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Abstract: Alzheimer’s disease (AD) is the most common form of dementia and aging 
is the most common risk factor for developing the disease. The etiology of AD is not 
known but AD may be considered as a clinical syndrome with multiple causal pathways 
contributing to it. The amyloid cascade hypothesis, claiming that excess production or 
reduced clearance of amyloid-beta (Aβ) and its aggregation into amyloid plaques, was 
accepted for a long time as the main cause of AD. However, many studies showed that 
Aβ is a frequent consequence of many challenges/pathologic processes occurring in the 
brain for decades. A key factor, sustained by experimental data, is that low-grade 
infection leading to production and deposition of Aβ, which has antimicrobial activity, 
precedes the development of clinically apparent AD. This infection is chronic, low 
grade, largely clinically silent for decades because of a nearly efficient antimicrobial 
immune response in the brain. A chronic inflammatory state is induced that results in 
neurodegeneration. Interventions that appear to prevent, retard or mitigate the devel-
opment of AD also appear to modify the disease. In this review, we conceptualize 
further that the changes in the brain antimicrobial immune response during aging and 
especially in AD sufferers serve as a foundation that could lead to improved treatment 
strategies for preventing or decreasing the progression of AD in a disease-modifying 
treatment. 
Keywords: Alzheimer’s disease, mild cognitive impairment, neuroinflammation, 
antimicrobial immunity, brain, treatment

Introduction
Alzheimer’s disease (AD) is the most frequent neurodegenerative disease lead-
ing to clinical dementia; however, the cause is still nebulous despite the impor-
tant research effort invested to understand the disease. The most prevalent 
hypothesis is the amyloid cascade hypothesis, which states that the deposition 
of amyloid-beta (Aβ) as plaques is the cause of neurodegeneration. All clinical 
trials targeting this as the causal factor have failed, suggesting that we should 
understand the real, underlying, and treatable factors of this disease to find new 
treatment targets. For decades, alternative explanations for AD pathogenesis 
have been proposed, the most important being the vascular, the metabolic, the 
oxidative stress, and the infection hypotheses. In this review we describe the 
various putative causes of AD, with a special focus on the infection hypothesis. 
We also discuss how targeting the impaired antimicrobial defense of the brain 
may slow the progression or even prevent AD.
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What is Alzheimer’s Disease?
Clinically
The clinical manifestations of AD appear quite late in life 
as one of the most important risk factors for the late onset 
of AD is aging but the pathology of AD starts decades 
before that.1,2 Several stages can be defined before the 
onset of full-blown clinical manifestation of the disease 
that involves memory and language changes resulting in 
altered everyday functions. The preclinical stage is char-
acterized by the subjective memory complaint. There is 
still a controversy whether it exists but when it is present 
in a family occurrence context (ie, one parent is suffering 
from overt AD), it could have a certain prognostic value.3 

The most recognized prodromal stage called mild cogni-
tive impairment (MCI) is when the cognitive problems 
may be revealed by tests, but the person is still functioning 
perfectly. However, not all patients will progress from the 
preclinical or prodromal stages to the full-blown disease 
state.4 There should be a complex constellation of factors 
such as genetic, immunological, and environmental factors 
to progress from one stage to the other. These prodromal 
stages are the best time/targets for prevention or disease- 
modifying treatments; however, the lack of real biomar-
kers needs to be addressed before the development of any 
treatment.5

Pathologically
AD is a neurodegenerative disease with a very long devel-
opment history that can last decades.6 AD is likely 
a syndrome as it seems that many different causes can 
lead to its development. The initiating event is not pre-
cisely defined, nevertheless several events have been incri-
minated such as an acute brain injury (fall or sport 
trauma), a vascular injury, a metabolic injury, or 
infection.7 The common action between each of these 
triggering events is an acute inflammation as well as the 
production of Aβ following the amyloidogenic processing 
of the cellular amyloid precursor protein (APP). This acute 
inflammation is at the very beginning a protective process, 
meant to contain the damaging effects of this injury.8 The 
proper characteristic of this inflammation is to produce an 
immune reaction which will normally eliminate the dama-
ging effects of the insult. This will mobilize the innate 
immune system first to produce pro-inflammatory cyto-
kines as well as antimicrobial peptides. Usually with the 
blow-up of this inflammatory process, the insult will be 
resumed. However, because of genetic, environmental, 

metabolic reasons as well as the persistence of the insult, 
the acute inflammation is not completely resolved, but 
instead it may become chronic with the maintenance of 
the low-grade inflammatory signals which are the pro- 
inflammatory cytokines, free radicals, and antimicrobial 
peptides. This persistent chronic inflammatory process 
can lead, decades later, to AD with the characteristic 
pathological hallmarks including amyloid plaques, neuro-
fibrillary tangles with intracellular hyperphosphorylated 
tau protein, synaptic loss and neuroinflammation.9–12

Immunosenescence and 
Inflammaging: A Nutshell Description
Immunity evolves with aging and it was suggested that 
changes in immune functions with the concomitant occur-
rence of inflammaging could be responsible for the age- 
related diseases such as cardiovascular diseases, neurode-
generative diseases, malignancies, and frailty 
syndrome.13–18 Age-related immune functionality has 
been extensively investigated and the most important para-
digm states that the decrease in T cell function charac-
terizes immunosenescence.19–23 The innate immune 
response is also affected.24–26 Whether age-related 
immune changes act alone, or through inflammaging, is 
not clearly elucidated, as precise biomarkers of these phe-
nomena are still missing.27–32 As inflammation in AD 
mainly concern the innate immune system either in the 
brain or at the periphery, we will be mainly considering it 
below.

Innate Immunity in Aging: The Fate Keeper
The innate immune system is an ancestral immune 
response assuring the first line of defense against chal-
lenges coming from the inside or the outside, mainly 
pathogenic microorganisms and damaged cells.33 It is 
a very fast and efficient reaction that determines the sub-
sequent adaptive immune response.34 The important fac-
tors of innate immunity are the various phagocytic cells 
including neutrophils (PMN), monocyte/macrophages, 
dendritic cells (DC) and natural killer (NK) cells,35–38 as 
well as the most recent innate-like lymphocytes such as 
mucosal associated invariant T cells (MAIT).39–41 It is 
important to mention that the number of pattern recogni-
tion receptors (PRR), danger receptors (DR) that sense the 
pathogen-associated molecular patterns (PAMPs) from 
pathogens, and damage-associated molecular patterns or 
alarmins (DAMPs) from damaged cells do not fluctuate 
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significantly during aging.42–46 However, the signaling 
pathways such as MAPKs, PI3K-akt and JAK-STAT 
initiated by ligation of PRRs and DRs may be altered 
and lead to impaired NF-κB nuclear translocation during 
aging.25,47–49 This alteration may significantly impact 
some cellular functions in all of the abovementioned 
cells including phagocytosis, intracellular killing, chemo-
taxis and free radical production.50–52 In its prime, the 
innate immune system can return to a quiescent state 
after neutralizing these aggressions, but with the accumu-
lation of stressors, periods of rest are less and less fre-
quent. Thus, the innate immune cells become more 
permanently activated even at the “resting” state,53–56 

a concept that has been termed “trained innate 
memory”.57–60 Nevertheless, this permanent antigenic sti-
mulation contributes to a state of low but significant secre-
tion of pro-inflammatory mediators that participate to 
inflammaging61–64 and lead to a disequilibrium between 
activation and inhibition. Thus, the innate cells are prob-
ably a cornerstone in driving the fate of immune respon-
siveness in old age resulting in inflammaging27 and as 
such contributing to the development of AD.65,66

Inflammaging
Inflammaging is characterized by a peculiar presentation, 
being a sterile (allegedly) inflammatory status that is chronic, 
systemic, low grade and therefore subclinical for a long time. 
The level of cytokines often remains within the (high) normal 
range but is significantly more elevated in older adults than in 
younger individuals. This is why inflammaging is also referred 
to as low-grade inflammation. IL-6, TNFα and CRP are often 
cited in inflammaging-related studies generating a myeloid 
hypothesis that could explain the association between aging 
and a low-grade inflammatory state.67,68 In the meantime, the 
anti-inflammatory mediators such as IL-10, IL-4, IL-13 may 
also be increased as a tentative measure to control this 
state.61–69 Latent virus infections such as cytomegalovirus 
(CMV) infection, as well as commensal bacteria (eg bacteria 
in gut microbiome dysbiosis), may be reactivated and become 
harmful and contribute to inflammaging.70–73 Indubitably, the 
finding that noninfectious agents can strongly contribute to the 
spreading of inflammatory processes has paved the way to 
extend the list of mechanisms that fuel inflammaging over 
time. The senescence-associated secretory phenotype (SASP), 
that can be acquired by different types of senescent cells, is 
currently considered as the main noninfectious trigger of 
inflammaging.74–76 Senescent cells are in a state where they 
cannot divide, however, the activation of DNA damage- 

associated responses (DDR) leads these cells to a higher capa-
city of secretion of pro-inflammatory molecules defining the 
SASP.77–79 Recent studies suggested also that exosomes 
secreted by senescent cells (and their cargo) participate to 
SASP80 and can modulate immune system functions.81 

Studies also involved exosomes in AD as the means to propa-
gate Aβ pathology, neuroinflammation and oxidative 
stress.81–89

Because of the abovementioned relationships, inflam-
maging is one of the most important links between aging 
and the age-related neurodegenerative diseases. Therefore, 
in this context, the production of Aβ represents most 
probably the consequence of the neuroinflammatory pro-
cess induced by several chronic situations including 
chronic infection, as suggested by the AMP nature of 
Aβ.90–95

Do Chronic Infections Contribute to 
the AD Pathomechanism?
The most popular hypothesis to explain the origin of AD 
proposes that deposition of Aβ in senile plaques leads to 
inflammation and neuron death.96–98 However, attempts to 
decrease the Aβ load or to prevent its formation have had 
no effect on AD.99,100 No cure whatsoever exists or seems 
to be on the horizon.101,102 These facts together question 
the validity of this mainstream hypothesis.103–105 

Therefore, new and bold avenues of research need to be 
pursued to unravel new pathomechanisms leading to suc-
cessful prevention and/or treatment of AD,7,106 however 
integrating the unavoidable Aβ cascade hypothesis. 
Obviously, the most important risk factor for late 
onset AD is aging, which is associated with pro-inflam-
matory conditions that increases the risk of neurodegen-
erative disorders including AD.107–109 Infection by 
particular microorganisms as a plausible pathomechanism 
had been voiced several years ago but did not receive 
significant attention. The demonstration by Wozniak et al 
of the presence of HSV-1 viral DNA110–112 and by 
Miklossy and Miklossy and McGeer of the presence of 
spirochetes in the AD brain were too instrumental to con-
sider infections as contributors to the pathogenesis 
of AD.113–116 Furthermore, it is well recognized that per-
iodontitis and gingivitis are linked to a higher risk 
of AD.117–121 What could be the pathomechanism of this 
association and are specific pathogens involved? In this 
context, the role of Porphyromonas gingivalis as the mas-
ter bacteria orchestrating the whole community of 
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microorganisms inside the mouth has been strongly 
evoked.120,122 We and other groups have shown that Aβ 
is a powerful antimicrobial peptide secreted by neurons in 
response to an attack by microorganisms lends weight to 
this hypothesis.90–92 However, none of these individual 
microorganisms has been linked irrefutably with the dis-
ease, therefore, we suggest that simultaneous or consecu-
tive infection by several microorganisms fueled by 
inflammaging together lead to AD pathogenesis.123–125 

The most important common characteristic of all these 
microorganisms is their persistence and the inability of 
the brain and systemic immune system to clear them. 
This persistence creates a constant cycle of latency and 
reactivation that will activate microglia either periodically 
or constantly in the brain. Concomitantly with other risk 
factors such as genetics, diet, trauma, this can contribute to 
neuroinflammation and ultimately after several decades to 
neurodegeneration.126,127

Neuroinflammation, Inflammaging 
and Alzheimer’s Disease
The infectious hypothesis provides a plausible stimulus for 
this neuroinflammation which is considered a hallmark 
of AD.96,128–135 It also throws light on two other funda-
mental facts: (1) Neuroinflammation is not only the con-
sequence of Aβ deposition (as stated by the amyloid 
hypothesis) but it is also the cause for Aβ deposition, 
and (2) Aβ is not only a “harmful” molecule that aggre-
gates to form plaque and induce neuroinflammation, but it 
is also a basic element of the innate immune defense and 
thus a “beneficial” molecule,13 at least at the beginning. 
Ultimately, as the reactivation of latent pathogens (HSV-1) 
and new infections become more frequent, the chronic 
production of Aβ increases, but its antimicrobial effect 
may be blunted by loss of active Aβ through its recruit-
ment to plaque formation. Consequently, inflammation 
becomes chronic, endocytosis and clearance of Aß by 
microglia is overwhelmed, and ultimately the deposition 
proceeds and results in senile plaque formation.124 The 
deposition of plaque may be the initiator of a chronic, 
harmful neuroinflammatory process that finally destroy 
the neighboring neurons. This process pursues unnoticed, 
then becomes visible clinically only when a threshold is 
crossed.

Local neuroinflammation may continue at a low level 
throughout life with little negative effect. However, when 
exacerbated by reactivation of infections combined with 

other insults such as oxidative stress, the acute inflamma-
tory response results in unbalanced production of cyto-
toxic mediators difficult to control or stop.27,136–141 

Microbial metabolites may also fuel neuroinflammation. 
The enhanced neuroinflammatory process damages neu-
rons and alters the blood-brain barrier (BBB). These med-
iators also induce peripheral inflammation and then return 
to further stimulate local neuroinflammation.142–144 This 
progressive pro-inflammatory situation is exacerbated with 
age, creating a vicious cycle of local and systemic inflam-
matory responses leading to activation of cytotoxic micro-
glia, unbalanced cytokine production, Aβ accumulation 
and irreversible brain damage.

Experimental Data Substantially 
Support the Infection Hypothesis 
of AD
The infection hypothesis was proposed decades ago when 
it became clear that there should be some triggering events 
at some points of the disease progression.7,145–147 It is 
noteworthy that Oskar Fisher, in the same epoch as Alois 
Alzheimer, had already evoked this possibility.148 Early 
evidence was done on HSV-1 viruses. The group lead by 
Ruth Itzhaki has identified the HSV-1 DNA in the plaques 
of fully developed AD brains.149,150 An epidemiological 
Taiwanese study recently showed that HSV-1 antiviral 
treatments may interfere with the development of AD in 
contrast to those who did not get them.151 The Lovheim 
group could make the association between the ApoE4 
genotype, the susceptibility to HSV-1 infection and the 
occurrence of AD.152 The virus could remain latent for 
many years, especially in the in neurons and in the trigem-
inal ganglia,153,154 and then reactivate each time when the 
immune defense is diminished by stress, diseases, or other 
infections.155,156 The virus can easily gain access to the 
brain by the trigeminus nerve and the olfactory system. 
Other herpes viruses like the HHV6 and HHV7 are also 
involved.157 In this period of COVID-19, it has become 
evident that the brain might be affected either directly or 
indirectly by the respiratory SARS-CoV2 virus.158 

However, the long-term effects are unknown but may 
lead to AD-like neurodegenerative disease decades 
later.159,160

Concerning the bacteria which may be involved in 
triggering, strong evidence exist for P. gingivalis,122 

Borrelia burgdorferi113,114 and Chlamydia 
pneumoniae.161 All these bacteria themselves, their 
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remnant or products (LPS or gingipain) have been 
directly found in the brain.122 P. gingivalis as 
a cornerstone bacterium can migrate from the mouth to 
the brain by the trigeminal nerve or the olfactive 
pathway.162 Its presence in the brain of AD patients 
was recently demonstrated.122 These bacteria were 
found directly in the amyloid plaques suggesting that 
the plaques may be a sort of biofilm.114 Epidemiological 
studies also strongly suggest a correlation between per-
iodontitis occurrence and AD.163

Another major source for the microbial contribution 
to AD is the gut–brain axis.8,164–166 It is well known that 
when the gut microbiota is perturbed several psychologi-
cal, psychiatric and cognitive problems, mostly acute, may 
arise.167,168 These are mostly acute processes. The gut– 
brain axis provides a bidirectional communication via 
cytokines, hormones, and neurotransmitters.169,170 In case 
of neurodegeneration, an alteration in the normal composi-
tion of the gut microbiota caused by infection, age or 
diet171,172 may result in an inflammatory process in the 
brain by either direct migration of the pathological 
microbes to the brain,173 via the vagus nerve,166,174,175 or 
via the inflammatory products originating from these 
microorganisms such as LPS, lipoteichoic acid or 
Escherichia coli K99pili.176–180 Evidence also suggests 
that the co-localization of LPS and other bacterial frag-
ments in amyloid plaques175,177 may contribute to the 
neuroinflammation.181 It was also shown that production 
of short-chain fatty acids (SCFAs) by microbiota can acti-
vate brain microglia which causes neuroinflammation and 
neuronal damage in an AD model but may be also protec-
tive by decreasing BBB permeability.182–184 Therefore, the 
(eubiotic) microbiome may have also protective effect on 
the brain neurons.185 It should be strongly emphasized that 
the majority of the data discussed here were done in 
animal models, with the exception of the 2019 
P. gingivalis results published by Dominy et al, which 
had human data.122

Brain Antimicrobial Immunity
The antimicrobial immunity of the brain is complex, and 
data are quite scarce. In the periphery, it is composed by 
natural defense lines, cells and mediators. In the context 
of the brain, the innate immunity has been the most 
studied because of the microglia existence and the Aβ- 
triggered neuroinflammation.186 The relationship 
between the antimicrobial immunity and the infection 
hypothesis is becoming slowly unraveled.145 This 

immunity seems very adequate and efficient at the 
beginning to eradicate the invaders, but considering the 
persistence of the aggressors it becomes more 
harmful.187,188 In the context of AD, the innate immune 
system (via microglia) plays an important role in the 
neuroinflammation. We will mainly consider this part of 
the immunity in this review; however, we will also 
succinctly mention the adaptive part.

Blood–Brain Barrier
The BBB is the first line of defense against many 
noxious elements coming from the periphery including 
infectious agents (pathogens) and activated immune 
cells. The BBB is a semipermeable interface between 
the brain parenchyma and cerebral circulation consist-
ing of endothelial cells, astrocytes, pericytes 
and a basal lamina. The BBB is predisposed to filtrate, 
retain and destroy the microorganisms.189 Macrophages 
and endothelial cells as part of the BBB can eliminate 
the infectious agents. However, when the attacks 
become more frequent, an inflammatory process alters 
BBB permeability, leading microorganisms and their 
products to pass more freely from the blood into the 
brain.190 Astrocytes are also part of the brain antimi-
crobial defense as they have a very important neuro-
protective function by assuring the BBB integrity and 
as such decreasing the passage of inflammatory cells 
from the periphery.191–193 However, when they become 
activated as A1 astrocytes they are mediating the neu-
roinflammation either themselves via the production of 
cytokines and chemokines194 or by making the 
BBB more permeable to peripheral inflammatory 
mediators.195

Cellular Defense
As part of the innate immune system of the brain, 
microglia which are the macrophages of the brain are 
the most important cellular defense.9,196,197 They are 
mostly from embryonic origin but some of them may 
originate from the monocytes getting to the brain.198–200 

Microglia very efficiently get rid of invaders and detect 
synaptic anomalies as they are always patrolling the 
brain.194,201,202 At the same time, they are maintained 
in a quiescent state by their interaction with neurons via 
CXCR1203 or CD200L.204 When activated through dif-
ferent pathways including the TREM2-DAP12,196,200,205 

they can phagocytose and kill intracellularly all types of 
microorganisms. Interestingly, mutations in the TREM2 
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have been identified as risk factor for AD.206 They are 
also able to migrate and proliferate and they exhibit two 
distinct phenotypes but are able to be very plastic.207,208 

The type 1 microglia are very pro-inflammatory and 
secrete pro-inflammatory cytokines to help clearing the 
aggressors, while the type 2 microglia are anti-inflam-
matory and are able to mitigate the inflammation and 
repair the tissue damages. Recently a third microglia 
type was described and called disease associated micro-
glia (DAM)209–212 and its functions are related to 
a stepwise activation manner implicating or not 
TREM2.213,214 The DAM are somehow specific for the 
neurodegenerative state and participate at the beginning 
to the clearance of Aβ and later to neurodegeneration. 
However, most of the data concerning microglia in AD 
are in relation to Aβ peptide independently of its 
form (monomeric, polymeric, fibrillar or aggregated as 
plaques).215,216 Through their activation via CD36, 
CD14, CD47 and TLRs (especially TLR4), 
microglia produce pro-inflammatory cytokines and 
chemokines.217–219 The role of microglia is well estab-
lished in various cerebral infections220,221 however, 
there are no data related to the infection hypothesis 
of AD at the exception of one study that reported the 
relation between microglia and some changes of micro-
biota and its derivatives including LPS, as well as 
related to the genetic background such as ApoE4.222 

Therefore, it would be interesting to assess how micro-
glia could behave at different stages of AD.

As the aggression in the brain persists microglia 
become more activated, producing chronically pro- 
inflammatory mediators that participate in the neuronal 
destruction.196,223 Furthermore, they possess receptors 
which react to the overproduced Aβ.224,225 The most 
important receptors are the TLRs, in particular 
TLR4,199,226,227 which initiate intracellular signaling 
pathways leading to the activation of the NF-κB, the 
inflammasome and the antiviral molecular machinery.228 

At the end of this process, activated microglia become 
senescent and only produce pro-inflammatory neurotoxic 
mediators such as TNFα.229–231 Morphologically senes-
cent microglia show cytoplasmic hypertrophy and pseu-
dopodia reduction135,232,233 in contrast to the stationary 
microglia which can always scan the milieu for invaders 
with their extended pseudopodia.234 These data point to 
the need of a timely regulation of the brain innate 
immune response to exploit the beneficial potential and 
decrease the inflammatory action.197

It is of note that the role of the adaptive immunity in 
the antimicrobial defense of the brain is much less 
understood than that of innate immunity.235 In AD, the 
changes in the peripheral adaptive system are well 
established.236,237 T cells can be found normally in 
meningeal, perivascular space and choroid plexus, but 
the resident T cells in the parenchyma are rare. When 
T and B cells can be found in brain parenchyma, it 
means that the BBB is compromised. However, recent 
studies found a small population of resident, tissue spe-
cific, memory CD4+ and CD8+ T cells in human 
brains.238–241 Studies performed mainly in animal mod-
els suggested that T cells may modulate the microglia 
phenotype and activation state.242–244 Most of the data 
on the adaptive immunity role in AD came from mouse 
models. They indicate that, when T cells are solicited 
because of the infection, they can enter the brain and 
contribute either to the neuroinflammation or to the 
antimicrobial defense of the brain.245 The better under-
standing of their role is of the utmost importance for 
further immunotherapies in AD.

Soluble Mediators
The activated microglia and astrocytes secrete cyto-
kines, chemokines and reactive oxygen species. 
Interleukin-1 (IL-1β), tumor necrosis factor-α (TNF- 
α), IL-6, IL-10, chemokines and free radicals are the 
most important. These mediators are very useful at the 
beginning of an infection as they drive the innate and 
the adaptive immune responses.246 They prime the 
microglia for better anti-infectious response, stimulate 
antigen presenting cell differentiation and prime the 
adaptive immunity. During chronic stimulation, the 
production of these pro-inflammatory mediators 
becomes uncontrolled and leading to the constant acti-
vation of the innate immune system and to tissue 
destruction.247 The activation of inflammasome via 
NLRP3 and NLRP1 in AD largely contribute to the 
production of pro-inflammatory cytokines of the IL-1 
family.228,248–250

One of the most efficient antimicrobial and antiviral 
system in the brain is the interferon pathway leading to 
production and secretion of various interferons.251–254 In 
the interferon family, the most important members are 
type I and type III acting on different receptors but with 
similar cellular effects.255,256 The interferon regulatory 
factors (IRF3, IRF7) regulate IFN production.257,258 

A recent study by Romagnoli et al154 found that 

https://doi.org/10.2147/NDT.S264910                                                                                                                                                                                                                                  

DovePress                                                                                                                                    

Neuropsychiatric Disease and Treatment 2021:17 1316

Fulop et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


decreased mRNA levels of IRF7, MED23, IL28B and 
IFN-α were present in human AD brain hippocampus 
and temporal cortex samples, with a genetic background 
of the patients (eg ApoE ε4 and IRF7 A alleles) that 
could worsen mRNA levels and affect brain immune 
efficiency. Thus, in the early phase of the infection, 
this downregulation would favor the decrease of micro-
glia and astrocyte activation and as such mitigate brain 
damage. While it becomes detrimental when the system 
cannot eradicate the aggression; the inflammation con-
tinues, and neurodegeneration is occurring. However, 
the exact role and contribution of this important anti-
microbial defense pathway just starts to be elucidated as 
the recent COVID-19 disease revealed the gaps in our 
understanding especially with its neurological 
manifestations.

Antimicrobial peptides (AMP) are also part of the 
immune defense against pathogens. They can efficiently 
fight the infections. Aβ is not only a harmful by-pro-
duct, but also could have important physiological 
roles.33,35,259 The knowledge about the physicochemical 
properties by which Aβ may exert its antimicrobial 
action is emerging but still remains partially understood. 
It became evident that targeting Aβ at preclinical and 
prodromal stage may be very harmful as demonstrated 
by many clinical trials targeting Aβ. All the pharmaco-
logical attempts to block its production by inhibiting the 
BACE or by directly targeting any physical Aβ form 
will not lead to any clinical and cognitive 
improvement.100–102 Therefore, this discovery gave 
a new impetus to the infection hypothesis of AD.103 

This also highlighted that in the brain there may be 
other antimicrobial peptides protecting against invasion. 
LL-37 and defensin-1 are well-known AMP260 and sev-
eral neuropeptides may also play this role including 
GLP1 and PACAP.261,262 Furthermore, it was shown in 
2017 by De Lorenzi et al that LL-37 can bind to Aβ 
peptide and form a nontoxic complex.260

Together the brain antimicrobial immune defense is 
very efficient but the concomitant chronic insults, 
inflammaging, genetic, epigenetic, and environmental 
factors lead to neuroinflammation resulting in neurode-
generation. Thus, it is very important to understand the 
upstream events resulting in neuroinflammation which 
lead to the final common step in the pathology of AD— 
the uncontrolled Aβ production initiating and maintain-
ing a vicious chronic inflammatory circle which may 
serve target to treatments.

What About Interventions?
In the past decades, there have been numerous valuable 
randomized clinical trials (RCTs), mainly targeting Aβ. 
For example, the most recent ones—with 
solanezumab263 or verubecestat264 have been unsuccess-
ful. Thus, we need new treatments targeting other patho-
mechanisms of the disease such as the 
neuroinflammation.265,266

By understanding the syndromic nature of AD, it 
would be very difficult to design just one treatment, but 
one pathological process seems to be common to all spe-
cific causes: neuroinflammation. An optimal treatment 
for AD could be an agent specifically targeting neuroin-
flammation. As we are specifically interested here in the 
antimicrobial defense in the brain, we will consider the 
fight against infections and inflammation in a chronic 
setting.5 We will describe what treatment options exist 
and what is in the pipeline considering these pathological 
processes.

Prevention/treatment of Infections
The simplest intervention would be to find a prevention 
for the most important agents involved in the develop-
ment of AD. We could develop efficient vaccines 
against the putative pathogens. The recent development 
of vaccines against SARS-CoV2 gives hope that we 
could develop a vaccine against the herpes virus HSV- 
1 and other Herpesviridae such as HHV6, HHV7 or 
CMV. If this is not possible, an intermittent secondary 
prevention treatment in all individuals, and more speci-
fically in APOE4 homozygote carriers,267,268 should be 
initiated with acyclovir, an antiviral treatment that 
shows almost no side effects. This assumption at least 
in a recent Taiwanese epidemiological study received 
strong support.151 Therefore, strong arguments exist for 
the use of somehow intermittent antiviral treatment in 
individuals who are the most susceptible to carry life-
long infections with HSV-1, herpes zoster269 or show 
signs of reactivation measured by IgM serum level. This 
is a cheap, affordable treatment with great potential. 
There is presently an ongoing phase II study with vala-
cyclovir in mild AD patients.270 It is of note that this 
treatment should be efficacious in the preclinical stage 
preventing its development or at the prodromal stage 
(MCI) delaying or preventing the progression to 
full AD. The results of the mentioned study should be 
known very soon (during 2021) which could hopefully 
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change our present practice. There are other antiviral 
drugs which could become therapeutics in AD prophy-
laxis if appropriate clinical trials are carried out. 
Penciclovir, foscarnet, valacyclovir, Bay57-1293 and 
bioflavonoids derived from the leaves of Ginkgo biloba 
have been proposed for an eventual use in prevention or 
at least in stopping progression in AD (Tables 1 and 2). 
All these substances have demonstrated powerful anti-
viral activity in vitro and also in animal models, but 
data on their clinical trials are missing.

The same tactic may be also used for other patho-
gens like P. gingivalis. A vaccine neutralizing gingipain, 
toxic proteases from P. gingivalis could be efficient to 
prevent AD. Repeated courses of antibiotics may be also 
envisaged for bacteria, spirochetes, and chlamydia but 
all the different strategies using antibiotics have been 
unsuccessful in any RCTs carried out until now. 
Tetracycline antibiotics (minocycline or doxycycline) 
or rifampin were ineffective.271 Even the reasons may 
be multiple (treatment time, dose, pathways used, brain 
transport), these failures unfortunately dried the 

antibiotic treatment pipeline for AD. Hope was revived 
with the development of potential gingipain inhibitors, 
as gingipain, is the virulence factor of P. gingivalis and 
plays a crucial role in the colonization of the host and in 
the inactivation of the antimicrobial defense of the host 
and as such ensures the pathogenicity and survival of 
P. gingivalis.272,273 The developed gingipain inhibitors 
COR286, COR271 and COR388 were found to induce 
the bacterial death and reduce the bacterial burden in 
animal models.274 Unfortunately, there is no epidemio-
logical data for antibiotics lifelong use and AD devel-
opment like it exists for antivirals or for nonsteroidal 
anti-inflammatory drugs (NSAIDs). This would be 
worthwhile to perform275 but keeping in mind that 
a possible antimicrobial resistance may develop.

The occurrence of dysbiosis/pathobiont276 may be 
prevented since the earliest period of life by a diet 
maintaining gut microbiota health.8 In this context, 
a balanced anti-inflammatory diet such as the 
Mediterranean or the Asian diet may be successful 
candidates.277–283 In contrast to the western diet, these 

Table 1 Prevention Therapies (Potential Therapeutics for Modulating Inflammation/antimicrobial Immune Defense)

Agent Class Mechanism of Action Trial References

Vaccines Infection Antimicrobial 267, 268

Antivirals Infection Antiviral Phase II valacyclovir 151, 269, 270

Penciclovir 112
Foscarnet 112

Bay57-1293 112
Bioflavanids 278

Antibiotics Infection Antibacterial 294
Minocycline 250, 365

Doxycycline 178, 365

Rifampin, ceftriaxone Infection/inflammation Increasing GLT-1 95, 271, 310, 338

Gingipain inhibitor Infection Gingipain inactivation Phase III COR388 272–274

Mediterranean diet Inflammation Microbiome Already available 178, 276–290

Holobiotics 164, 280, 282, 301–310
Prebiotics 165

Probiotics Inflammation Microbiome Already available 165, 302, 311, 312

Postbiotics 278, 279, 313, 314

GV-971 Inflammation Microbiome Already available 292

Exercise Inflammation Innate immunity Already available 293

NSAID Inflammation Innate/adaptive immunity Phase I salsalate 320, 321

AMPs Infection Antimicrobial 90–92, 261, 262

Alz-OP1 Inflammation Immune system Phase III 360
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diets contain many beneficial products maintaining 
a balanced inflammatory milieu even during aging 
when the inflammaging is very frequent. Many compo-
nents such as polyphenols, short chain fatty acids, fla-
vonoids, proteins, vitamins B, curcumin and 
oligoelements (including selenium, copper, cobalt, mag-
nesium) assure a healthy homeodynamic milieu decreas-
ing the pro-inflammatory, pro-oxidant and epigenetic 
modulatory effects of the internal and external 
challenges.178,280–292 These diets have not only the 
advantage to decrease the propensity for chronic inflam-
mations, but also reinforce the adaptive immune 
response.172,293–295 Recently GV-971, a new drug 
meant to regulate gut flora imbalance and reshape 
immune homeostasis, was approved in 2019 in China. 
GV-971 can prevent the infiltration of the peripheral 
immune cells into the brain, inhibit neuroinflammation 
and prevent the progression of AD.296 Beside stabilizing 
the gut microbiota, it is reducing the increased circulat-
ing phenylalanine/isoleucine shown in AD patients and 
known to increase neuroinflammation. Together all these 
interventions alone or in a multimodal way considering 
their beneficial effects concur to improve cognitive 
functions in AD patients.

We should also mention the beneficial effect of regular 
physical activity. This has been shown to increase the 
cerebral flow, the production of antioxidants, and to rein-
force our antimicrobial immunity. It is needless to say that 
most probably any of these interventions alone will be 
enough to prevent or treat the very early stages of AD, 
but a multimodal intervention combining all of them may 
be efficient. Some of these components were already 
involved in the original FINGER trial.297 Together, as 
appealing as this antimicrobial therapeutic approach could 
be, the lack of real knowledge and insight into pathogenesis 
related to microbes preclude a judicious utilization of the 
antimicrobial agents.298 More studies are needed to confirm 
their efficacy without any doubt on a long-term basis.

Mitigatory/modulatory Treatment of 
Neuroinflammation
There are many ways to intervene in the mitigation or 
modulation of neuroinflammation.299 These may be 
pharmacological or nonpharmacological, direct or indir-
ect interventions.300–302 Among the nonpharmacological 
interventions, the diet and exercise are the most promi-
nent but indirect measures. Multiple pharmacological 

means already exist to intervene at the neuroinflamma-
tion level such as the mentioned NSAIDs. Even contro-
versial, this approach has been shown efficient when 
patients with rheumatoid arthritis have been treated 
and developed much less AD.303 It is still questionable 
whether this effect is direct or indirect. Recently, it was 
shown that the blockade of peripheral myeloid EP2 
(receptor of prostaglandin E2) restored the glucose 
metabolism, decreased the age-related inflammatory 
state, and reversed cognitive decline in aging mice.304 

These results suggest that regulating the immunometa-
bolism of macrophages/microglia may have neuroin-
flammation modulatory action leading to better 
cognition.

Specific Dietary Components
Besides the general diet described above, some nutri-
ments can be directly used to mitigate the neuroinflam-
mation. The microbiota has been targeted by pre-, pro-, 
and postbiotics as potential complementary therapeutic 
approach for AD.164,284,286,305–313 Of note, the probiotic 
may play a prominent role as they can efficiently reg-
ulate or even reset the alterations in various microbiota 
of the organism which could even have direct anti- 
inflammatory effect. Probiotics may restore the homeo-
static equilibrium among pathogenic and beneficial 
microbes in the holobiota, especially decreasing bacteria 
that produce glutamate with excitotoxicity effects.314 

Few studies have investigated the use of multispecies 
probiotic treatment in AD with conflicting results. In 
one study, 12 weeks of probiotic treatment improved 
the cognitive status,315 while in another the supplemen-
tation for one month changed the microbiome but had 
no effect on cognition.316 A recent study found 
a significant improvement in cognition with a probiotic 
cocktail.306 Two ways exist to manipulate the micro-
biota; the first, more futuristic, uses precision diets 
based on the specificities of each microbiome, while 
the other, already available, use bulk diet interventions 
to restore the healthy microbiome of an individual. 
Before we can define either the quantitative or qualita-
tive microbial changes as well as the metabolic changes 
in AD, it will be difficult to implement a generalized 
microbiota modulating diet to modulate neuroinflamma-
tion in AD.164

Ketone (medium chain triglyceride) supplements 
have also been shown to improve the cognitive func-
tions in MCI subjects.317,318 Ketone bodies are known 
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to act on the microbiome by restoring its equilibrium, 
but more importantly by reducing the activation of the 
inflammasome which is one of the contributors to neu-
roinflammation. Recently, several case studies have 
been published on the use of ketogenic diet in 
APOE4 allele carrying MCI and mild AD individuals 
with a significant increase in their cognitive perfor-
mance such as the significant increase of their score 
of MoCA test.319–323 Involvement of vitamins like 
vitamin D and vitamins B may also modulate the 
inflammatory state of the brain by acting on the sca-
venger receptors.324 Some oligoelements such as zinc 
may also regulate the chronic inflammation in the 
brain. Amino acids such as glycine or leucine may 
also be immunoregulatory by an anti-inflammatory 
effect leading to decreased microglia activation.325 

There is a long-lasting debate on the omega-3 docosa-
hexaenoic acid (DHA) efficiency in the treatment 
of AD at different stages.326 In a study on MCI 
patients, the combination of omega-3 supplementation 
with antioxidants, vitamin D3 and resveratrol showed 
beneficial effects on MMSE (mini mental state 
Examination) improvement via modulation of the 
innate immune response.327,328

Anti-inflammatory Drugs/cytokines
There are presently no direct anti-inflammatory drugs 
recommended or used in AD. Epidemiological and 
observational studies strongly suggest a decreased rela-
tive risk of developing AD with nonselective 
NSAIDs,329,330 however the RCT studies did not con-
firm these observations. One of the main problems is 
the timing of their utilization, since it cannot be to 
early neither too late. These treatments should not 
compromise the natural defense of the brain immune 
response but should act before the immune response 
could become harmful by becoming chronic. In this 
context, biomarkers would make the difference, how-
ever we currently do not have any of them in the 
pipeline to be targeted for intervention. The role of 
IL-10 which may be appealing to become an efficient 
target, however, its role was questioned as it can be 
inflammatory at some point of the AD development.331 

In contrast, if exposed to Il-1β, TGFβ1 or IL4, micro-
glia may acquire an anti-inflammatory phenotype by 
expressing arginase-1 what will increase its phagocytic 
capacity towards Aβ.332 Many omics and other high 
throughput-based studies were carried out without 

really much success to find target biomarkers but 
brought important scientific data for the future 
development.333 Nevertheless, some anti-inflammatory 
treatment already exists in the pipeline and some others 
may become interesting.313,334,335

For a long time, the use of angiotensin receptor 
blockers (ARBs), including candesartan, telmisartan or 
losartan, showed a reduction of neuroinflammation, but 
only in animal models.336 In humans there are mainly 
epidemiological evidence that ARBs may be efficient 
in AD treatment.337 In the ONTARGET trial using tel-
misartan vs ACE inhibitor, the telmisartan group 
showed less decrease in MMSE than the control 
group.338 However, it is difficult to establish what is 
the mechanism as the reduction of the hypertension 
recognized as a risk factor for AD could be also the 
cause of the ARB success.339

Another putative repurposed drug could be fasudil 
which is a selective inhibitor of rho kinase (ROCK) 1 and 
2 and a powerful vasodilator.340 This drug has anti-inflam-
matory properties that decrease the IL-1 and TNFα produc-
tion in a rat model.341 More studies are needed in humans to 
confirm these results. Another promising compound may be 
phenserine which is a cholinesterase inhibitor.342 In precli-
nical models, this drug suppressed IL-1 production, to pro-
tect against free radicals and reduce excitotoxicity, resulting 
in decreased neuroinflammation.343 A small phase II study 
showed good tolerability and some cognitive benefits but 
was very much underpowered.344 Other drugs which may 
also have promising applications are disease-modifying 
antirheumatic drugs (DMARDs) which are used in other 
inflammatory diseases such as rheumatoid arthritis.265,345

Other repurposed molecules could be considered 
such as the β-lactam antibiotic ceftriaxone which 
increases the expression of astrocytic glutamate trans-
porter 1 (GLT1) resulting in decreased excitotoxicity 
and neuroinflammation by detoxifying the brain from 
glutamate.314,346 Ceftriaxone may also play an anti- 
inflammatory and antioxidant role.347 This could open 
new avenues of investigations with similar compounds. 
It would be also interesting to study whether they have 
also direct antibacterial properties in AD. Other com-
pounds found beneficial in PD, namely salbutamol and 
trifusal (platelet aggregation inhibitor), are antioxidant 
by blocking the cyclooxygenase 1 and anti-inflammatory 
by modulating among others, NF-κB. RCT human stu-
dies in different phases of AD are badly warranted with 
all these drugs. Considering the role of the pro- 
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inflammatory cytokines, it would be legitimate to think 
that the drugs developed for other chronic inflammatory 
diseases could be beneficial for AD too. However earlier 
studies on anti-TNF treatment failed. A recent study 
indicated that patients with rheumatoid arthritis are at 
increased risk for AD but those using the etanercept had 
a lowered risk of AD.348 These findings initiated a new 
study using etanercept as disease-modifying therapy 
(DMT) for AD.349

Reinforcement of the Antimicrobial 
Defense by Stimulating the Immune 
System (Immunomodulation)
An efficient approach could be to potentiate the initial 
immune and inflammatory responses in order to reinforce 
the antimicrobial defense. One of the first events in the 

immune fight against pathogens is the production of inter-
ferons (IFN) that modulate the inflammatory response, 
eradicate the pathogen, and prime the immune system to 
become more efficient. Anti-CSF-1R treatment may 
enhance the production of type-I IFN as demonstrated in 
cancer.350 The production of other pro-inflammatory cyto-
kines, the complement system and the free radical produc-
tion may also be enhanced by this treatment. Sometimes 
drugs approved for other diseases (eg cancer) may be 
repurposed for other chronic inflammatory diseases such 
as AD. This could be the case for the tyrosine kinase 
inhibitors (eg dasatinib), immune checkpoint inhibitors 
(eg PD1, PD1L, CTLA-4) in non-T cells such as dendritic 
cells351 which can increase the innate immune response 
and prime the adaptive immune response. In animal stu-
dies, checkpoint inhibitors enhanced the cognitive 

Table 2 Disease-modifying Treatments (Potential Therapeutics for Modulating Inflammation/antimicrobial Immune Defense)

Agent Class Mechanism of Action Trial References

ARB Inflammation Antihypertensive Phase III Telmisartan 327–330

Fasudil Inflammation Pro-inflammatory cytokines 331,332

Phenserine Inflammation Immune system Phase II 333–335

DMARD Inflammation Pro-inflammatory cytokines 336, 337

Etanercept 340, 341

Checkpoint inhibitors Inflammation Immune system Planned 265, 343–345

Copexone Inflammation T cells In use in MS 347

Rapamycine Inflammation mTOR NCT042009110 348, 356

Thalidomide Inflammation Decreasing TNFα 349

Senolytics Inflammation Senescent cells 355, 356
Metformin 355

Dratumumab Inflammation Anti-CD38 NCT04070378 363, 364

Lenalidomid Inflammation Pro-inflammatory cytokines NCT04032626 349, 360

L-serine Inflammation Immune system Phase II 360

Montelukast Inflammation Antileukotriene Phase II 360

Sargramostim Inflammation GM-CSF Phase II 360

GB301 Inflammation Autologous Treg NCT03865017, Phase II 265

AL002 Inflammation TREM2 agonist Phase I 360

Azeliragon Inflammation Antagonist-RAGE Phase III 362

Masatinib Inflammation Tyrosine kinase Phase III 360

XPro1595 Inflammation AntiTNFα NCT03943264 360
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performance352–354 but this treatment appears nonconclu-
sive in human studies.

Some immunomodulating agents may also be consid-
ered for AD treatment.266 Copaxone used in multiple 
sclerosis to boost the T cell immune response could mod-
ulate the microglia response.355 Rapamycin, an mTOR 
inhibitor used as anti-aging drug, could be considered as 
an immunomodulatory drug in case of AD as preclinical 
data showed that it can maintain BBB integrity and 
decrease Aβ pathology.356 Thalidomide and its derivatives 
are immunomodulatory drugs decreasing TNFα levels and 
regulating microglia and astrocytes activation in preclini-
cal studies.357

Importantly, the use of therapeutics enhancing the anti-
microbial efficiency of the brain immune response should 
be very tightly controlled in power and time as prolonged 
stimulation will lead to chronic inflammation, cellular 
senescence, chronic neuroinflammation and neuronal/ 
synaptic damage.

Geroprotectors and Senolytics
Aging, the most important risk factor for AD develop-
ment, is associated with changes in the immune system 
which contribute to the decreased antimicrobial defense. 
It is conceivable that modulation of the immune changes 
with aging could be a viable strategy for AD prevention 
and treatment, and toward this approach, geroprotectors 
may be useful.358 In animal studies, young blood was 
shown to influence the cognitive status359 and the results 
from these studies served as a model for a human phase 
1 clinical trial demonstrating the feasibility and the 
innocuity of a such treatment.360 Identical considera-
tions can be given to mTOR inhibitors which demon-
strated immune modulating effects in older subjects by 
increasing the influenza vaccine efficacy.361 IL-7 and 
thymosin β4 treatments were also proposed in this 
sense.362,363 However, this type of treatment should be 
envisaged from very early ages giving the long-term 
development of AD. Therefore, each of the proposed 
treatments can be looked at from two possible points 
of view. One is prophylaxis, where the envisaged drugs, 
vaccines or other, would have to be applied to young 
populations, prior to the onset of any symptoms. The 
other would be aiming at stopping or at least delaying 
the disease progression when it is already manifested. 
The latter would likely be easier to be accepted, even if 
less effective, but new studies try to implement more the 
prevention type of interventions early at life.362,363

The use of senolytics at a precise timescale may also 
be rewarding since senescent cells via the SASP pheno-
type are suggested to be the major mediators of aging 
and inflammaging, and microglia and astrocytes may 
adopt a senescent phenotype over time. Among these 
senolytics, metformin, which is used in the treatment of 
type 2 diabetes, could be considered. A phase 3 clinical 
trial is underway to explore whether metformin can 
improve CNS glucose metabolism or decrease the senes-
cent cell charge (NCT0062019; NCT01965756). In ret-
rospective epidemiological studies, metformin showed 
a reduced risk of cognitive impairment.364 Rapamycin 
and other agents modulating/inhibiting the mTOR path-
way could act as senolytics.365

Disease Modifying Treatment: 
Present and Future
Currently, there is no DMT available for AD but the 
abovementioned treatments may become DMTs and there 
are more molecules in the pipeline.

If we consider the composition of the microbiome to 
explain AD pathogenesis, we should also ponder why 
many older subjects do not acquire AD. These indivi-
duals might possess in their gut bacteria that are meta-
bolically and immunologically active which may 
produce either beneficial small molecules specifically 
targeting the brain. The issue is worth investigation by 
last-generation techniques such as artificial intelligence, 
transcriptomic, systems biology and complex system 
approach which would allow us to probe this 
question.366

Another treatment avenue to explore is the AMP 
antimicrobial characteristics.90–93 Protein analysis com-
paring known AMPs and Aβ confirmed structural 
homology between Aβ and a specific family of 
bacteriocins.367 Bacteriocins are traditionally synthe-
sized by bacteria against other bacteria.368 Aβ also has 
structural similarities with another AMP called LL-37. 
This implies that both can efficiently destroy microbes 
but also form cytotoxic soluble oligomers and insoluble 
fibrils.92 Thus, it is conceivable that in the future, Aβ 
structure and properties may serve as a template for 
advanced computational models to develop new more 
powerful specific AMPs.

Small molecules targeting neuroinflammation (ie 
Masitinib, ALZT-OP1, COR388, telmisartan, sumifilam, 
neflamapimod, azeliragon, DNL758 and GC021109) are 
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in phase 3 clinical trials. Except for ALZT-OP1, all these 
molecules target the mild-to-moderate stages of AD. 
ALZT-OP1 targets the early stage of the disease with 
results being available between 2020 and 2024.369 

A recent article by Cummings et al370 reviewed the AD 
drug development pipeline and stated that among the drugs 
in development many are disease-modifying agents or 
repurposed drugs. Four drugs targeting the inflammation/ 
infection/immunity (17.6% of all agents) are currently in 
phase 3 clinical trials. The first is ALZT-OP1 (cromolyn + 
ibuprofen) aiming to increase the clearance of Aβ by 
modulating the microglia activation; the next is azeliragon, 
a RAGE antagonist, aiming to reduce Aβ load and neu-
roinflammation in the brain;371 the third is masitinib, 
a tyrosine kinase inhibitor, aiming to reduce the Aβ charge 
and tau phosphorylation; and the last is COR388, 
a bacterial protease inhibitor targeting gingipain, aiming 
to reduce neuroinflammation and hippocampal neurode-
generation. Other potential candidates did not seem to 
lead to conclusive results and were halted.335

There are also several phase 2 clinical trials targeting 
inflammation/infection/immunity, including four using 
biologics and seven small molecules. One is using curcu-
min and aerobic yoga to exploit their antioxidant and anti- 
inflammatory properties and target neuroinflammation. 
Daratumumab (NCT04070378) is a monoclonal antibody 
targeting CD38 which is expected to have immunomodu-
latory effects by decreasing the microglial activity. CD38 
is a glycoprotein found on the surface of many immune 
cells including CD4+, CD8+, B lymphocytes and natural 
killer (NK) cells. CD38 also functions in cell adhesion, 
signal transduction and calcium signaling. The CD38 role 
is controversial and depends on the cell types, the aggres-
sion and the moment of the immune stimulation. However, 
it may play a determinant role in the modulation of inflam-
matory processes such as in neuroinflammation.372,373 

Dasatinib and quercetin are respectively a tyrosine kinase 
inhibitor and a flavonoid antioxidant, with strong senolytic 
activity. They both can decrease inflammation and increase 
immune response. To downmodulate the immune system, 
GB301 is a trial comprising of isolating autologous Tregs 
from AD patients, expanding them and reinjecting them 
expecting the promotion of immune homeostasis and 
decrease of neuroinflammation. Lenalidomid, an antineo-
plastic and immunomodulatory molecule, is expecting to 
reduce the pro-inflammatory cytokines TNFα, IL-6 and 
IL-8 and to modulate both the innate and the adaptive 
immune responses to decrease neuroinflammation 

(NCT04032626). L-serine, a naturally occurring dietary 
amino-acid decreasing neuroinflammation, is expected to 
play a role in brain neuron preservation, similar to mon-
telukast, a leukotriene receptor antagonist that reduces 
inflammatory pathways and neuronal injury. 
Sargramostim (GM-CSF) is expected to modulate neuroin-
flammation by stimulating the right immune response that 
will remove Aβ and improve synaptic functions. The 
infection/inflammation modulating agents rifaximin (anti-
biotic) and valacyclovir (antiviral) studies have been 
already discussed. All these studies are expected to be 
completed in the coming years with the hope that some 
of them may be pushed to phase 3 trials and ultimately 
become a disease-modifying drug.

There are also some potential drugs in phase 1 trials, 
including AL002 (monoclonal antibody targeting TREM2 
receptors), AL003 (monoclonal antibody targeting 
SIGLEC-3: CD33), J1J-40346527 (CSF-1R antagonist), 
salsalate (NSAID), rapamycin (NCT042009110 the 
CARPEDIEM) and XPro1595 (TNF inhibitor: 
NCT03943264). They are all designed to mitigate neuroin-
flammation either by decreasing the microglia activation 
or increasing microglia functionality for Aβ phagocytosis 
and clearance.

The discovery that MMP13 and PI3K participate in Aβ 
production at a later stage of the neuroinflammation could 
stimulate the use of multistage treatment involving the 
mitigation of neuroinflammation and the modulation of 
the MMP13 pathway. This can also apply to many unique 
treatments that could be more efficient in combination 
using multi-hit targets. Among all these molecules men-
tioned above, none of them have proven a substantial 
efficacy during the trials but we should wait until the 
completion of these trials to know whether any of them 
could become a disease-modifying treatment.

Ways to Find New Treatments 
for AD: What Could Help to 
Accelerate the DMT Discovery?
To develop new treatments, we could investigate the 
molecular pathways underlying the pathogenesis of the 
disease, but it is not presently the case for AD. Another 
possibility is the combinatorial chemistry which can 
lead to the discovery of new molecules. Nowadays, 
one promising way is to repurpose or reorient drugs 
toward the treatment of AD as many of them are already 
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being used in practice for other indications and revealed 
to be harmless.

An alternative pathway to drug development, as it 
was also revealed in the search for COVID-19 treat-
ment, is via the use of computational methods and 
artificial intelligence (AI).374 In particular, an interest-
ing and novel direction is computational drug design 
under the infection hypothesis and antimicrobial pro-
tection hypothesis of AD.7,95 From the experimental 
side, receptor-ligand binding assays will be required 
to quantify binding affinity and kinetics, conformations 
of targets, binding thermodynamics between Aβ, AMPs 
and glycoproteins of AD-related microorganisms. This 
should also include nuclear magnetic resonance, sur-
face plasmon resonance and isothermal titration calori-
metry. These experimental data would provide 
invaluable information to narrow down the drug search 
space during the computational screening of novel 
AMPs. Moreover, these computations and experiments 
should be coupled to research strategies that shy away 
from transgenic animal models that do not recapitulate 
human AD. This is possible due to recent technological 
leaps in stem cell research, which enable lab-grown 
human mini-brains that reproduce the hallmarks 
of AD.375,376 The mini-brains (as an alternative AD 
model) allow for testing of various invivo-based 
hypotheses and to gather complementary and complex 
information that perhaps is missed in transgenic animal 
models. For example, biofilm experiments, neural tis-
sue based on multiomics data from patients and 
deceased frozen brains can in principle be recreated 
in mini-brains and tested. Altogether, this framework 
provides clear targets for the design of AMPs with 
high-therapeutic efficacy against AD. Indeed, since 
Aβ is a powerful antimicrobial peptide that targets 
and neutralizes AD pathogens, then it is reasonable to 
consider the development of a cocktail of novel and 
more powerful AMPs based on Aβ template and pos-
sibly other peptides (eg LL-37) but without their nega-
tive physical-chemical properties. Taking all this 
together, we can envisage a multistage closed-loop 
framework between in silico drug screening and drug 
testing in mini-brains as follows: stage one should 
involve data mining in existing databases, antimicro-
bial activity prediction via rational design377 and quan-
titative structure–activity relationship (QSAR) should 
generate analogs with improved activity. This step 
should also incorporate novel computational methods 

based on topological data analysis (TDA), which 
enable us to extract topological and geometrical invar-
iants from candidate molecules (see378 for a brief intro-
duction to TDA). The overall aim of this stage is to 
extract the microscopic structure/features of a molecule 
characterized by physical-chemical descriptors (polar-
izability, dipole moment, number of atoms, hydropho-
bicity, toxicity, etc) and uniquely map it to 
macroscopic experimental observables (ie activity of 
the molecule, for example, binding kinetic and thermo-
dynamic parameters). With TDA one can go beyond 
and include geometrical and topological features of the 
molecule associated with primary, secondary, tertiary 
structures (and more) of the molecule. Stage two, 
should consider state-of-the-art molecular simulations 
to determine the mechanism of action of AMPs (in 
particular Aβ) against AD pathogens. Stage three, 
should combine information gained from steps 1 and 
2, and with further determination of physical-chemical 
descriptors of the generated analogs and Aβ, these can 
be used to train and screen potential AMP candidates 
via advanced machine learning. This step should 
include optimization by means of an evolutionary algo-
rithm, which runs in closed-loop process by bootstrap-
ping the experimental assay (eg mini-brain) to the 
peptide synthesis process and further interactive in 
silico prediction by machine learning. During this 
stage the screened AMPs should be tested against 
user-desired property (eg IC50), as well as multiomics 
analysis. In this way AMP sequences can be ranked in 
terms of the desired property and those of poorest 
quality are rejected, allowing a new population to be 
selected. The added value of multiomics is that it 
departs from traditional experimental studies, which 
are usually carried out to isolate the effects of 
a single mechanism and not to investigate the interac-
tions of many mechanisms. This leads to a set of 
results that are conflicting, difficult to interpret or 
understand the interactions of the underlying mechan-
isms leading to the pathogenesis of a disease. Overall, 
the proposed closed-loop framework based on 
advanced data analysis and state-of-the-art in silico 
drug screening provides a systematic and holistic 
screening of AMPs with high-therapeutic efficacy 
against AD pathogens. Moreover, it has the potential 
of accelerating drug design and reducing the overall 
cost of drug development, which aligns with the 
National Alzheimer’s Project Act that articulates the 
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ultimate goal of preventing or effectively treating AD 
by the year 2025.379

Below, we briefly compare Aβ42 (in an apolar 
microenvironment380) and LL-37381 to provide 
a glimpse of only a very small part of the proposed 
closed-loop computational framework in order to sway 
the AD community about the validity of this research 
pathway. A key part of screening novel AMPs will 
involve comparing AMPs and search for new amino 
acid sequences with improved physical-chemical proper-
ties. One step in this direction is to employ traditional 
primary amino acid sequence alignments and secondary 
protein alignment (ie 3D structural superposition), as 
shown in Figure 1 (left panels A–E), which compares 
Aβ42 and LL-37. Panel A, depicts the 3D secondary 
structures of Aβ42 in an apolar environment, which 
appear to depict formation of α-helices (see380). Panel 
B shows LL-37 and panel C illustrates the 3D alignment 
and superposition of the two peptides, showing that they 
possess similarities in their secondary structures. Panel 

D shows primary sequence alignment and indicates 
a minor level of amino acid sequence homology 
between the two peptides. However, by performing 
sequence alignment followed by 3D structural superpo-
sition (of secondary structures) we observe that there is 
a significant portion of their amino acid sequence that 
aligns. In Figure 1 (right panels A–E) we use TDA to 
characterize the topological invariants of the two pep-
tides. For the sake of brevity, we will not explain the 
method in great detail but rather refer the reader to our 
recent article that gives an insight of TDA and how it 
can be applied to high-dimensional and multiscale 
data.371 However, in brief, TDA extracts topological 
and geometrical features that persist across spatial scales 
(hence beyond classical network analysis). These persis-
tent features correspond to invariances of the data and 
are summarized in specific diagrams as shown in Figure 
1 (right panel, A and B). These invariances can in 
principle be related to primary, secondary, tertiary (and 
so on) structures of proteins. In Figure 1 (right panel, 

Figure 1 Similarities measures between peptides (specifically Aβ42 and LL-37). Left panel, (A) 3D structure of Aβ42 in an apolar environment; data from PDB (RCSB 
Protein Data Bank, http://www.rcsb.org, PDB ID 1IYT) shown using PyMol software. (B) 3D structure of human host defense cathelicidin LL-37 (RCSB Protein Data Bank, 
PDB ID 2K6). (C) Structural superposition/alignment of 3D structures of Aβ42 and LL-37 represented in blue and yellow colors, respectively. The yellow colored lines 
represent actual alignments the algorithm has predicted shown using PyMol. (D) Sequence alignment of Aβ42 and LL-37 using the Clustal Omega shareware (http://expasy. 
org/proteomics). Identical amino acid residues are indicated by vertical solid red lines and amino acids possessing similar properties, by dashed vertical dotted black lines. (E) 
Sequence alignment of Aβ42 and LL-37 using PyMol alignment plugin using method “super” whose algorithms can be looked at (http://pymolwiki.org/index.php/Align). 
Vertical red lines represent the sequence that gets aligned/superimposed in the 3D structure as shown in (C). Right panel, (A) Topological signatures of Aβ42, which persist 
(birth/death) across scales. The invariants (H0,1,2) are computed with RIpser software (https://ripser.scikit-tda.org/en/latest/), where the input is the peptide as a point cloud. 
In this case we generated the point cloud in which each point represents one the centroid of the amino acid residue. (B) Topological signatures of LL-37. (C–E) Compares 
three topological signatures of Aβ42 and LL-37 using bottleneck distances, which shows some level of topological similarities.
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C–E) we compare the topological invariances of Aβ42 
and LL-37 via an appropriate distance called bottleneck 
distance. The results show that there is some level of 
topological similarities between these two peptides and 
we envisage that such information could be used as 
input features to machine learning algorithms to screen 
for new AMPs.

Given the context of infection hypothesis and antimi-
crobial protection hypothesis of AD we also computed the 

antimicrobial and antiviral activity of Aβ42 and LL-37, as 
shown in Tables 3 and 4 respectively. Specifically, in Table 
3, we find that various amino-acid subsequences of Aβ42 
show antimicrobial activity. However, so far, we found 
that only a subsequence that overlaps between the Turn 
and C-terminus region of Aβ42 has antiviral activity. Note 
that previous studies have suggested that the C-terminus 
region of Aβ42 has also some similarity with a virus 
fusion domain.380 Although these results are under an 

Table 3 Antibacterial and Antiviral Activity of Aβ42

Method Amino-acid Sequence Start Position Score Antibacterial Activity

1 N Terminus GYEVHHQKLVFFAED 9 1.025 ✔
DAEFRHDSGYEVHHQ 1 0.698 ✔
GSNKGAIIGLMVGGV 25 0.687 ✔

2 C Terminus GIIAGKNSGVDEAFF 10 0.280 ✔
GVMLGIIAGKNSGVD 6 0.142 ✔
FVLKQHHVEYGSDHR 24 0.129 ✔

3 NC Terminus YEVHHQKLVFFAEDVFFAEDVGSNKGAIIG 10 0.803 ✔
HDSGYEVHHQKLVFFDVGSNKGAIIGLMVG 6 0.572 ✔
KGAIIGLMVGGVVIADAEFRHDSGYEVHHQ 28 0.147 ✔

4 Full Sequence DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA 1 1.306 ✔

Amino acid 
subsequence

Alignment 
model

Composition 
model

Physicochemical 
model

AVP Motif – Antiviral activity

KGAIIGLMVGGVVIA Non-AVP 44.35 47.01 ✔

Notes: For the antibacterial we used the AntiBP2 software (https://webs.iiitd.edu.in/raghava/antibp2/) that uses neural networks and support vector machines (SVM) to 
predict the amino-acid subsequence of a peptide with antibacterial activity. AntiBP2 utilizes four datasets to train their models: N-terminus based, C-terminus based, N+C 
terminus based and amino acid composition method. These four methods are SVM trained on 4 different datasets compiled using N, C, NC and full composition peptides 
respectively. For the antiviral activity we employ the AVPpred software (http://crdd.osdd.net/servers/avppred/), which computes various features (ie motifs and alignment 
followed by amino acid composition and physicochemical properties during fivefold cross validation using SVM. In particular, we fragment the amino sequence into 
subsequences of lengths 15 while taking the overlap length to be 14 and finally the subsequences of length 15 are processed by AVPred. In this case, we find that 
a subsequence contained in the turn and C-terminus of Aβ42 does indeed have antiviral activity.

Table 4 Antibacterial LL-37

# Method Amino Acid Sequence Start Position Score Antibacterial Activity

1. N Terminus GKEFKRIVQRIKDFL 14 1.601 ✔
KEKIGKEFKRIVQRI 10 0.559 ✔
IVQRIKDFLRNLVPR 20 0.324 ✔

2. C Terminus VLNRLFDKIRQVIRK 6 0.430 ✔
RKFEKGIKEKSKRFF 19 0.314 ✔
FDKIRQVIRKFEKGI 11 0.082 ✔

3. NC Terminus QRIKDFLRNLVPRTELGDFFRKSKEKIGKE 22 0.237 ✔
KSKEKIGKEFKRIVQEFKRIVQRIKDFLRN 8 0.082 ✔
RIVQRIKDFLRNLVPFFRKSKEKIGKEFKR 19 0.017 ✔

4. Full Sequence LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 1 1.474 ✔

Notes: We find via AntiBP2 software that various amino acid subsequences have antibacterial activity. However, we could not determine antiviral activity with the AVPpred 
software and thus more work is required.
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apolar environment, we cannot dismiss the possibility that 
microenvironments may be formed in the brain due to 
different conditions and thus these results may inform 
future AMPs design. Table 4 outlines the antimicrobial 
activity of various amino acid subsequences of LL-37. 
However, we were unable to compute the antiviral activity 
but this could possibly be related to the fact existing online 
databases need to be updated with novel AMPs that have 
been found to have antiviral properties.

Conclusions
It is clear that AD cannot be linked to any specific 
microbe. According to the emerging infection hypoth-
esis, this is a polymicrobial induced inflammatory dis-
ease in which these microbes may play a role in the 
initiation and the progression of AD; see Figure 2 and 
Table 5 for a summary. If we successfully link at least 
a subgroup of AD subjects to underlying chronic or 
recurrent infections, this could open the way to treat at 
a preclinical stage of AD to delay or stop the progres-
sion. There are several candidates for these treatments 
but at the end of the road a very few are chosen. 
However, those chosen could make the difference by 

decreasing microbial load and reinforcing the immune 
defense at an early stage.

Furthermore, considering the pathogenesis of AD and 
its more syndromic nature, it is currently impossible to 
predict neither the real target nor the moment of an indi-
vidualized treatment. It is conceivable that more than one 
treatment could be efficacious which would result in 
a multimodal intervention, possibly sequentially in time. 
New ways of thinking are necessary to reinvent the ther-
apeutical approach of AD. Several obstacles should be 
overcome in designing new drugs such as crossing the 
BBB, maintaining their activities, and delivering them to 
the right place. Naturally occurring substances such as 
flavonoids should be evaluated as well.

We should also be very cautious to use the mice models 
as templates for humans. There are some similarities, but 
other models should be used such as 3D brain organoid 
cultures from human induced pluripotent stem cells 
(iPSCs). They are also powerful cellular, molecular, genetic, 
epigenomic techniques to unravel the pathogenetic basis of 
the disease from human samples. The use of AI techniques is 
also in constant evolution and could help modeling and find 
new compounds with potential DMT activities. All these new 

Figure 2 Schematic illustration of the immune system implication in neuroinflammation and neurodegeneration and the targets for treatment. All treatments in trial are in red. 
Abbreviations: IL, interleukins; MCP-1, monocyte chemotactic protein-1; BBB, blood–brain barrier; NSAID, non-steroid anti-inflammatory drugs.
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ways of thinking may lead to promising treatments to alle-
viate this terrible human disease.
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