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Abstract: Dysfunction in the mitochondria (Mc) contributes to tumor progression. It is a 
major challenge to deliver therapeutic agents specifically to the Mc for precise treatment. 
Smart drug delivery systems are based on stimuli-responsiveness and active targeting. Here, 
we give a whole list of documented pathways to achieve smart stimuli-responsive (St-) and 
Mc-targeted DDSs (St-Mc-DDSs) by combining St and Mc targeting strategies. We present 
the formulations, targeting characteristics of St-Mc-DDSs and clarify their anti-cancer 
mechanisms as well as improvement in efficacy and safety. St-Mc-DDSs usually not only 
have Mc-targeting groups, molecules (lipophilic cations, peptides, and aptamers) or materials 
but also sense the surrounding environment and correspondingly respond to internal biosti-
mulators such as pH, redox changes, enzyme and glucose, and/or externally applied triggers 
such as light, magnet, temperature and ultrasound. St-Mc-DDSs exquisitely control the 
action site, increase therapeutic efficacy and decrease side effects of the drug. We summarize 
the clinical research progress and propose suggestions for follow-up research. St-Mc-DDSs 
may be an innovative and sensitive precision medicine for cancer treatment. 
Keywords: smart delivery, stimuli-responsive, mitochondria-targeting, tumor 
microenvironment, cancer therapy

Introduction
In addition to cancer prevention and early detection, an effective cancer treatment 
strategy is undoubtedly very important.1,2 In order to achieve maximum efficacy 
and minimal side effects, it seems to be necessary to precisely control drug location 
and maintenance at the destined tumor cells.3,4 Mitochondria (Mc) is linked to 
many hallmarks of cancer cells and its dysfunction may induce tumor cell death, so 
Mc has been considered as a pharmacological target over the last decades.5 

Scientists have developed various smart stimuli-responsive (St) and Mc-targeting 
drug delivery systems (DDSs) (St-Mc-DDSs) (Figure 1). These systems have better 
efficacy and higher safety compared to Mc-DDSs or Sm-DDSs.5–10

St-Mc-DDSs have the added advantages of St-DDS and Mc-DDS (Table 1), 
including (1) hierarchical targetability. St-Mc-DDSs deliver drugs into tumor cells 
and cellular Mc organelles successively. (2) Controlled drug release. St-DDSs only 
release drugs at the target tumor tissue under the stimuli trigger but does not release 
or leak drugs at nontarget tissue sites. After entering the cells, St-Mc-DDSs further 
accurately deliver drugs to the target organelle Mc under the guidance of the Mc- 
targeting group. (3) This system can achieve maximum therapeutic efficacy and 
produce minimal adverse effects. Drug molecules accumulate as much as possible 
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at the precise target site organelle to exert efficacy while 
spending as little time as possible in normal cells and other 
organelles to reduce nonspecific toxicity. St-Mc-DDSs 
avoid the respective design based-deficiencies of the single 
St-DDSs (such as low drug concentration at the Mc) or 
Mc-DDS (such as high drug leakage at nontarget tissue/ 
cell).

The Mc presenting in most eukaryotic cells has been 
well recognized as an organelle target.11,12 The Mc is an 
organelle with two-layered membrane. It is approximately 
0.5 to 1.0 µm in diameter and of variable length. In 
addition to energizing cells, Mc also play a crucial role 
in cell differentiation, signaling and apoptosis.5,13 Mc dys-
function induces various hallmarks of cancer cells, such as 

Figure 1 Schematic diagram of the therapeutic mechanism of St-Mc-DDSs.  
Notes: (A) Endogenous and exogenous St types of St-Mc-DDSs. (B) Smart St-Mc-DDSs are achieved by combining St- and Mc-targeting strategies. (C) Five St-Mc-DDS 
types classified according to the spatial location relationships of different types of St- or Mc-DDSs. (D) Two types of Mc-targeting modes according to the structure. 
Abbreviation: Mc, mitochondria; Mc-DDSs, mitochondria-targeting drug delivery systems; St, stimuli-responsive; St-DDSs, stimuli-responsive drug delivery systems; St-Mc- 
DDSs, smart stimuli-responsive and mitochondria-targeting drug delivery systems.

Table 1 A Comparison of the Characteristics Among St-Mc-DDS, St-DDS and Mc-DDS

Comparison St-Mc-DDS St-DDS Mc-DDS

Advantage

Precisely Mc targeting √ × √

Maximum therapeutic response √ × ×

Stimulus responsiveness √ √ ×

Controlled drug release √ √ ×

EPR effect √ √ √

Long blood circulation √ √ √

Low clearance √ √ √

Disadvantage or deficiency

Low drug concentration at Mc × √ ×

High drug leakage at nontarget tissue/cell × × √

High non-specific toxicity × × √

Notes: √ Refers to have the property, × Refers to not have the property.
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limitless proliferation, damaged apoptosis, reduced autop-
hagy and increased anabolism.14,15 However, Mc-targeted 
therapy is a tedious task.

Before the drug molecule finally reaches the Mc, it 
needs not to be eliminated from blood circulation, selec-
tively accumulate in the target tissue, pass through the 
cellular membrane barrier and escape from lysosomal 
endocytosis.5 The St-DDS seems to be able to increase 
the stability of the nanocarriers and reduce nontarget drug 
release in systemic circulation. The responsiveness of St- 
DDS to endogenous (En) stimuli (also called biostimula-
tors, include factors such as pH, redox potentials, enzymes 
and glucose)7,16,17 and exogenous (Ex) stimuli (also called 
externally applied triggers, include factors such as tem-
perature, light and ultrasound) shows potential for a vari-
ety of biomedical applications8,18. The St-DDS senses the 
stimuli in the surrounding environment, analyzes the sti-
mulus and responds accordingly.9 In reaction to the differ-
ences between tissue/cell microenvironments or blood 
systems of tumor and normality.

St-DDSs change the physicochemical characteristics 
(hydrophilicity, diameter or charge) accordingly to acquire 
greater in-depth tumorpenetration, increased cell ingestion, 
controlled drug delivery, and useful endosomal flee.7,9 

Cellular Mc-specific DDSs may be achieved or strength-
ened by anchoring cell-specific homing ligands (which 
bind to overexpressed antigens on tumor cell outside) 
along with Mc-selective groups on its surface.19,20 The 
receptors currently utilized for active cancer cell targeted 
induction contain epidermal growth factor receptor 
(EGFR),21 folate22,23 and transferrin receptors.24,25 For 
further endocytosis, a series of cell penetrating peptides 
(CPPs), such as cationic trans-activating transcriptional 
activator (TAT),26 polyarginine,27 amphipathic MPG 
(unabbreviated notation),28 Pep-1,29 Pep-7,30 and hydro-
phobic C105Y,31 have been developed to modify drug 
molecules or nanocarriers. After entering the organelle- 
rich cytoplasm, bioactive drug molecules need to be deliv-
ered directly to their Mc action site to acquire high ther-
apeutic efficacy and low off-target result.10,32,33 The Mc- 
targeted groups that are able to carry drugs include micro-
molecule ligands,34 hydrophobic cations,35,36 Mc protein 
import machinery,37,38 Mc-penetrating peptides10,39 and 
Mc inner/outer membrane-targeting molecules.40,41 

Through the above analyses, St-Mc-DDS deliver the med-
icines as much as possible to targeted organelle/cell/tissues 
and acquire perfect treatment effect and medication safety.

Obviously, there are many ways to combine St- and 
Mc- DDSs, and we have given a whole list of the docu-
mented pathways to achieve smart St-Mc-DDSs by com-
bining St- and Mc-targeting strategies (Figure 2). Here, we 
systematically collected and analyzed the design theories, 
implementation method and action mechanisms of St-Mc- 
DDSs in cancer therapy. We present their smart features 
and physicochemical and pharmacokinetic properties 
(Tables 2 and 3), which are closely related to their anti-
tumor efficacy and safety (Tables 4 and 5). Compared to 
conventional DDSs, St-Mc-DDSs exhibit improved cura-
tive efficacy and safety. We propose the challenges and 
future perspectives of St-Mc-DDSs. This is the first review 
of the combined application of stimuli-responsive St- and 
Mc-targeted DDSs. This review will help to evaluate and 
choose the appropriate smart DDS to cure cancer.

Mc Targeting Characteristics of St- 
Mc-DDSs
St-Mc-DDSs usually have 2 types of Mc-targeting modes 
according to the component structure: an Mc group or an 
Mc molecule (lipophilic cation, peptide or aptamer), and a 
material (Figure 1D).

Mc Group and Molecule-Based St-Mc- 
DDSs
Lipophilic Cation-Based St-Mc-DDSs
Mitochondriotropics are low-molecular weight compounds 
with high intrinsic affinity towards Mc. 
Mitochondriotropic molecules often have delocalized posi-
tive charge and enough hydrophilicity. Once entering 
inside mammalian cells, mitochondriotropics accumulate 
either at or inside Mc without requiring the assistance of 
any Mc-targeted delivery system.82 Owing to the high Mc 
targeting of mitochondriotropics, they are widely used as 
Mc targeting groups to facilitate drug delivery.19,20,42,54 

Hydrophobic cations such as triphenylphosphonium 
(TPP),42 (4-carboxybutyl) triphenylphosphonium bromide 
(CTPP),20 IR78054 and 9-O-octadecyl19 have been used as 
Mc targeting groups of St-Mc-DDS to deliver a variety of 
small molecule drugs. TPP consists three phenyl groups. It 
has positive charge and sufficient lipophilicity that facil-
itates transportation across the Mc membrane.83,84 TPP 
and CTPP moieties are usually conjugated with small 
molecules20,42 or decorated on the surface of 
nanoparticles.43,44 Owing to their sufficient lipophilicity 
and delocalized positive charge, TPP-carrying molecules 
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can get easily across lipophilic Mc membrane.85 The mer-
its of TPP-molecules over other hydrophilic cation-mole-
cules include its good biological stability, amphiphilic 
properties, ease of modification, inertia toward cellular 
materials, and deficiency in ultraviolet (UV)-visible light 
and fluorescence absorption. TPP-ubiquinone is safe for 
human, thus shows good clinical potential and the transla-
tional significance of TPP.34 IR-780 is a lipophilic hepta-
methine cyanine dye. It is automatically ingested by tumor 
cells through organic-anion polypeptide transporters, and 
accumulated in Mc sites due to its hydrophobic cation.86 

IR-780 is typically used in nanocarriers for photothermo-
graphy, photodynamic and photothermal therapies (PDT 
and PTT).54,56,86

In addition to the above lipophilic cations, rhoda-
mine 123,87,88 flupirtine,89 MKT-07790 and 
anthracyclines91,92 have demonstrated specific affinity 
to Mc in different Mc-DDSs, but they have not been 
used in St-Mc-DDSs.

Mc Targeting Peptide-Based St-Mc-DDS
Two Mc-targeting peptides, ie, KLA peptide (D 

[KLAKLAK]2)47 and MQ peptide (MLFNLRILLNN 
AAFRNGHNFMVRNFRCGQPLQ),37 have been used in 
St-Mc-DDSs for subcellular-targeted delivery of chemical 
drugs and DNA, respectively. KLA is an Mc-penetrating 
peptide (MPP) that can be decorated on the surface of 
liposomes. Positively charged KLA targets Mc, and its 
lysine unit facilitates cellular uptake since lysine interacts 
with the cellular membrane via a hydrogen bond and elec-
trostatic force to accelerate internalization.47 In addition, 
KLA further disrupts the Mc membrane and initiates apop-
totic cell death.93 MPPs have been confirmed to delocalize 
lipophilic cations to deliver bioactive compounds to the 
Mc.94–97 MPPs usually have positively charged (lysine, 
arginine) and lipophilic (isoleucine, phenylalanine, tyrosine) 
amino acids.98,99 For example, the aromatic cation-contain-
ing Szeto-Schiller (SS) peptide100 was mainly designed to 
deliver tyrosine or dimethyl tyrosine as an antioxidant motif 

Figure 2 A list of documented pathways to achieve smart St-Mc-DDS by combining St- with Mc-targeting methods.
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to the Mc. The SS peptide is taken up by the cell and inner 
Mc membrane by an energy-independent mechanism.5 In 
order to meet different investigative requirements, MPPs 
are designed to have different functions and structures (eg, 
different amino acid sequences, hydrophobicities and pep-
tide charges). For example, incorporating the D-isomer of 
arginine into MPPs protects the peptides from enzymatic 
degradation,34,101 integrating the targeting motif for cell 
ingestion and the proapoptotic motif into MPPs for 
enhanced anticancer effects.10,102,103

The MQ peptide sequence is an Mc-targeting sequence 
(MTS, also called an Mc signal peptide).37 MTSs usually 
consist of 20~30 amino acids, which reach the Mc through 
the use of a translocase from the outer and inner mem-
brane complexes by mimicking the cellular mechanism of 
Mc protein delivery.34,104,105 That is, MTSs create chi-
meric proteins and are taken up via the Mc protein import 
machinery.5 The multifunctional peptide/DNA complex 
facilitates DNA targeting to the Mc.37 In a peptide chain 
having lysine-histidine fragment, cation contributes to 
cross cellular membrane, lysine condenses DNA for cel-
lular ingestion, and histidine helps DNA to reach cytosol 
by endosomal lysis through proton sponge effect. Once 
this type of peptide is attached to a Mc-specific peptide 
sequence, it will effectively facilitates the targeting of 
DNA to the Mc.

However, the deep mechanism of Mc-targeting charac-
teristics of peptides is unclear. In contrast to hydrophobic 
cations, peptides are degradable and cause slight cytotoxicity 
after Mc deposition. Peptides have large molecular weights, 
so they might induce undesired immune responses; peptide 
degradation might cause Mc-targeting failure;106 some pep-
tides are difficult to synthesize or to be conjugated with 
targeting materials; and the characteristics and abilities of 
some targeting materials conjugated with Mc-targeting pep-
tides might be affected.107

Mc Aptamer-Based St-Mc-DDSs
The Mc cytochrome (Cyt) C aptamer67,71 is employed to 
make St-Mc-DDSs efficiently accumulate in the Mc of 
cancer cells. The Cyt C aptamer is a short single-stranded 
oligonucleotide sequence that specifically recognizes 
CytC108,109 which is normally located in the inner Mc 
membrane and plays a key role in ATP synthesis.67,71 

Cyt C is secreted into the cytosol and induces apoptosis 
through a Mc pathway.59,110,111 Cyt C aptamers have been 
attached on the outside of smart mesoporous silica-encap-
sulated gold nanorods67 and bacterial magnetic 

nanoparticles71 to allow them to efficiently accumulate in 
the Mc of cancer cells. Mc-targeting aptamers are a pro-
spective strategy for St-Mc-DDSs. Compared to peptides, 
aptamers are much easier to synthesize while harder to be 
biodegraded and denatured by further modification. 
Aptamer has large molecule, so its conjugation efficiency 
with targeting material is low and targeting efficiency is 
probably influenced. Aptamer is so expensive that the 
clinical application of aptamer-based St-Mc-DDSs is 
severely hindered.107

In addition to Cyt C aptamers, other Mc-targeted apta-
mers have been applied. An aptamer containing folding 
guanine-rich RNA/DNA was designed to modify nanocom-
plexes for Mc imaging and decrease the Mc membrane 
potential.112 A dual-ligand liposomal system was decorated 
with a Mc RNA aptamer (RNase P) that enhanced cellular 
uptake and achieved Mc targeting.113 The short RNA apta-
mer Mitomer 2 showed good binding affinity to the Mc and 
resistance to degradation by nucleases.114

Mc Materials-Based St-Mc-DDSs
Mc materials such as colloidal dequalinium vesicles36 and 
carbon nanomaterials64,68,70,115,116 have been used in St- 
Mc-DDSs. Amphiphilic dicationic dequalinium may self- 
assemble to form aggregates DQAsomes.5 DQAsomes dis-
play a positive surface charge in aqueous environments 
and accumulate in the Mc in response to the electroche-
mical gradient across the Mc membrane system.36 

DQAsomes serve as a mitochondriotropic carriers to deli-
ver hydrophobic drugs and genes to the Mc.117,118

Carbon-based nanomaterials (such as graphene, carbon 
dots and carbon nanotubes) have been emerging as new 
biomaterials to design and fabricate St-Mc-DDSs due to 
their high tunability, good biocompatibility and other 
unique physicochemical characteristics.64,68,70,116,119,120 

They selectively target the Mc based on their polarization 
and positive charge. In graphene oxide (NGO)-based St- 
Mc-DDSs, graphene serves not only as a carrier material 
for Mc targeting but also as a phototherapy agent.64 The 
hypericin-functionalized NGO nanoparticles enhance Mc- 
targeting and the synergistic anticancer effects of photo-
therapy and chemotherapy.115 A novel type of fluorescent 
carbon dot achieved Mc imaging and Mc-targeted PDT 
without further modification by other mitochondriotropic 
ligands (such as TPP).116 A dual Mc-targeting moiety 
(TPP and carbon dot)-modified biocompatible platform 
(magnetic mesoporous silica nanovesicles) achieved 
long-term imaging and magnetic field-enhanced cellular 
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uptake.70 Mc-targeting single-walled carbon nanotubes 
(SWCNs) are used for cancer photothermal therapy.68

Stimuli-Responsive Characteristics 
of St-Mc-DDSs
Endogenous Stimuli-Responsive St-Mc- 
DDSs
En stimuli-responsive St and Mc-targeted platforms (En/ 
St-Mc-DDS) have gradually been used to enhance cancer 
treatment efficacy. En stimuli in the cancerous microenvir-
onment provide signals for anticancer DDSs to accumulate 
in tumor tissues/cells and release drugs in an on-demand 
manner.119 The physiological signals facilitating tumor 
targeting include an acidic media,121 overexpressed 
enzymes (such as matrix metalloproteinase, cathepsin, 
phospholipase, and oxidoreductase)122 or membrane-pro-
tein makers,123 ATP,124 intracellular glutathione (GSH)125 

or hypoxic features.126 According to the En/St type,127,128 

En/St-Mc-DDSs are mainly classified into three types (pH- 
, redox- and enzyme-responsive St-Mc-DDSs). Their 
recent advances are described as follows. To date, there 
have been no reports of En (other biomolecules outside of 
our list) stimuli-responsive St-Mc-DDSs.

pH-Responsive St-Mc-DDSs
Compared to normal tissues, tumors have higher metabolism 
and most of them have lower pH values of extracellular and 
intracellular fluids (6.5~7.0 vs ~7.4; 5.0~6.0 vs ~7.2).129 The 
organelles of tumor cells such as Mc (~8.0),43,130,131 lyso-
somes (4.5~5.0), endosomes (5.5~6.0) and cytosol (7.4)132 

have different pH values. Therefore, Mc-targeted nanocar-
riers with a particular responsiveness to pH can intently 
release drugs at tumor locations, simultaneously preventing 
the unwanted release in normal tissue. Weakly acidic/basic 
compounds are suitable constituents for the preparation of 
pH-responsive Mc-targeted platforms. For example, com-
pounds containing -COOH, -NH2 or -SO3H groups may 
alter from their neutral to ionized forms,133 and further 
induces dramatic alteration in the interaction or affinity 
between the drug molecule and drug vesicle. The pH gradi-
ents are stimuli that release drug from pH-sensitive Mc- 
targeted systems.36,42–49

Two easy measures have been employed to design pH- 
responsive St-Mc-DDSs.134 The first is based on acid- 
cleavable linkers such as a Schiff-base, hydrazone, 
acetal/ketal, amide or cis-aconityl. The second is based 
on the degradation of the polymer and destabilization of 

the nanocarrier in a pH-sensitive manner. pH-sensitive St- 
Mc-DDSs usually have the following functional features: 
they expose the carrier core or overturn the positive charge 
in the tumor extracellular environment to promote carrier 
uptake and they degrade the carrier inside the cells to 
achieve rapid drug release or proton sponge action to 
promote endosome escape.

The polyethylene glycol (PEG)-Schiff base-cholesterol 
derivate was synthesized and attached to the liposomes 
(PSLP).42 Schiff base bond is hydrolyzed in acidic 
media, and the PEG shell is removed from the liposomes. 
The remaining lipophilic PSLP is exposed and easily inter-
nalized by tumor cells. Dioleoyl phosphoethanolamine 
(DOPE) is a constituent of lamellar PSLP that exists in a 
hexagonal phase at physiological pH but is deformed in 
acidic medium. After internalization, DOPE merges with 
the lysosomal membrane and releases the drugs into the 
cytosol. Then, the drug accumulates in Mc through the 
guidance of TPP. In addition to the combination of stimuli- 
triggered St- and Mc-targeted strategies, other active tar-
geted strategies (such as Eph receptor A10 (EphA 10)- 
mediated cellular endocytosis) and passive targeted strate-
gies (such as the enhanced permeability and retention 
effect, EPR) have been applied simultaneously to achieve 
better St-Mc delivery.42

A pH-responsive St-Mc nanohybrid comprised a N-(2- 
hydroxypropyl) methacrylamide (HPMA) copolymer shell 
and a positively charged nanovesicle core was fabricated 
via electrostatic interactions.45 Under mildly acidic envir-
onment of the tumor, the first-stage pH-responsiveness 
took place when the hydrolysis of the amide bonds in the 
HPMA copolymers occurred and the charge of the copo-
lymer changed from negative to positive, which was ben-
eficial for cellular ingestion. The second-stage occurred in 
endosomes/lysosomes due to the proton sponge effect, 
which facilitated Mc location.

Another pH-responsive St-Mc-DDS was prepared to 
induce cellular apoptosis.47 This liposome contains a 
hybrid lipid by synthesizing Mc peptide KLA with 
dimethylmaleic anhydride via amide bond and 1,2-distear-
oyl-sn-glycero-3-phosphoethanolamine (DSPE). This lipo-
some exhibited positive charge at pH ~6.8 of extracellular 
media to facilitate its entrance into cancerous cells. After 
that, KLA purposely delivered cargo to Mc.

An alkaline pH-responsive St-Mc-DDS was 
constructed.43 Lipophilic CTPP conjugated with glucoli-
pid-like conjugates formed micelles in aqueous solution 
and encapsulated celastrol in the hydrophobic core. These 
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micelles selectively responded to the Mc alkaline pH (pH 
8.0), while reduced drug leakage occurred in the cyto-
plasm (pH 7.4) and lysosomes (pH 5.0). The acidity/basi-
city of the loaded drug was relevant to the drug release 
rate and solubility in different environments.

Redox-Responsive St-Mc-DDSs
The redox/oxidation states between the intracellular and 
extracellular matrices of tumors are very different. For 
example, the GSH level in the cytosol (2–10 mM) of 
tumor cells is ~1000 times greater than that in the extra-
cellular matrix (2–20 μM) or >4 times greater than that in 
the normal cells, which renders the tumor intracellular 
redox potential.135 Redox-responsive functional bonds or 
groups8 such as disulfide, phenylboronic acid and ester 
bonds, and singlet oxygen-responsive imidazoles have 
been used to design redox-responsive St-Mc-DDSs.

Disulfide bonds are incorporated into either the 
crosslinker or polymer structure of DDSs. Disulfide 
bonds are converted to thiol groups by various intracel-
lular stimuli, such as the reducing agent GSH.8 A Sm- 
Mc-DDS for overcoming multidrug resistance (MDR) 
had a dendrimer core co-decorated with paclitaxel 
(PTX) via a disulfide bond and TPP via an amido 
bond, and a shell covered with PEG layer via a 
MMP2-sensitive peptide.78 Once the core detached 
from the PEG layer, it targeted the Mc via TPP gui-
dance, and PTX was rapidly released through a reduc-
tive reaction. Another Sm-Mc-DDS was TPP-oligomeric 
hyaluronic acid-S-S-curcumin-loaded micelles.50

Phenylboronic acid and ester bonds are sensitive to 
H2O2. Arylboronic esters and thioketal linkers are oxi-
dized by H2O2 at 50 μM136 and 100 μM,137 respectively. 
The lipophilic neutral ferrocene/lipophobic cation ferroce-
nium redox pair was utilized for the design of cancer- 
specific, Mc-targeting moieties to trigger reactive oxygen 
species (ROS)-mediated drug release.138

A polymeric micelle with an imidazole group is singlet 
oxygen-responsive and able to deliver pyropheophorbide 
A (PPA)-TPP (a photosensitizer).76 The imidazole moiety 
was oxidized to hydrophilic urea upon triggering with 
light. The amphiphilicity of micelles changed, followed 
by rapid photosensitizer release and Mc inhibition via 
TPP. The PDT efficacy was then enhanced.

Generally, these redox-responsive St-Mc-DDSs disas-
semblied and released drug in response to ROS, through 
lipophobic-lipophilic transition or cleavage of ROS- 
responsive linkers. The high sensitivity and specificity 

have been confirmed by the above St-Mc-DDSs. 
However, there are still some challenges to be addressed: 
the degraded linkers should be histobiocompatible, non-
toxic and non-immunogenic. Otherwise, they may lead to 
unwanted side effects and a varied redox state inside tumor 
cells, which is associated with phenylboronic acid and 
ester bonds. Due to the ROS dynamic and heterogeneity 
of tumor cells, it is difficult to control redox balance and 
understand related molecular mechanism.139

Enzyme-Responsive St-Mc-DDSs
Enzymes such as esterases, hyaluronidases (HAases) and 
alkaline phosphatases (APases) are concentrated inside the 
cellular cytoplasm or lysosomes or overexpressed in the 
extracellular environment of tumor sites.140 Catalytic reac-
tions refer to the cleavage/formation of chemical bonds or 
the oxidation/reduction of substrates. Enzymatic 
activation141 using different enzymes as stimuli has been 
applied to design enzyme-responsive St-Mc-DDSs.

A new stable and monodispersing nonisocyanate poly-
urethane nanocapsule (NIPU) are developed.52 Their shells 
had a polyurethane-based142 polymeric backbone with 
embedded ester linkages in response to esterases. Their 
core loaded the hydrophilic drug doxorubicin (DOX) dur-
ing the polymer synthesis and NIPU preparation process. 
NIPU was further post-grafted with phosphonium ions to 
achieve Mc-targeted release of the drug. Song et al19 first 
designed a Mc-targeted nanodrug (a positively charged 9- 
O-octadecyl substituted berberine derivative, BD) that was 
dually modified with DSPE-PEG2000 to increase the sta-
bility and the negatively charged hyaluronic acid to 
achieve tumor targeting and lysosomal escape through 
recognition by HAase in tumor tissue and lysosomes. 
TPP was attached to phosphorylated tetrapeptide enantio-
mers to obtain oligomers that would self-assemble to form 
nanosized assemblies in response to APase enzyme-cata-
lyzed reaction.53 These assemblies further caused Mc dys-
function and killed cancer cells while minimizing acquired 
drug resistance.

In summary, enzymes as stimuli of St-Mc-DDSs have 
intrinsic merits: as endogenous components, they have 
inherent biocompatibility and biosafety; they have extra-
ordinary selectivity for substrates and high catalytic effi-
ciency; and the same enzyme family, such as matrix 
metalloproteinases, in tumor cells usually have similar 
active pockets that may lead to similar substrate 
preferences.143
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Exogenous Stimuli-Responsive St-Mc- 
DDSs
Ex stimuli such as magnetism and light have been 
employed to control drug release within a Mc-DDS (Ex/ 
Sm-Mc-DDS). Compared to En stimuli, Ex stimuli seem 
to have been more successful in overcoming the individual 
variability of controlled drug release.139,144 We will dis-
cuss the rationales and applications of light and magnetic 
responsive Ex/St-Mc-DDS. To date, the combination of 
other Ex stimuli (temperature, ultrasound, electric pulse, 
etc.) and Mc-DDS has not been reported.

Light-Responsive St-Mc-DDS
UV (200~400 nm) light only has weak penetrating power, 
and it is harmful to normal cells and tissues. In contrast, 
NIR light (650~900 nm) has better tissue penetration and 
an improved safety profile.145 Therefore, NIR-responsive 
DDSs with good spatiotemporal control are potential 
nanocarriers for practical therapy. Based on the NIR- 
responsive mechanism, there are three types of light- 
responsive St-Mc-DDS: NIR light-activated PDT-, PTT- 
and PDT/PTT-based St-Mc-DDSs.

Wei et al64 used NGO as a smart carrier, which was 
dually modified with a monoclonal antibody (mAb) for 
αvβ3-positive tumor cell location and a PPA-PEG conju-
gate for phototoxicity in the organic environment of the 
Mc. The nanodrug PPA-NGO-mAb significantly enhanced 
Mc-mediated PDT apoptosis by yielding ROS such as 
singlet oxygen and free radicals. Hou et al65 designed 
titanium dioxide (TiO2, shell)-decorated upconversion 
nanosystems.57 These core/shell nanocomposites (inor-
ganic crystalline nanoparticles, 1–100 nm) transformed 
NIR light to UV emission, which triggered the cytotoxicity 
of TiO2. Therefore, under NIR irradiation, these nanocom-
posites served as an effective photosensitizer and gener-
ated intracellular ROS in the Mc to kill tumor cells.

PTT usually uses a photothermal conversion agent to 
convert NIR light into thermal energy for hyperthermia in 
the tumor region. Chen et al coencapsulated Mc-targeting 
gold nanostars (AuNSs) and DOX in a hyaluronic acid 
protective shell to fabricate a St-Mc-DDS, which was 
ingested into cancer cells upon recognition by CD44 recep-
tor. DOX was then released for chemotherapy. The AuNSs 
codecorated with the cationic peptide R8 and proapoptotic 
peptide TPP-KLA acted as a Mc-targeting nanoheater for 
NIR-triggered PTT.58 Kong et al146 designed a microhybrid 
with two-photon absorption characteristics through coordi-
nation interactions between silver and a fluorescent cyano- 

carboxylic acid derivative. The decreased quantum fluores-
cence and improved two-photon absorption caused by the 
surface plasmon resonance effect led to good photothermal 
output in Mc of HeLa cancer cells when radiation at 780 nm.

Zhang et al54 designed a nanosystem by integrating 
IR780 into perfluorooctyl bromide (PFOB)-based nanolipo-
somes for synergistic PDT/PTT under NIR irradiation at 808 
nm. Mc-targeting IR780 is easily to be encapsulated into 
nanoliposomes due to its hydrophobicity. IR780 had PTT/ 
PDT effects, and the PDT effect was enhanced by the oxygen 
carried by PFOB. This Mc-targeting nanoliposome was bet-
ter than the one consisting of indocyanine green (ICG) and 
PFOB.147 The latter had PTT/PDT effects but did not have a 
Mc-targeting effect. Luo et al148 synthesized a Mc-targeted 
NIR photosensitizer for jointly PTT/PDT by modifying hep-
tamethine cyanine dye with different side-chain N-alkyl.

In summary, in order to conquer resistance to che-
motherapy, PTT and PDT are often applied jointly in a 
NIR-responsive St-Mc-DDS to achieve synergistic antitu-
mor effects. However, the biocompatibility and biodegrad-
ability of the photosensitizer (especially inorganic 
nanoparticles) used in such delivery systems must be con-
sidered for clinical implications.149 In addition, the light- 
responsive St-Mc-DDS is only suitable for the treatment of 
superficial tumors such as skin surface cancer and breast 
cancer due to limited light penetration.

Magnetic Field-Responsive St-Mc-DDSs
The application of magnetic materials along with external 
magnetic fields was first introduced to medicine by 
Freeman et al150 in 1960. Magnetic stimuli-triggered St- 
DDSs features advantages over chemotherapy:151 they are 
a noninvasive approach to control drug release;152 they 
scarcely have any physical interaction with the body and 
are effective over a distance as long as a few centimeters; 
the nanocarriers can overcome blood flow resistance and 
arrive at the tumor region under the influence of a magnetic 
field spatially focused at desired sites; and upon removal of 
the external magnetic field, there is no residual magnetism 
or drug effects. Magnetic field-responsive St-Mc-DDSs 
usually use superparamagnetic iron oxide nanoparticles 
(SPIONs) 10~20 nm in size. Surface functionalization of 
SPIONs may overcome their drawbacks, such as a short 
blood circulation time due to aggregation and oxidization.

Kim et al69 modified SPIONs with PK11195 
(C21H21ClN2O) and chitosan-graft-PEI to fabricate a Mc- 
targeting gene carrier, which effectively condensed and 
protected DNA. Under an exterior magnetic field, the 
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transfection productivity of this gene carrier was compar-
able to PEI 25 K. PK11195 facilitated the accumulation in 
the Mc and activated apoptosis. This magnetofection of 
the magnetic-responsive St-Mc-DDS led to an enhanced 
therapeutic effect on tumor cells. Zhang et al70 constructed 
a Mc-targeting nanoplatform of iron oxide silica nanove-
sicles decorated with TPP. The cellular uptake efficiency 
of the nanoplatform was enhanced upon application of a 
magnetic field of 0.30 T. SPIONs increased temperature 
under magnism to kill tumor cells by hyperthermia.153

Multi-Responsive St-Mc-DDSs
Compared to single stimuli, multiple stimuli, such as the 
combination of Ex and En stimuli, may have synergistic 
effects. Wang et al73 combined magnetic stimulus and NIR 
light irradiation with redox responsiveness into a multistage 
targeted nanocarrier to enhance the efficacy of cancer ther-
apy. The core-shell-S-S-shell nanocarrier was composed of 
an Fe3O4 core, an inward polydopamine (PDA, a photosen-
sitizer) shell connected to TPP, and an outward methoxy PEG 
(mPEG) shell linked to PDA via a disulfide bond. The mag-
netic Fe3O4 core increased nanocarrier location in tumor. 
Once entering the tumor cells, the outer mPEG shell is 
detached by redox reaction to disclose TPP for Mc targeting. 
Upon NIR light irradiation, PDA generated a photothermal 
effect, and the loaded DOX rapidly entered the Mc, resulting 
in cell apoptosis. Chen et al58 combined NIR light stimuli and 
enzyme responsiveness to deliver dual peptide (Mc-target-
ing)-decorated AuNSs and DOX to cure tumors. Zhang et al76 

combined NIR light stimuli and redox responsiveness to 
coprepare a Mc-targeting polymeric micelle.

The combination of different En stimuli (such as redox or 
pH and enzyme stimuli) may result in the sequential release 
of drugs or polymers at precise times.154 Zhou et al51 con-
structed lipid polymer nanocarriers containing PTX, which is 
composed of an amphipathic copolymer containing TPP, 
poly (D,L-lactide-co-glycolide) (PLGA) and an amphipathic 
copolymer having redox-responsive property. The hydropho-
bic drug core (CCM) was decorated with hydrophilic shell 
(OHA and TPP) via a disulfide bond. The micelles were 
ingested by cancerous cells through CD44 recognition, 
entered the Mc and released CCM due to disulfide bond 
cleavage in response to high levels of GSH. The long-acting 
PEGylated nanocarriers accumulated in the tumor. PEG4000 
detached via redox-triggered activation after uptake by can-
cer cells. The nanocarriers recovered to carry positive charge, 
and then enhanced anticancer efficacy was achieved through 
precise localization at the Mc.

Relationship Characteristics of St- 
Mc-DDSs
According to the spatial location relationships of different 
types of St- or Mc-DDSs, St-Mc-DDS are mainly classified 
as one of 5 types (Figure 1C): St material loaded with a Mc 
group or molecule-drug St-Mc-DDS; St material-Mc group or 
molecule loaded with drug St-Mc-DDS; St material-Mc mate-
rial loaded with drug St-Mc-DDS; Mc group or molecule-drug 
St-Mc-DDS; or normal material-loaded with St-Mc-DDS.

St Material Loaded with Mc Group or 
Molecule-Drug
The drug molecules conjugated with Mc-targeting groups 
or molecules are further encapsulated in St materials to 
form different types (such as pH-, redox-, enzyme- or 
light-responsive) of St-Mc-DDSs. The Mc group or mole-
cule-drug will be released in response to the tumor micro-
environment or local Ex stimulus, which overcomes the 
nonspecific drug uptake by normal cells to a certain extent, 
thereby reducing toxicity. However, the linkage of the Mc 
group or molecule to the drug molecule may have a 
negative effect on anticancer efficacy. Therefore, an antic-
ancer efficacy comparison between the Mc group or mole-
cule-drug and free drug group is necessary and valuable.

Zhang et al42 synthesized a docetaxel-TPP (a Mc-tar-
geting molecule) conjugate, and incorporated it into lipo-
somes composed of PEG-Schiff base-cholesterol (a pH- 
sensitive St material) and DSPE. PEG-Schiff base-choles-
terol was hydrolyzed in pH ~6.0 (tumor microenviron-
ment) to get rid of PEG shell, and DSPE merged with 
the tumor lysosomal membrane (pH ~5.0), resulting in fast 
drug release into the cytoplasm and accumulation into the 
Mc under the guidance of TPP. Xing et al46 developed 
amphiphilic quercetin-TPP conjugates into a self- 
assembled nanoparticles composed of phenylboronic 
acid-PEG (a pH-sensitive St material) via boric acid ester 
bonds for tumor therapy. Zhang et al76 encapsulated PPA 
(a photosensitizer)-TPP (a Mc-targeting molecule) into 
imidazole (a redox-responsive St material)-bearing poly-
meric micelles. Song et al19 constructed a nanodrug self- 
assembled from a 9-O-octadecyl (a Mc-targeting group)- 
substituted berberine derivative, further modified with 
DSPE-PEG2000 to increase stability and coated the nano-
drug with HA (an enzyme HAase-sensitive St material) to 
achieve tumor targeting. Chen et al coencapsulated DOX 
and TPP-KLA (a Mc-targeting molecule and peptide)- 
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decorated AuNSs (a light-responsive Sm material) into a 
HA (an enzyme HAase-sensitive St material) shell.58

St Material-Mc Group or Molecules 
Loaded with Drug
The Mc targeting group or molecule is directly bonded to a 
St material to form a composite material that will further 
encapsulate drug molecules to form different types (such 
as pH-, redox- or enzyme-responsive) of St-Mc-DDSs. 
Tan et al43 conjugated a lipophilic cation CTPP (a Mc- 
targeting molecule) with CSOSA (an alkaline pH-sensitive 
St material) to produce a St-Mc-material (CTPP-CSOSA) 
that formed micelles that simultaneously encapsulated 
celastrol into the hydrophobic core. Jiang et al47 conju-
gated the Mc peptide KLA with DSPE and DMA (a pH- 
responsive material) to yield a DSPE-KLA-DMA lipid to 
prepare liposomes containing PTX. Zhou et al51 mixed 
C18-PEG2000-TPP (a Mc group) and DLPE-SS- 
mPEG4000 (a reductive responsive polymer) with PLGA 
to prepare nanoparticles loaded with PTX. Pramanik et al52 

selected a TPP-modified nonisocyanate polyurethane (an 
esterase-responsive polymer) to construct biodegradable 
nanocapsules containing DOX.

As far as St-Mc-DDSs with St material-Mc group or 
molecules loaded with drugs are concerned, the antitumor 
effects of the drug can retain intact since it has an unmo-
dified structure. However, Mc groups or molecules are 
usually positively charged, easily absorbed by non-specific 
proteins and rapidly eliminated by the reticuloendothelial 
system in circulation.47,51,57 Therefore, it is necessary to 
cover a Mc material with a negatively charged St material. 
In addition, when reaching the tumor site, the St material 
should be able to expose the Mc groups or molecules in 
response to stimuli, which can promote the electrostatic 
interaction between the nanoparticles and cancer cell 
membrane for cell internalization.

St Material-Mc Material Loaded with 
Drug
St material-Mc material can be a compound material com-
posed of St- and Mc-material45 or a material that has both 
smart properties and Mc-targeting abilities.115,119

Shi et al36 incorporated the HER-2 peptide-PEG2000- 
Schiff base-cholesterol (HPSC) derivative (a pH-respon-
sive material) on the surface of DQAsomes (dicationic 
dequalinium vesicle, a Mc material) containing DOX to 
treat drug-resistant breast cancer. Li et al45 encapsulated 

docetaxel in a positively charged mesoporous silica nano-
particle core (MSN, a Mc material) and then wrapped it 
with a pH-responsive HPMA copolymer shell to cover the 
positive charge of the mesoporous silica MSN. When St- 
Mc-DDS is prepared using a compound of St material-Mc 
material,36 its structural characteristics and in vivo pro-
cesses are similar to those of St-Mc-DDSs containing a 
drug loaded in St material-Mc group or molecule.47,51 St 
material-Mc material St-Mc-DDSs usually respond to sti-
mulation of the tumor microenvironment or local Ex sti-
muli and induce physical property changes, such as 
particle size and charge. Then, the St-Mc-DDS arrives at 
the Mc under the guidance of the Mc material.

Carbon nanomaterials can be used not only as Mc- 
targeted nanocarriers but also as St photosensitizers to 
induce phototherapy.119 Han et al115 constructed a hyper-
icin-functionalized NGO to deliver DOX, which had 
enhanced Mc targeting and synergistic anticancer effects. 
St-Mc-DDSs prepared using a single material having both 
Sm properties and a Mc targeting ability usually first 
accumulates in the Mc, and then energy conversion occurs 
under Ex stimulation.115,119

Mc Group or Molecule-St Material-Drug
When the Mc group or molecule, St material and drug are 
connected together, they form a St-Mc-DDS with a 100% 
encapsulation rate. Wang et al50 proposed TPP-OHA-S-S- 
CCM micelles (an Mc molecule-enzyme/redox-sensitive 
multifunctional micelle) to exert anticancer efficacy. Li 
et al44 presented TPP-fluorogen-hydrazone bond-PEG 
micelles (an Mc molecule-pH sensitive micelle), and 
fluorogen underwent aggregation-induced emission 
(AIE). The PEG moiety increased blood circulation stabi-
lity. Guan et al57 decorated AIE copolymers (PAIE, a 
photosensitizer able to be photoactivated upon 980 nm 
laser irradiation to yield ROS) with TPP to form PAIE- 
TPP, which was further conjugated with mPEG-CHO (a 
pH-responsive material) via a benzoic imine bond. Wang 
et al73 prepared TPP-PDA (a photothermal agent)-S-S 
(redox sensitive)-mPEG nanoparticles using a similar 
strategy.

St-Mc-DDSs formed by directly connecting a drug 
with the Mc group or molecule-St material may reduce 
the problem of drug leakage during circulation. These 
compounds can not only change the physical properties 
in response to stimulation of the tumor microenvironment 
but also deliver therapeutic agents to produce PDT44,57 

and PTT73 effects under light irradiation.
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Normal Material Loaded with St-Mc-Drug
(St-Mc) drugs mainly refer to small molecule drugs with 
Mc targeting ability and light conversion performance. 
They can be encapsulated inside common materials to 
form St-Mc-DDSs. IR-780 is a St-Mc drug that can selec-
tively accumulate in the Mc and is commonly used in 
photothermography, PTT, and PDT.54,56,86 Zhang et al54 

encapsulated IR780 into nanoliposomes based on perfluor-
ooctyl bromide to form an artificial nanoRBC. These lipo-
somes delivered oxygen to the tumor to alleviate tumor 
hypoxia and enhanced Mc-targeted phototherapy and mul-
tiple imaging guidance/monitoring. The iridium (Ir) com-
plex is another St-Mc drug that targets the Mc and can 
achieve photoredox reaction in tumor.55,155–157 Huang 
et al157 prepared an Ir photocatalyst. This complex loca-
lizes in the Mc and depletes NADH, unbalances intracel-
lular redox and causes immunogenic cellular death upon 
light irradiation. In another work, Ir and Fe3O4 cooperated 
to form photothermogenic nanozyme Ir@Fe3O4 NPs, 
which could increase the local temperature of the tumor, 
thereby catalyzing H2O2 to generate OH.55 Similarly, 
PEGylated SWCNTs were used for Mc-targeted PTD.68

Compared with the above four types of St-Mc-DDSs, 
St-Mc-DDSs with St-Mc drug loading in common materi-
als has a simpler design and preparation requirements for 
dosage forms. They can even be administered directly.157 

In general, it is necessary to prepare St-Mc-DDSs with 
suitable structural properties based on the properties of the 
given drug and material.

Clinical Research Progress
PDT is considered a prospect effective therapy without 
obvious side effects. Photofrin® (a hematoporphyrin- 
derived photosensitizer) is a powder injection to cure var-
ious cancers such as colorectal carcinoma,158 esophageal 
cancer,159 and malignant cutaneous neoplasms.160 The 
application of micelle nanotechnology further enhances 
Photofrin® delivery and efficacy at the cellular level.161 

Visudyne® (a liposomal photosensitizer containing a sec-
ond-generation photosensitizer derived from porphyrin) is 
clinically used to treat subfoveal choroidal 
neovascularization162,163 and has been found to be preclini-
cally effective for cancer treatment.164 Ameluz® (containing 
10% of the photosensitizer 5-aminolevulinic acid) is a non-
sterile white-to-yellow nanoemulsion-based gel for topical 
use to clinically detect and treat bladder cancer165,166 or 
cure melanoma skin cancer.167 In addition to light- 

responsive St-DDSs, other stimuli-responsive St-DDSs are 
developed in different clinical phases. They are thermore-
sponsive liposomes ThermoDox to cure breast tumor (phase 
II) and liver cancer (phase III); the enzyme-responsive 
polymeric nanoparticles Opaxio to cure ovarian carcinoma; 
and the magnetic field-responsive iron oxide NanoTherm 
for the treatment of glioblastoma. One significant character-
istic of these promising St-DDSs is their simple formula-
tion, which favors their preclinical to clinical 
transformation.168,169

Some synthesized Mc-targeted compounds, such as 
MitoQ and SkQ1 (also called Visomitin), have already 
entered the clinical trial stage. Both are lipophilic antiox-
idants with TPP groups.170 MitoQ is used to treat aging,171 

pulmonary hypertension, etc.,172 while SkQ1 is used to 
treat conjunctivitis173 in completed clinical trials. MitoQ is 
currently undergoing other clinical trials for pulmonary 
hypertension, etc. Unfortunately, all antioxidant tests are 
not for antitumor therapy. However, it is worth trying to 
perform the clinical transformation of other Mc-targeted 
compounds with TPP groups and their DDSs.34 Some 
novel compounds with potent anticancer activity have 
been identified to use the Mc as a target and act on its 
metabolism in recent years. Venetoclax represents a first- 
in-class selective and effective Bcl-2 inhibitor.174 It was 
approved by the United States FDA in 2016 to treat 
relapsed-refractory chronic lymphocytic leukemia. Its clin-
ical dosage form is ordinary tablets. Ganetespib is an 
injectable small molecule drug. It has a favorable safety 
profile and promising early results by inhibiting heat shock 
protein 90. It has been investigated in multiple clinical 
trials of various tumors, such as metastatic pancreatic 
cancer (phase II),175 relapsed-refractory small cell lung 
cancer (phase Ib/II),176 and advanced carcinomas and sar-
comas (phase I).177

To date, there are still no clinical antitumor investiga-
tions of St-Mc-DDSs or Mc-DDSs. In addition, there are 
only a few St-DDSs in the clinic or the clinical trial stage. 
Most of these compounds are still at the basic research or 
preclinical stages. The possible reasons are listed as 
follows.

1. Insufficient in vitro pharmaceutical data. The for-
mulation consists of some excipients or critical 
materials that are not pharmaceutical grade and not 
approved for pharmaceutical application, and their 
components, purity, quality, function and toxicity 
are unclear. Most preparation processes are too 
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sophisticated for industrial production scale-up. The 
drug payload and encapsulation efficiency of most 
St-Mc-DDSs have not been determined, and some 
may not be high. Formulation stability has not been 
considered and investigated.

2. Insufficient in vitro release, in vivo pharmacoki-
netics and biodistribution data. Some in vitro release 
in suitable release media should be supplemented, 
and the media type should be chosen based on 
administrative pathways and designed release 
microenvironment. There is no in vivo pharmacoki-
netic behavior research or analysis of the bioavail-
ability or pharmacokinetic parameters, such as the 
area under the plasma drug concentration versus 
time curve, peak time, clearance, etc. The relation-
ship between the in vivo pharmacokinetics and in 
vitro release should be investigated. The biodistri-
bution in different normal tissues and tumors, tissue 
fluids, cells, and organelles, particularly the Mc, 
should be clarified.

3. Insufficient pharmacodynamic data. Most studies are 
limited to one or two cell lines and/or several animal 
experiments and are still in the proof-of-principle 
stage. The effects of stimuli and Mc targeting on 
intracellular trafficking, action pathways, and clinical 
efficacy require further research. When targeting the 
Mc alone does not achieve the desired therapeutic 
effect, designing nanocarriers that target multiple 
organelles at the same time may be an alternative 
strategy since in-depth studies on lysosomes, the endo-
plasmic reticulum and other organelles have shown 
that these organelles are closely related to apoptosis or 
autophagy, which can affect tumorigenesis.

4. Insufficient safety data. No preliminary safety eva-
luation of the Sm-Mc-DDS including toxicity, 
immunogenicity and side effects in animals has 
been reported. Additionally, the positive stimuli to 
rats or mice may not be suitable or safe for patients.

5. The mutual interference or promotion of St stimuli 
and Mc-targeting in one DDS requires more experi-
mental data. Theoretically, each Sm type may com-
bine with each Mc targeting type or subtype, but in 
fact, there have been no reports of some En (other 
biomolecules outside our list) or Ex (temperature, 
ultrasound, electric pulse, etc.) stimuli-responsive 
St-Mc-DDSs. The chosen criterion is not clear.

6. Compared to single stimulus-response St-Mc-DDSs, 
multiple stimuli-response St-Mc-DDSs are more 

difficult to achieve transformation. The latter is 
still in its infancy, their design principles are more 
complex than the former, and their fabrication and 
assembly processes are more difficult. Sometimes, 
failure to respond to one stimulus may lead to inef-
fectiveness of the whole system. Therefore, the 
sequence and degree of response to each stimulus 
should be further assessed.

Summary and Outlook
Mc dysfunction plays a vital role in programmed cell 
death, such as apoptosis and necrosis. It is reasonable to 
choose the Mc as a novel target for an antitumor strategy. 
However, most drugs or nanocarriers on the market do not 
have Mc targeting functions, and they need to overcome 
many obstacles before reaching the tumor tissue, cells and 
Mc due to the complexity of the tumor tissue environment. 
The concept of Mc targeting, while seemingly simple in 
theory, has multiple subtly different practical approaches. 
Lipophilic cation such as TPP and IR-780 have good 
safety and clinical potential. IR-780 are also used for 
PDT/PTT therapy. Mc-targeting peptides such as KLA 
and MQ peptides, have positively charged and lipophilic 
amino acids. Mc-targeting aptamers are too expensive to 
make clinical transformation difficult. Peptides and apta-
mers may be unstable and cause unwanted side-effects due 
to large molecular weights. Mc materials form vesicles to 
deliver drug. NGO nanoparticles may achieve PDT/PTT 
effects. There are differences on the future status of var-
ious Mc-targeted approaches to cancer therapy. In this 
context, structurally modified and programmed micro/ 
nanoparticles, which can be programmed using computa-
tion techniques to obtain En (pH, redox and enzyme) or Ex 
(light and magnetism) stimuli responsive to increase their 
accumulation in the Mc. Multifunctional nanocarriers with 
single/multiple stimuli-responsiveness and Mc targeting 
properties may better protect and deliver drugs, reduce 
normal tissue accumulation and enhance therapeutic 
effects. Stimuli-responsive system may be an effective 
way to improve Mc targeting delivery. An important bio-
logical hypothesis is that the tissue microenvironment can 
trigger a desirable event to a large extent from stimuli- 
responsive behavior. However, until now, no evidence 
supports this. The responsiveness should be considered 
as an important contributor to therapeutic efficacy, and 
an urgent necessity to assess in depth in vivo responsive-
ness that is intimately relevant for the functionality. Some 
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strategies had been proposed to amplify the responsiveness 
and improve the functionality.178–180

Undoubtedly, enormous efforts have been exerted in 
the design and basic research of St-Mc-DDS for cancer 
therapy, and the preliminary results are encouraging. 
However, the clinical transformation of St-Mc-DDSs is 
comparatively motionless. In order to address the chal-
lenges in clinical transformation, there is a great need to 
consider and perform the following measures in the future, 
which include but are not limited to choosing the drug 
using the Mc as a main target; choosing approved pharma-
ceutical excipients to formulate the St-Mc-DDS; choosing 
suitable stimuli according to the tumor site (superficial or 
deep tumor); optimizing the preparation method and 
choosing a method that is as simple as possible; and 
performing the necessary experiments (such as stability, 
pharmacokinetics and safety tests) needed for clinical trial 
application. Recently, advances in machine learning and 
artificial intelligence immensely decode and empower the 
cell-nanomaterial interaction modelling, which give mod-
ern to nanomedicine to predict the targeting and efficacy of 
payload to intracellular compartment181–183 using in-silico 
methods.61 This potentially decipher the quantitative 
nanostructure activity-relationship (Nano-QSAR) and pro-
mote the understanding of bio-physicochemical identity at 
the nano-bio interface. In this context, structurally mod-
ified and programmed micro/nanoparticles, which can be 
programmed using computation techniques to stimuli 
responsive and increase their accumulation in the mito-
chondria. The predictability of targeting and effectiveness, 
coupled with the clarity of the mechanism of action, may 
accelerate the clinical transformation of nanomedicine. We 
should follow innovative advantages and conduct prospec-
tive research. In addition, considering the fact that more 
than 10% of all cancer drugs in use today are nanodrug 
and irony is less 10% of clinical oncologist know this, 
future concept must evolve around the why there is a need 
for education and training in nanomedicine for future 
doctors? Emphasis must be their incorporation into the 
general medical curriculum the key concept in 
nanomedicine.

Role of EPR in cancer barrier is somewhat oversell 
considering less than 1% nanomedicine formulations fol-
low the trend designed by using EPR. In the last decades, 
it has been increasingly recognized that there is large inter- 
and intra-individual heterogeneity in EPR-mediated tumor 
targeting, explaining the heterogeneous outcomes of clin-
ical trials in which nanomedicine formulations have been 

evaluated. To address this heterogeneity, as in other areas 
of oncology drug development, we have to move away 
from a one-size-fits-all tumor targeting approach, towards 
methods that can be employed to individualize and 
improve nanomedicine treatments.

Overall, St-Mc-DDSs may be innovative and sensitive 
precision medicines. They provide great potential for 
enhanced cancer treatment. This new strategy is expected 
to be applied in clinical practice as soon as possible and to 
open up new ideas for precision medicine soon.
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tide; MSN, mesoporous silica nanoparticle; MTS, Mc- 
targeting sequence; NGO, graphene oxide; NIPU, non-
isocyanate polyurethane nanocapsule; NIR, near-infra-
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