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Purpose: CYP2B6 liver enzyme metabolizes the two non-nucleoside reverse transcriptase 
inhibitors Efavirenz (EFV) and Nevirapine (NVP) used in the antiretroviral therapy (ART) 
regimens for HIV-infected individuals. Polymorphisms of the CYP2B6 gene influence drug 
levels in plasma and possibly virological outcomes. The aim of this study was to explore the 
potential impact of CYP2B6 genotype and haplotype variation on the risk of developing 
EFV/NVP drug resistance mutations (DRMs) in HIV-1 patients receiving EFV-/NVP- 
containing regimens in Botswana.
Patients and Methods: Participants were a sub-sample of a larger study (Tshepo study) 
conducted in Gaborone, Botswana, among HIV-infected individuals taking EFV/NVP con-
taining ART. Study samples were retrieved and assigned to cases (with DRMs) and controls 
(without DRMs). Four single-nucleotide polymorphisms (SNPs) in the CYP2B6 gene 
(−82T>C; 516G>T; 785A>G; 983T>C) were genotyped, the haplotypes reconstructed, and 
the metabolic score assigned. The possible association between drug resistance and several 
independent factors (baseline characteristics and CYP2B6 genotypes) was assessed by Binary 
Logistic Regression (BLR) analysis. EFV/NVP resistance status and CYP2B6 haplotypes 
were also analyzed using Z-test, chi-square and Fisher’s exact test statistics.
Results: Two hundred and twenty-seven samples were analysed (40 with DRMs, 187 
without DRMs). BLR analysis showed an association between EFV/NVP resistance and 
CYP2B6 516G allele (OR: 2.26; 95% CI: 1.27–4.01; P=0.005). Moreover, haplotype analysis 
revealed that the proportion of EFV/NVP-resistant infections was higher among CYP2B6 fast 
than extensive/slow metabolizers (30.8% vs 16.8%; P=0.035), with the 516G allele more 
represented in the haplotypes of fast than extensive/slow metabolizers (100.0% vs 53.8%; 
P<0.001).
Conclusion: We demonstrated that the CYP2B6 516G allele, and even more when combined 
in fast metabolic haplotypes, is associated with the presence of EFV/NVP resistance, 
strengthening the need to assess the CYP2B6 genetic profiles in HIV-infected patients in 
order to improve the virologic outcomes of NNRTI containing ART.
Keywords: ART, CYP2B6 gene, drug resistance selection, fast metabolizers, HIV

Introduction
Antiretroviral therapy (ART) has significantly reduced HIV-related morbidity and 
mortality globally. However, the emerging threat of HIV drug resistance may 
reduce ART efficacy resulting in pronounced negative public health impact, espe-
cially in sub-Saharan Africa which account for about 70% of the global HIV 
epidemic.1 Scale-up of ART availability has been implemented and, in 2019, 
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a global median of 67% of those in need (90% in 
Botswana)2,3 have had access to ART.4 Among the anti-
retroviral drugs (ARVs) used as first-line ART regimen, 
first-generation Non-Nucleoside Reverse Transcriptase 
Inhibitors (NNRTIs), such as Efavirenz (EFV) and 
Nevirapine (NVP), are still largely used for HIV treatment 
in sub-Saharan Africa,5 although since 2017 the World 
Health Organization (WHO) has been recommending an 
EFV/NVP-sparing ART regimen in countries in which 
resistance to NNRTIs exceeds 10%.6 Despite the introduc-
tion of Dolutegravir (DTG)-based first-line ART in 
Botswana in June 2016, a significant proportion of HIV 
patients are still on EFV- or NVP-containing ART 
regimen.7 A recent (2019) WHO HIV drug resistance 
report encompassing 18 countries (6 from sub-Saharan 
Africa) revealed that pre-treatment HIV drug resistance 
rate to EFV/NVP exceeds 10% amongst adults initiating 
first-line ART (nearly twice as high in women than men).5 

The rate was even higher (up to 30%) in those previously 
exposed to ARVs, including women having taken ARVs 
for the prevention of mother-to-child transmission.5

Antiretroviral therapy efficacy largely depends on ade-
quate drug exposure to suppress viral replication and allow 
the immune system to recover. However, occurrence of 
drug toxicity, suboptimal patient’s compliance, suboptimal 
virologic responses, incomplete immune reconstitution 
and/or emergence of drug resistance limit therapeutic 
outcomes.8 HIV drug resistance, beside known viral fac-
tors, more frequently occurs because of sub-therapeutic 
ARV drug exposure and/or acquisition of drug-resistant 
strains. In resource-limited settings such as Botswana, 
HIV-diagnosed individuals with virologic failure are 
more likely to stay on virologically failing regimens for 
prolonged periods, because of lack of adequate virological 
follow-up. This may result in an ineffective drug exposure 
potentially causing drug toxicity and a higher risk of 
selecting and transmitting drug-resistant viruses.9 

Moreover, the presence of HIV drug resistance mutations 
(DRMs) in minor viral populations is associated with an 
increased risk of virologic failure, in particular for 
NNRTI-based ART regimens, regardless of adherence, 
ethnicity, and immuno-virological basal characteristics of 
patients.8

Efavirenz and NVP are primarily metabolized in the 
liver by the cytochrome P450 2B6 enzyme (CYP2B6) with 
a minor contribution from other cytochromes (i.e. 
CYP2A6, CYP3A4/5).10–12 Studies on several populations 
have shown that Africans display the greatest level of 

genetic diversity in the CYP2B6 gene.13 Cytochrome 
P450 2B6 is one of the most polymorphic CYP450 genes 
in humans with over 100 described single nucleotide poly-
morphisms (SNPs), numerous complex haplotypes and 
distinct ethnic frequencies.14 Cytochrome P450 2B6 gene 
polymorphism has been associated with interindividual 
differences in drug pharmacokinetics and consequent 
plasma exposure, with possible consequences on drug 
efficacy and safety.14 There are different SNPs in the 
CYP2B6 gene that, according to their combination as 
haplotypes, may lead to different degrees of slow and/or 
fast EFV/NVP metabolizer phenotypes.14 Among those 
SNPs, 516G>T (rs3745274) and 983T>C (rs28399499) 
are associated with a significant loss of CYP2B6 function, 
leading to reduced clearance and prolonged half-life both 
for EFV15–18 and NVP.19,20 The 983T>C SNP affects the 
metabolism of both EFV and NVP; the 516G>T SNP 
influences mainly the EFV metabolism, while data on its 
impact on NVP metabolism are less conclusive.21,22 

Conversely, two other SNPs, namely 785A>G 
(rs2279343) and −82T>C (rs34223104) are associated 
with a gain of CYP2B6 function, leading to lower drug 
exposure.23–25 Indeed, the 785A>G SNP increases EFV26 

and NVP27 metabolism, whereas there are no studies 
assessing the clinical/pharmacological impact in vivo of 
the −82T>C SNP. Nonetheless, CYP2B6 −82T>C has 
recently been included in the panel of CYP2B6 SNPs 
that should be considered for the evaluation of therapeutic 
impact by the Clinical Pharmacogenetics Implementation 
Consortium.28

Pharmacogenetic studies of EFV and NVP have mostly 
been based on the CYP2B6 516G>T and 983T>C SNPs, 
with little or no clear assessment of the impact of the 
CYP2B6 785A>G and −82T>C SNPs.14 Studies from 
Botswana on HIV patients taking EFV-based ART showed 
that the CYP2B6 516T allele was protective against 1--
year,29 but not at 6-months,30 virologic breakthrough. 
However, no HIV DRMs have been assessed in either 
study. Similar results on the influence of the CYP2B6 
516G>T substitution on virologic outcome were observed 
in studies from the US involving HIV patients of African 
ancestry31 and HIV-diagnosed women from a multi-ethnic 
cohort,32 whereas other studies did not find any evidence 
of protection.33–35 Another work, on 66 HIV-diagnosed 
women from Kenya taking NVP-based ART, showed no 
associations of CYP2B6 516G>T and 983T>C with viro-
logic response and toxicity at 12 months of follow-up.20
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Study results concerning the association of CYP2B6 slow 
metabolizer profiles (defined by the presence of 516T and/or 
983C alleles) and EFV and NVP-related adverse events and/ 
or toxicity are also conflicting, with some showing an 
association15,36–39 and others not.18–20,30,31,40,41 Notably, 
due to the complexity of the CYP2B6 polymorphisms and 
the highest frequency of slow/intermediate genotypes among 
individuals of African ancestry, it is likely that haplotypes 
rather than a single polymorphism are better predictors of 
EFV/NVP plasma concentrations,14 as well as of toxicity, in 
which polymorphisms in genes other than the CYP450 sys-
tem may also play a role.42,43

Efavirenz and NVP have a long half-life (estimated at 
40–115 and 25–164hrs, respectively), a low genetic barrier 
for HIV drug resistance, and complex pharmacogenetics, 
which raises the possibility of sub-therapeutic drug concen-
tration in plasma, especially among CYP2B6 fast metaboli-
zers, an aspect that has not been fully studied. The CYP2B6 
fast metabolizer profile may allow low EFV/NVP plasma 
exposure, possibly leading to the selection and spread of HIV 
mutations and consequent viral drug resistance. On the other 
hand, EFV/NVP CYP2B6 slow metabolizers are exposed to 
higher drug plasma concentration, leading to potential higher 
toxicity and consequently reduced patient’s adherence and/or 
loss to care with possibility of sub-therapeutic plasma expo-
sure and higher risk of HIV drug resistance (at least in a long- 
term perspective). While studies produced conflicting results, 
a posology adjustment according to the CYP2B6 polymorph-
ism background has been proposed to address these potential 
issues in the context of personalized medicine.44,45

In summary, different CYP2B6 genotypes may influence 
immuno-virological response and/or toxicity by affecting 
EFV and NVP plasma concentration.14 We explored the 
possible impact of CYP2B6 genetic (and haplotype) variation 
on the risk of selection, accumulation and spread of HIV 
DRMs, providing a particular attention to the CYP2B6 fast 
metabolizer profile. To date, to the best of our knowledge, 
this aspect has not yet been fully evaluated.

This study was performed in Botswana with the aim to: 
i) assess CYP2B6 genotypes (for SNPs −82T>C, 516G>T, 
785A>G, 983 T>C) in HIV-diagnosed adults taking EFV 
or NVP containing ART, and to classify corresponding 
CYP2B6 phenotypes as very slow, slow, extensive, rapid 
and ultra-rapid metabolizers; ii) construct haplotypes and 
apply a metabolic score according to the DRMs profile; iii) 
determine if there is any association of the CYP2B6 geno-
types and haplotypes with the presence of EFV/NVP- 
resistant infections.

Patients and Methods
Study Design and Sample Size
This retrospective case–control study was part of a larger 
Tshepo study46 that was conducted at Botswana-Harvard 
AIDS Institute Partnership (BHP) between 2002 and 2007. 
The Tshepo study was a 5-years open-label, randomized 
study with a sample of 650 HIV-1 diagnosed ART naïve 
Botswana citizens (451 females and 199 males) attending 
the Infectious Disease Care Clinic (IDCC) in Princess 
Marina Hospital in Gaborone. The aim of Tshepo study 
was to evaluate the efficacy, tolerability and occurrence of 
drug resistance of six (6) different first-line ART regimens, 
all including an NNRTI either EFV or NVP, during 
a follow-up period of 156 weeks. For the purpose of the 
present study, being patient’s adherence assessed and com-
parable results,46 cases were defined as HIV-diagnosed 
individuals taking EFV or NVP containing ART and hav-
ing virological failure (evaluated after at least 4 months of 
ART) related to DRMs assessed by HIV genotyping, 
whereas controls were HIV-diagnosed individuals taking 
EFV or NVP-based ART without virological failure.46

Overall, 242 available residual samples were included 
in the present study. Of them, 40 were available cases that 
developed NNRTI resistance mutations, and 202 were 
controls.

DNA Extraction
Genomic DNA was extracted using Qiagen kits manual 
platform according to the manufacturer’s protocol 
(Qiagen, Hilden, Germany) from about 200µL of periph-
eral blood mononuclear cells (PMBC’s) stored at −80°C.

CYP2B6 Genotyping
CYP2B6 516G>T (rs3745274) detection was carried out 
using PCR-RFLP technique according to Lavandera et al47 

protocol with minor modifications. CYP2B6 983T>C 
(rs28399499) detection was carried out using 
a touchdown PCR-RFLP assay published by Paganotti 
et al.48 CYP2B6 785A>G (rs2279343) detection was 
done using an in-house optimized RFLP-PCR protocol.49

For purposes of this study, we also adopted a new in- 
house assay for analysis of the CYP2B6 −82T>C 
(rs34223104) polymorphism. We designed two (2) primers 
(forward primer: 5ʹ-CAAGCAGGAAGTCTGGGTTC-3ʹ; 
reverse primer: 3ʹ-AGTTCCATGGTCCTGGTCT-5ʹ). 
PCR reaction was conducted in a total volume of 20µL 
containing 100ng genomic DNA. PCR protocol with the 
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following conditions was used: 3min of denaturation at 
94°C, 30s at 94 oC, 30s at 64 oC and 60s at 72 oC for 35 
cycles with a final step of 5min at 72 oC. The PCR product 
was then digested with PsiI restriction enzyme at 37 oC for 
90 min. The enzyme cuts the wild-type allele (T) in two 
fragments of 92 bp and 88bp; while the mutant allele is not 
cut. The digested fragments were visualized on a 4% 
metaphor gel stained with ethidium bromide.

Metabolic Score (MS) by Haplotypes and 
CYP2B6 Inferred Metabolic Phenotypes
CYP2B6 genotype and haplotype information was trans-
lated into a measure of phenotype using the metabolic 
score (MS) system,49 already adopted as “activity score” 
for CYP2A6,50 CYP2C19,51 CYP2D6,52 and also consis-
tent with Vujkovic et al,41 for CYP2B6. The MS translates 
composite genotype and/or haplotype information into 
a qualitative measure of phenotype. The scores are based 
on the algebraic sum of the individual allele values accord-
ing to an additive model for CYP2B6.49 The MS was set 
conferring a −1 value for each slow metabolism alleles 
(516T, 983C) and +1 for rapid metabolism alleles (−82C, 
785G), while an extensive metabolism allele was scored 0 
(−82T, 516G, 785A, 983T) both for composite CYP2B6 
genotypes and haplotypes.49

Statistical Analysis
Several methods were applied. We used the Arlequin soft-
ware (v3.5.2.2)53 to test for Hardy–Weinberg Equilibrium 
(HWE) and the genetic fixation index (FST) with default 
settings, while Linkage Disequilibrium (LD) was tested 
using the Expectation-Maximization (EM) algorithm with 
20,000 permutations and three initial conditions. Binary 

Logistic Regression (BLR) analysis (run on IBM SPSS 
statistical package, version 20) was applied to find any 
association between the dependent variable “drug resis-
tance” with the independent variables (age, BMI, baseline 
CD4+ T-cell count and viral load, CYP2B6 genotype). 
Fisher’s exact test, chi-square test and z-statistic were 
applied for statistical significance where needed.

Results
Baseline Population Demographics
Out of the 242 samples, 15 were excluded (5 due to the 
lack of complete genotypic information and 10 failed 
PCR). Thus, 227 samples were retained for analysis, with 
40 (18.6%) belonging to the group that developed virolo-
gical failure with EFV/NVP DRMs. The remaining 187 
samples (81.4%) belonged to the group that did not 
develop virological failure during the follow-up period. 
Information about gender was available for 223 indivi-
duals, 146 (65.5%) being females. The study population 
characteristics at baseline were available for 225 indivi-
duals, being as follows: mean age 33.7 years (range: 20.-
4–50.9); mean BMI 21.3 (range: 14.5–34.6); median 
baseline CD4+ T-cell count 188 cells/μL (IQR: 
147–221); median baseline viral load 5.30 Log10 copies/ 
mL (IQR: 4.83–5.71). The ART regimen data were avail-
able for 225 individuals, with 117 (50.6%) receiving EFV, 
and 108 (46.8%) receiving NVP containing ART. Table 1 
summarises the baseline characteristics of the study popu-
lation according to the EFV/NVP resistance status.

Virologic Failure and EFV/NVP Resistance
This study was based on a subsample of the Tshepo 
study46 conducted in Botswana on HIV-diagnosed 

Table 1 Baseline Characteristics of the Study Population

Characteristics Overall EFV/NVP-Resistant EFV/NVP-Susceptible

Subjects, n (%) 227 (100.0%) 40 (17.6%) 187 (82.4%)
Females, n (%) 146 (65.5%)*,a 27 (67.5%)* 119 (65.0%)*,a

Males, n (%) 77 (34.5%)*,a 13 (32.5%)* 64 (35.0%)*,a

Mean age, years (range) 33.7 (20.4–50.9) 34.7 (20.4–50.9) 33.5 (22.9–49.6)
Mean BMI (range) 21.3 (14.5–34.6) 21.8 (16.3–34.6) 21.1 (14.5–31.8)

Median T-CD4, cells/μL (IQR) 188 (147–221) 194 (97.5–241.5) 187 (152.2–219.0)

Median Viral Load, Log10 copies/mL (IQR) 5.30 (4.83–5.71) 5.41 (4.91–5.75) 5.27 (4.82–5.66)
EFV-based ART, n (%) 115 (50.7%)§ 16 (13.9%)§ 99 (86.1%)§

NVP-based ART, n (%) 107 (47.1%)§ 24 (22.4%)§ 83 (77.6%)§

Unspecified EFV/NVP-based ART, n (%) 5 (2.2%)§ 0 (0.0%)§ 5 (100.0%)§

Notes: *Proportions calculated for columns; §proportions calculated for rows; agender data were not available for 4 individuals (all NNRTI-susceptible). 
Abbreviations: ART, antiretroviral therapy; NVP, nevirapine; EFV, efavirenz; BMI, body mass index; IQR, interquartile range.
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individuals taking EFV/NVP-based ART regimen and fol-
lowed up to 3-years (156 weeks) after the treatment’s start. 
All cases of virologic failure reported in the Tshepo study 
underwent HIV genotyping46 and EFV/NVP DRMs were 
detected in all the 40 cases used in the present study 
(Supplementary Table 1). Thus, in the present study, vir-
ologic failure and EFV/NVP DRMs coincide.46 The med-
ian interval between start of ART and appearance of 
virologic failure was 72 weeks (IQR: 45.5–104).

CYP2B6 Genotype and Allele Frequencies
The CYP2B6 genotype distribution and allele frequencies 
of the four SNPs (−82T>C, 516G>T, 785A>G, 983T>C) 
are summarized in Table 2. The comparisons of the three 
genotypes distribution between the subjects with and those 
without HIV DRM for each single SNP were all not 
statistically different but for the CYP2B6 516G>T poly-
morphism (chi-square = 8.121; P = 0.017) (Figure 1), with 
the wild-type extensive metaboliser 516G allele at higher 
frequency among resistant than sensitive infections (70% 
vs 54%, calculated from Table 2).

Hardy–Weinberg Equilibrium and Linkage 
Disequilibrium Analysis
Hardy–Weinberg Equilibrium analysis showed that CYP2B6 
983 locus displayed significant deviations from HWE in 
EFV/NVP-resistant, EFV/NVP-susceptible and combined 
(overall) samples (P = 0.001; P < 0.001; P < 0.001, respec-
tively). A reason for this deviation may be due to a defect in 
heterozygous samples. Furthermore, CYP2B6 −82 and 
CYP2B6 516 did not show a statistically significant deviation 
from HWE in the EFV/NVP-resistant HIV infections (P = 
0.449 and P = 0.230, respectively), whereas a statistically 
significant deviation from HWE was noted in the EFV/NVP- 
susceptible (P = 0.039 and P = 0.031, respectively) and all 
the samples combined (P = 0.030 and P = 0.010, respec-
tively), with an excess of heterozygotes in both groups. 
CYP2B6 785 genotypes were in equilibrium in all the groups 
analysed (EFV/NVP-resistant, EFV/NVP-susceptible and 
both combined).

Linkage disequilibrium was observed between 
CYP2B6 −82 and CYP2B6 516 in all groups (Table 3). 
Linkage disequilibrium was also observed between 
CYP2B6 −82 and CYP2B6 983, as well as between 
CYP2B6 516 and CYP2B6 983, in the EFV/NVP- 
susceptible and overall samples, but not in the EFV/NVP- 
resistant group (Table 3). Finally, CYP2B6 785 did not Ta
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show strong association with the other three loci, thus 
justifying the respect of HWE in all the three groups 
(EFV/NVP-resistant, EFV/NVP-susceptible, overall sam-
ples) (Table 3).

Population Differentiation Tests
The fixation index (FST) between EFV/NVP-resistant and 
susceptible samples gave a distance of 0.023 (P = 0.008 ± 

0.003, 1023 permutations). While significant, this differ-
ence is consistent with panmixia between the two groups. 
Furthermore, an exact test of population differentiation 
revealed no statistical difference between the two groups 
(P = 0.060 ± 0.008; 100,000 Markov chain steps).

Binary Logistic Regression Analysis and 
EFV/NVP Resistance According to 
CYP2B6 Genotypes
Binary Logistic Regression analysis was set with the depen-
dent dichotomic variable assuming two values according to 
the presence of EFV/NVP-susceptible or EFV/NVP-resistant 
HIV infections. Factors tested were age, BMI, baseline lym-
phocytes T-CD4+, viral load, genotypes for CYP2B6 −82, 
CYP2B6 516, CYP2B6 785, CYP2B6 983 (see 
Supplementary Table 2). First step results showed only one 
significant factor (CYP2B6 516G). After removal of the non- 
significant factors, the BLR was repeated with only one 
(significant) factor in the model (CYP2B6 516G>T). 
This second step analysis revealed a significant statistical 
association between presence of CYP2B6 516G and DRMs 
status (OR: 2.26; 95% CI:1.27–4.01; P = 0.005).

Finally, the CYP2B6 516T allele presence (GT and TT 
genotypes) was tested for its possible protection against 
virologic failure (corresponding to EFV/NVP resistance in 
the present study as stated in the Methods section): no 
association was found at 6 months, nor beyond six months 
(up to 3 years) (Fisher’s exact test, P > 0.05).

CYP2B6 Haplotype Frequency Estimation in 
EFV/NVP Susceptible and Resistant Groups
Haplotype frequencies for CYP2B6 were estimated using the 
EM algorithm in Arlequin (Table 4). For all the samples, based 
on the four SNPs of CYP2B6 analysed (−82T>C, 516G>T, 
785A>G, 983T>C), the TGAT haplotype was the most com-
mon, whereas the CGAC, CTAT and CGGT haplotypes the 
rarest (Table 4). The haplotype TGAT was also the most 
abundant haplotype when EFV/NVP-resistant and susceptible 
samples were analysed separately, whereas no CGGT haplo-
types were estimated in the EFV/NVP-susceptible group, and 
no TGGC, CGAC and CTAT haplotypes were estimated in the 
EFV/NVP-resistant group (Table 4).

Metabolic Score by CYP2B6 Haplotype 
and EFV/NVP Resistance Status
The inferred MS was calculated for the haplotypes and they 
are shown in Table 4. In order to assess the possible risk of 

Figure 1 Distribution of CYP2B6-516 genotypes according to NNRTI-resistance 
status. Chi-square associated P-value is 0.017.

Table 3 Pairwise Linkage Disequilibrium (LD) Analysis for the 
Four Polymorphic Loci (CYP2B6 −82, 516, 785, 983)

Phenotype Comparison P-value

EFV/NVP-Resistant 785 vs −82 0.054
EFV/NVP-Resistant 785 vs 516 0.882

EFV/NVP-Resistant 785 vs 983 0.195

EFV/NVP-Resistant −82 vs 516 0.001
EFV/NVP-Resistant −82 vs 983 0.078

EFV/NVP-Resistant 516 vs 983 0.118

EFV/NVP-Susceptible 785 vs −82 0.513
EFV/NVP-Susceptible 785 vs 516 0.095

EFV/NVP-Susceptible 785 vs 983 0.685

EFV/NVP-Susceptible −82 vs 516 <0.001
EFV/NVP-Susceptible −82 vs 983 0.001
EFV/NVP-Susceptible 516 vs 983 0.023
Overall 785 vs −82 0.221
Overall 785 vs 516 0.254

Overall 785 vs 983 0.324

Overall −82 vs 516 <0.001
Overall −82 vs 983 <0.001
Overall 516 vs 983 0.006

Notes: P-values for LD analysis were obtained using Arlequin. Significant compar-
isons are highlighted in bold. 
Abbreviations: EFV, efavirenz; NVP, nevirapine.
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carrying EFV/NVP-resistant HIV infections according to the 
CYP2B6 fast metabolizer profile, the metabolic phenotypes 
were classified as follows: MS≤0, this including extensive, 
slow and very slow inferred metabolic phenotypes; MS≥1, 
this including rapid and ultra-rapid inferred metabolic phe-
notypes. The breakdown of metabolic phenotypes between 
groups according to the EFV/NVP resistance status are 
shown in Table 5. The comparison between EFV/NVP- 
resistant and susceptible HIV infections by MS was asso-
ciated to a z-statistic of 1.812 (P = 0.035), therefore showing 
that the rate of EFV/NV resistance was significantly higher 
among fast metabolizers haplotypes compared to the other 
group (30.8% vs 16.8%, respectively).

In line with the BLR results, the CYP2B6 516G allele 
was present in 100% (n=30/30) of rapid (CGAT and 

TGGT) and ultra-rapid (CGGT) haplotypes, whereas it 
was only present in 53.8% (n=228/424) of extensive/ 
slow metabolizers haplotypes (Fisher’s exact test, P < 
0.001) (see Table 4, “overall” column).

Discussion
Understanding the factors that modulate the selection of 
DRMs associated with HIV-1 infection is essential to 
design efficient control strategies. Drug resistance usually 
emerges rapidly when ARV drugs are administered as 
monotherapy or in the presence of incomplete viral sup-
pression, suggesting that resistance is caused by the selec-
tion of mutant viruses within the host.54 Besides known 
viral factors (HIV diversity, HIV replication, drug selec-
tion pressure and fitness of drug-resistant viral sub- 
populations) and patient ART adherence, human genetic 
background is a possible further, not yet fully understood, 
co-factor affecting HIV drug resistance selection. In this 
study, we addressed the hypothesis that human pharmaco-
genetics can drive the selection of HIV drug resistance. 
We therefore found a statistically significant association 
between EFV/NVP-resistant HIV infections and CYP2B6 
516G allele presence (OR: 2.26; 95% CI:1.27–4.01; P = 
0.005). In fact, EFV/NVP resistant infections had higher 
516G allele frequency (Table 2 and Figure 1). Further 
information comes from the haplotype reconstruction 
where 100% of rapid (CGAT and TGGT) and ultra-rapid 

Table 4 Estimated and Maximum-Likelihood (ML) Haplotype Frequencies by Phenotype and for All the Samples Combined. Maximum- 
Likelihood Haplotype Frequencies are Shown in Parenthesis with Their Standard Deviations (SD). The Order of Nucleotides in the 
Reconstructed Haplotypes is Made According to the SNP Position in the CYP2B6 Gene (−82T>C, 516G>T, 785A>G, 983T>C)

Haplotype MS Phenotype Estimated and ML Frequencies ± SD

Overall* EFV/NVP- Resistant EFV/NVP-Susceptible

TGAT 0 Extensive 201 (0.441 ± 0.023) 43 (0.526 ± 0.065) 162 (0.430 ± 0.029)

TGAC −1 Slow 24 (0.054 ± 0.013) 5 (0.065 ± 0.035) 19 (0.052 ± 0.015)

CGAT 1 Rapid 12 (0.019 ± 0.008) 3 (0.039 ± 0.024) 5 (0.008 ± 0.006)
CGGT 2 Ultra-rapid 2 (0.004 ± 0.003) 2 (0.024 ± 0.018) 0 (0.000 ± 0.000)

TTAT −1 Slow 37 (0.078 ± 0.015) 6 (0.082 ± 0.036) 27 (0.073 ± 0.017)

TTAC −2 Very slow 10 (0.026 ± 0.010) 1 (0.013 ± 0.017) 9 (0.030 ± 0.011)
TGGT 1 Rapid 16 (0.041 ± 0.011) 3 (0.046 ± 0.023) 13 (0.041 ± 0.011)

TTGC −1 Slow 41 (0.083 ± 0.015) 6 (0.073 ± 0.032) 35 (0.085 ± 0.016)

TTGT 0 Extensive 107 (0.236 ± 0.020) 11 (0.132 ± 0.046) 96 (0.252 ± 0.026)
TGGC 0 Extensive 2 (0.006 ± 0.005) 0 (0.000 ± 0.000) 2 (0.006 ± 0.006)

CGAC 0 Extensive 1 (0.002 ± 0.003) 0 (0.000 ± 0.000) 1 (0.003 ± 0.003)

CTAT 0 Extensive 1 (0.009 ± 0.009) 0 (0.000 ± 0.000) 5 (0.013 ± 0.006)
CTGT 1 Rapid 0 (0.000 ± 0.000) 0 (0.000 ± 0.000) 0 (0.005 ± 0.005)

Notes: *The combination of susceptible and resistant dataset does not necessarily result in a “sum” of the two haplotype counts estimated separately. Different sample 
counts in each group have an effect on the accuracy of the estimates. 
Abbreviations: MS, metabolic score; N/A, not applicable; NC, not calculable (because of lack of estimated haplotype frequency).

Table 5 EFV/NVP Resistance by CYP2B6 Metabolic Phenotype

EFV/NVP Resistance Status EFV/NVP Metabolic 
Phenotype

MS ≤ 0a MS ≥ 1b

Resistant, n (%) 72 (16.8%) 8 (30.8%)
Susceptible, n (%) 356 (83.2%) 18 (69.2%)

Total 428 (100%) 26 (100%)

Notes: Resistance and susceptible haplotypes were counted according to MS as 
from Table 4. The z statistic is 1.812. The one-tailed P-value is 0.035. aMS ≤ 0: 
extensive, slow and very slow EFV/NVP metabolizers. bMS ≥ 1: rapid and ultra-rapid 
EFV/NVP metabolizers.
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Table 6 CYP2B6 SNPs (−82T>C, 516G>T, 785A>G, 983T>C) Frequency in Sub-Saharan Africa

Geographic Region/Ethnic Populations Number of Participants CYP2B6 SNPs Frequency (%) References

−82C 516T 785G 983C

Southern Africa

Botswana 101 – 36.6 – – [57]

Botswana 1101 – 37.6 – – [29]

Botswana 731 – – 6.0 11.0 [39]
Botswana 570 – 38.1 33.0 13.5 [49]

Malawi 150 – 40.5 37.1 8.6 [19]

Mozambique 105 – 34.7 44.2 8.6 [39]
Mozambique 360 – 42.6 40.9 – [58]

South Africa 122 – 32.0 – – [59]

South Africa 80 – 43.1 – – [37]
South Africa 160 – 36.2 36.2 2.5 [60,61]

South Africa 295 – 41.1 41.1 7.1 [61]

South Africa 113 – 36.0 – 7.0 [62]
South Africa 81 – 35.2 35.2 3.7 [63]

South Africa 60 – 41.0 40.8 11.0 [64]

Zimbabwe 36 – 51.4 52.8 11.1 [65]
Zimbabwe 71 – 48.6 – – [66]

Zimbabwe 49 – 41.8 41.8 9.1 [67]

Zimbabwe 185 – 43.8 – 15.9 [68]

West-Central Africa

Cameroon 69 – 36.9 32.6 – [60]

Cameroon 168 – 44.3 — 12.8 [48]
Cameroon 122 – 59.4 — 8.6 [69]

Ghana 40 1.2 48.8 47.5 6.6 [70]

Ghana 42 – 54.0 46.0 7.6 [71,72]
Ghana 705 – 48.0 – 4.0 [18]

Ghana 94 – – – 4.2 [42]

Ghana 74 – 44.6 – 4.6 [73]
Guinea 21 – 50.0 48.0 1.6 [71,72]

Ivory Coast 41 – 40.0 38.0 5.5 [71,72]

Nigeria 300 – 36.5 – – [74]
Nigeria 77 – 43.7 – 13.2 [75]

Republic of Congo 288 – 55.0 – – [76]

Sierra Leone 52 – 47.0 36.0 3.8 [71,72]

East Africa

Burundi 202 – 31.6 – 6.9 [77]

Ethiopia 163 – 29.7 – – [78]

Ethiopia 245 – 31.4 – – [79]
Ethiopia 264 – 31.4 – – [80]

Ethiopia 298 – 29.2 – – [81]

Kenya 66 – 32.6 – 9.8 [20]
Rwanda 80 – 31.9 32.5 9.2 [17]

Rwanda 39 6.4 – – – [82]

Rwanda 90 – 32.8 – 8.0 [83]
Tanzania 183 – 41.8 – – [80]

Tanzania 242 – 36.0 – – [84]

Tanzania 251 – 35.6 – 19.8 [85]

(Continued)
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(CGGT) CYP2B6 haplotypes carried the 516G allele 
(Table 4), whereas only 53.8% of the extensive, slow 
(TGAC, TTAT and TTGC) and very slow (TTAC) haplo-
types carried it. Moreover,

CYP2B6 rapid and ultra-rapid metabolizers showed 
a significantly higher frequency of EFV/NVP-resistant 
HIV infections than extensive and slow metabolizers 
(30.8% vs 16.8%; z-statistic = 1.812; P = 0.035), based 
on their haplotype reconstruction (Table 5). Nevertheless, 
it is important to note that the rate of rapid and ultra-rapid 
haplotypes is less than 6% (26/454) of the total haplotypes.

A possible interpretation of these results is that EFV/ 
NVP resistance tends to accumulate based on the presence 
of the CYP2B6 516G allele (GG>GT>TT), and that in 
rapid and ultra-rapid metabolisers might happen at 
a higher rate. This could be an important model for drug 
resistance selection that may be verified on a larger long-
itudinal cohort and tested on different pathogens, different 
antimicrobial drugs and epidemiological contexts.

These results are partially in line with similar findings 
on malaria drug resistance where it has been demonstrated 
that the CYP2C8 slow metabolizer phenotype is associated 
with the risk of carrying chloroquine- and amodiaquine- 
resistant parasites.55,56

We also found that LD into the ≃ 1000 bp region 
analysed (spanning from CYP2B6 −82 to 983 nucleotide 
positions) was strong (P < 0.001) and departures from the 
HWE were coherent with the physical and genetic linkage 
between SNPs. Genotype and allele frequencies for the 
four CYP2B6 SNPs analysed in this study were in line 
with literature, including most if not all studies from 
Botswana (Table 6). The only discrepancy was represented 
by a study41 conducted in the same area as the present 
research that indicated an allele frequency for CYP2B6 
785G of 6%, well outside the accepted range of 

35.2–52.8% for Southern Africa (Table 6). Finally, the 
two groups (with and without EFV/NVP-resistant HIV 
infections) into which we subdivided our study population 
appeared to be in panmixia, therefore offering an ideal 
situation for the comparison.

In summary, subjects carrying the CYP2B6 516G allele 
were more likely to carry HIV drug-resistant infections. 
Coherently with our hypothesis, the 516G allele is always 
present in the rapid and ultra-rapid haplotypes, confirming 
the possibility that rug resistance selection is enhanced 
when drug metabolism is faster. However, the rate of fast 
metabolisers was not high in this cohort, therefore redu-
cing its possible impact.

The present study has few limitations: i) the sample 
size was relatively small, therefore haplotypes reconstruc-
tion provided higher statistical power in the comparisons, 
ii) it would have been more powerful to use matched-case 
control, to avoid any confounding factors, and iii) the lack 
of data on EFV/NVP plasma exposure hampered the quan-
titative confirmation of CYP2B6 metabolic phenotypes. 
Nonetheless, our findings suggest a trend towards a role 
for the genetic background of patients affecting drug ther-
apy outcomes, and warrants further studies.

Conclusion
In conclusion, this work indicates that the CYP2B6 516G 
allele, and its combination into rapid and ultra-rapid 
metabolizer profiles, as defined by the correspondent 
haplotypes, is directly associated with the risk of devel-
opment of drug resistance in HIV-diagnosed individuals 
receiving EFV- or NVP-containing ART in Botswana. 
However, larger studies will be needed to confirm this 
association. In general, our findings support the hypoth-
esis that pharmacogenetics may play a significant role in 
HIV therapy outcomes. Besides the known possible 

Table 6 (Continued). 

Geographic Region/Ethnic Populations Number of Participants CYP2B6 SNPs Frequency (%) References

−82C 516T 785G 983C

Tanzania 91 – 33.5 – 9.3 [86]
Tanzania 37 – 33.8 – – [87]

Uganda 23 – 30.4 – – [88]

Uganda 187 – 31.8 – – [89]
Uganda 74 – 29.1 32.4 5.4 [65]

Uganda 166 – 39.4 – – [90]

Uganda 57 – 33.3 – 8.8 [91]
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impact of slow EFV/NVP metabolism on ART toxicity 
and compliance, fast EFV/NVP metabolism may also 
affect ART outcomes. A deeper knowledge of the genetic 
background at an individual level could thus be highly 
beneficial in personalising ART therapies and improving 
their efficacy, especially in patients who show poor 
response following initiation of treatment.
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