 
otilimab in patients with hand OA (n=44, NCT02683785) 
have been reported and, while not statistically significant in 
this small study, reduction in pain, accompanied by improve-
ment in functional impairment, was noted.202 Patients have 
been recruited to determine the efficacy of otilimab in 
COVID-19 (NCT04376684).199

Lenzilumab
Lenzilumab (formerly known as KB003) is an IgG1- 
neutralizing anti-GM-CSF mAb and has been tested suc-
cessfully in a randomized phase II trial in RA 
(NCT00995449). A Phase I trial using lenzilumab in 
patients with chronic myelomonocytic leukemia (CMML) 
has been completed (NCT02546284); 33% of patients 
showed durable clinical benefit, which appears to be better 
in a distinct subtype of CMML patients, warranting further 
studies to identify CMML subtypes more likely to 
respond.203 A Phase II, randomized, double-blind, placebo- 
controlled, 24-week study in asthma patients (n=311; 
NCT01603277) has been performed; overall, there were 
no effects on asthma control although there appeared to be 
improvements in patients with eosinophilic asthma.204 

Recently, lenzilumab was administered to a small cohort 
of patients (n=12) with COVID-19 pneumonia and found to 

associate with improved clinical outcome with no mortality 
observed;205 a subsequent phase III study has commenced 
patient recruitment to evaluate efficacy and safety of lenzi-
lumab (NCT04351152).

TJM2
TJM2 is an IgG1-neutralizing anti-GM-CSF mAb. Phase 
I trials in healthy subjects (NCT03794180) and in patients 
with severe COVID-19 (NCT04341116) have commenced.

Namilumab
Namilumab (formerly known as MT203), an IgG1- 
neutralizing anti-GM-CSF mAb, has been investigated in 
double-blind, placebo controlled, randomized trials in 
healthy individuals (NCT02354599)206 and in RA patients 
(NCT01317797),207 which established that namilumab has 
an acceptable tolerability profile.206,207 Phase 1b 
(NCT01317797) and phase II studies (NCT02379091) in 
RA demonstrated efficacy, with the latter study further 
reporting dose-response effects.207,208 A phase II trial 
investigating the efficacy of namilumab in plaque psoriasis 
was also completed (NCT02129777) with no significant 
difference being recorded for this end point between pla-
cebo-treated and namilumab-treated individuals.209 

Patients are being recruited for a phase IIa trial using 
namilumab in axial spondyloarthritis (NCT03622658).

Gimsilumab
Gimsilumab (also known as KIN-1901), a fully human 
IgG1 mAb, has been investigated in a double-blind, pla-
cebo controlled, randomized trial in healthy subjects and 
subjects with ankylosing spondylitis (NCT04205851). 
Patients are being recruited for a phase II trial in 
COVID-19 (NCT04351243).

Mavrilimumab
Mavrilimumab (CAM-3001) is a humanized IgG4 mAb with 
high affinity to the GM-CSFRα chain.210 The efficacy and 
safety profiles of mavrilimumab have been investigated in 
a phase I trial in 32 RA patients (NCT00771420) and in the 
subsequent EARTH clinical development program, includ-
ing two phase IIa-IIb RCTs (EARTH EXPLORER 1 and 
EARTH EXPLORER 2).211,212 In the phase IIb, placebo- 
controlled EARTH EXPLORER 1 study (NCT01706926), 
moderate-to-severe active RA patients (n=236) with ongoing 
methotrexate treatment, received three different doses of 
mavrilimumab (150, 100 and 30 mg). The DAS28-CRP 
score among these RA patients was significantly decreased 
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in all mavrilimumab subgroups compared with placebo, with 
the optimal response being 150mg mavrilimumab.212 The 
EARTH EXPLORER 2 study (NCT01715896), which was 
a phase II, double-blind, randomized trial, evaluated the 
benefits of using mavrilimumab (100mg every other week, 
n=70) in long-standing, active RA patients (mean disease 
duration 6.7 years, and mean baseline DAS28-ESR 6.5), 
who had not responded to a conventional synthetic 
DMARD or TNF inhibitor.211 This study included 
a parallel treatment with an anti-TNF mAb (golimumab) 
(50 mg every 4 weeks, n=68). No statistical difference was 
seen between RA patients treated with mavrilimumab or 
golimumab, which could be due to the fact that 
a suboptimal mavrilimumab dose (100 mg every other 
week) was used in this trial as opposed to the most effective 
dose (150mg every other week), confirmed by the EARTH 
EXPLORER 1 study.212 Peripheral biomarkers and patho-
physiological pathways modulated by mavrilimumab and 
golimumab were also assessed in the study. While 
a number of mediators were suppressed by both mAbs, 
mavrilimumab, but not golimumab, was able to suppress 
serum levels of CCL17 and CCL22 and to induce sustained 
differential suppression of peripheral disease markers in anti- 
TNF inadequate responders.211

The long-term efficacy and safety profile of mavrili-
mumab were also explored in an OLE study 
(NCT01712399). All patients (n=422), who completed 
the double-blind phase of EARTH EXPLORER 1 and 
2 trials (study 1109; NCT01712399), had the opportunity 
to enter the study and receive mavrilimumab 100 mg 
every other week plus methotrexate for a 3-year follow- 
up period.100 At week 122, 65.0% and 40.6% patients 
achieved a DAS28-CRP score of <3.2 and <2.6, 
respectively,100 demonstrating a sustained benefit in 
measures of RA disease outcomes. The overall safely 
profile of mavrilimumab appears to be promising, parti-
cularly regarding pulmonary alveolar proteinosis. In this 
OLE study, biomarker analyses support the hypothesis 
that GM-CSF regulates CCL17 and CCL22 as sustained 
suppression of CCL17 and CCL22 was seen in mavrili-
mumab-treated patients over a longer follow-up period.

New clinical trials are underway to evaluate the benefits of 
mavrilimumab in patients with giant cell arteritis 
(NCT03827018) and in COVID-19 patients (NCT04399980 
and NCT04397497).199 It has recently been reported that 
mavrilimumab treatment was associated with improved clin-
ical outcomes compared with standard care with patients with 
severe COVID-19.213

Concluding Remarks and Future 
Perspectives
The preclinical rationale for targeting GM-CSF in inflamma-
tion/autoimmunity is solid, and the results from early phase 
clinical trials of GM-CSF or GM-CSFR blockade in RA 
patients, and possibly asthma and COVID-19, are encoura-
ging. However, careful ongoing evaluation of adverse effects, 
particularly in the lungs and gut, is clearly paramount but, as 
mentioned above, it seems so far that the anti-GM-CSF and 
anti-GM-CSFR mAbs used in clinical trials are without major 
safety concerns. It is hoped that there are other indications (see 
Table 1) where GM-CSF targeting will turn out to provide 
potential benefit. The key role of GM-CSF in inflammatory 
pain was highlighted above. In this connection, the rapid and 
dramatic effect of mavrilimumab on RA pain has been 
highlighted211,212 and, intriguingly, it has been speculated 
that the dramatic effects of the JAK1/2 inhibitor, baricitinib, 
also on RA pain may be due to its inhibition of GM-CSF 
signaling.214 Circulating biomarkers, such as CCL17, may aid 
in the selection of an indication for GM-CSF-based therapeu-
tics and even of patients within such an indication, thus hope-
fully leading to better clinical outcomes. It is hoped that 
targeting GM-CSF is successful in patients who are non- 
responders to biologics, for example, those targeting other 
inflammatory mediators, such as TNF and IL-6.
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