
R E V I E W

The Role of IL-17 Cytokines in Psoriasis

Megan Mosca
Julie Hong 
Edward Hadeler 
Marwa Hakimi 
Wilson Liao
Tina Bhutani

Psoriasis and Skin Treatment Center, 
Department of Dermatology, University 
of California San Francisco, San Francisco, 
CA, USA 

Abstract: Psoriasis is a chronic inflammatory skin condition associated with immune 
dysregulation. The immunologic cascade mediated by the interleukin (IL)-17 pathway 
plays a critically important role in the pathogenesis of psoriasis. The IL-17 effectors (IL- 
17A, IL-17C, IL-17E, and IL17F) act on keratinocytes, endothelial cells, and immune cells to 
stimulate epidermal hyperplasia and the pro-inflammatory feed-forward cycle seen within 
plaque psoriasis. The IL-17 pathway is also hypothesized to modulate the inflammatory 
responses linking comorbid systemic diseases with psoriasis. Furthermore, the robust clinical 
response seen with current and emerging therapies targeting IL-17 emphasizes the impor-
tance of the IL-17 cytokines in the pathogenesis of psoriasis. 
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Introduction
Psoriasis is a chronic immune-mediated, inflammatory skin condition, which affects 
approximately 7.4 million adults in the United States.1 It is characterized by well- 
demarcated, erythematous, scaly plaques and involves increased keratinocyte pro-
liferation and pro-inflammatory cytokines.2 While the pathogenesis is complex and 
not fully elucidated, psoriasis is thought to result from a combination of immuno-
logic, genetic, and environmental factors.2 Upregulation and activation of immune 
pathways play a crucial role in the immunologic mechanism of psoriasis. The 
interleukin-23/ T helper 17 (IL-23/Th17) mediated activation of IL-17 is recognized 
as the dominant pathway and plays a critical role in the pathogenesis of psoriasis.3,4

The IL-17 signaling pathway and its products are key contributors to psoriatic 
inflammation. Given its pathogenic role, this pathway has become a therapeutic 
target for several psoriasis treatments. Currently, three biologic therapies targeting 
the IL-17 pathway are FDA approved for the treatment of moderate to severe 
plaque psoriasis: ixekizumab, secukinumab, and brodalumab. Additionally, current 
research is underway to evaluate the efficacy of two new biologic treatments, 
bimekizumab, an inhibitor of IL-17A and IL-17-F, and netakimab, an inhibitor of 
IL-17A.5,6 An update on the contribution of the IL-17 cytokines in psoriasis 
pathogenesis and its involvement in mediating comorbid conditions is discussed 
below. Additionally, we highlight the pertinent Phase III efficacy and safety data of 
IL-17 inhibitors, emphasizing recent studies and novel therapeutic agents.

Biology of the IL-17 Family
The IL-17 family consists of six isoforms (IL-17A-IL-17F).7 IL-17A and IL-17F 
are primarily involved in the pathogenesis of psoriasis, but IL-17C and IL-17E are 
also implicated in the disease state. Furthermore, the expression of these four 
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cytokines is increased within psoriatic skin lesions, sup-
porting their role in psoriasis.8–10 Protein levels of IL-17A, 
IL-17C, and IL-17F in lesional psoriatic skin are signifi-
cantly increased by 6.7-fold, 4.1-fold, and 8-fold, respec-
tively, when compared to nonlesional skin.9

IL-17A and IL-17F share the most homologous struc-
ture, sharing approximately 50% of their sequence identity.11 

IL-17A exists in two forms, as a homodimer and 
a heterodimer in combination with IL-17F (IL-17A/ IL- 
17F). Additionally, IL-17A homodimer, IL-17F homodimer, 
and IL-17A/IL-17F heterodimer all bind to the same hetero-
dimeric receptor, IL-17R, which is comprised of IL-17RA 
and IL-17RC.12 However, the IL-17A homodimer is the 
most biologically active isomer with downstream gene acti-
vation approximately 10–30 fold stronger when compared to 
activation by the IL-17F homodimer.12,13

Role of the IL-17 Cytokines in 
Psoriasis
Under physiologic conditions, the IL-17 pathway contri-
butes to defenses against extracellular fungi and bacteria. 
In particular, IL-17A bridges the gap between the innate 
and adaptive immune systems. Through chemokine 
expression and gradients, IL-17A initiates immune 
responses at mucosal surfaces, resulting in the recruitment 
of neutrophils to the tissue.14 Neutrophils, in turn, secrete 
IL-17, which amplifies the response and leads to the 
recruitment of additional neutrophils.15

However, the IL-17 pathway also plays a significant 
role in the origin and the feed-forward inflammatory cycle 
of psoriasis. When an individual with a genetic predisposi-
tion experiences a trigger for psoriasis, the adaptive 
immune system initiates an immunologic cascade.2 

Myeloid dendritic cells initiate the release of IL-12 and 
IL-23; however, the IL-23 pathway is believed to be the 
predominant pathway in psoriasis pathogenesis.2 IL-23 
supports the survival, differentiation, and activation of 
Th17 cells, which secrete IL-17 cytokines.2,16 While 
Th17 cells were previously thought to be the primary 
source of IL-17, new research suggests that mast cells 
and neutrophils are the predominant cell type containing 
and releasing IL-17 in psoriatic skin.15 This subpopulation 
of neutrophils and mast cells release IL-17 through IL-23 
activation, which may explain why therapies targeting IL- 
23 are efficacious in psoriasis.17,18 Additional sources of 
IL-17 may include innate lymphoid cells, natural killer 
cells, and gamma-delta T-cells.16

Keratinocytes, endothelial cells, and immune cells are 
all downstream targets of IL-17 in the psoriasis pathway 
(Table 1). IL-17 acts directly on keratinocytes, resulting in 
keratinocyte proliferation and the production of psoriasis- 
related cytokines, chemokines, and antimicrobial peptides. 
Factors released by the keratinocytes promote the positive 
feedback loop by stimulating the production of additional 
inflammatory cells and IL-17-producing cells.7 While IL- 
17A and IL-17F act individually as pro-inflammatory 
mediators in the psoriasis cascade, in combination, they 
also work synergistically to promote increased 
inflammation.18 Neutralization of both cytokines demon-
strated greater downregulation in inflammation in vitro 
than with IL-17A or IL-17F blockade alone.19 In addition, 
IL-17E amplifies the inflammatory feedback cycle through 
the upregulation of genes involved in chemotaxis, ulti-
mately promoting innate cellular recruitment and 
activation.20 IL-17 also promotes procoagulant activity in 
endothelial cells and upregulates pro-inflammatory effects 
on macrophages and dendritic cells.13,21

In addition to this pathway, IL-17 acts synergistically 
with TNF-α to coregulate psoriasis-related cytokines and 
keratinocyte genes.22 Receptors for both TNF-α and IL-17 
are expressed on keratinocytes. When the two receptors 
are stimulated simultaneously, the resulting levels of 
inflammatory cytokines are synergistically or additively 
upregulated.22 This relationship is further supported by 
over 350 IL-17/TNF-α coregulated genes, many of which 
are highly expressed in psoriatic skin.22

IL-17 and Psoriasis Comorbidities
While psoriasis is highly associated with several comor-
bidities including cardiovascular disease, metabolic syn-
drome, psychological illness, inflammatory bowel disease, 
and obesity, the exact mechanism behind this relationship 
is unknown.23–27 Alterations and dysfunction of the 
immune system are proposed to be key mechanisms link-
ing these disease states. Given the fundamental role that it 
plays in psoriatic disease, the IL-17 pathway is hypothe-
sized to modulate the inflammatory responses seen in both 
primary psoriatic skin disease and comorbid systemic dis-
ease. Specifically, research suggests that IL-17 may play 
a pathogenic role in psoriasis-associated cardiovascular 
dysfunction, depressive disorder, and obesity.

Several studies support the role of IL-17 in psoriasis 
and vascular dysfunction.28 Studies of mice demonstrated 
that overexpression of IL-17A in keratinocytes resulted in 
psoriasis-like skin changes and increased downstream 
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vascular oxidative stress, endothelial dysfunction, and 
arterial hypertension.29,30 Research has also demonstrated 
that upstream components of the IL-17 pathway are asso-
ciated with vascular dysfunction. Patients with carotid 
atherosclerosis were noted to have significantly increased 
plasma levels of IL-23 when compared to controls and 
increased levels of IL-23 and IL-23R were noted within 
atherosclerotic plaques.31 Furthermore, research demon-
strates that serum IL-17 is increased threefold in hyperten-
sive individuals and may mediate the critical hypertensive 
response to angiotensin II.32

Several studies with conflicting evidence suggest IL- 
17 may be the immunologic link between psoriasis and 
depression.33 Elevated IL-17 levels are hypothesized to 

mediate depressive disorders through downstream activa-
tion of microglia and neuroinflammation with chemo-
kines, cytokines, and neuroinflammatory mediators.33 

The upregulation of IL-17 gene expression and increased 
serum levels in patients with major depressive disorders 
compared to healthy controls support IL-17 involvement 
in the disease process.34–37 In addition, mouse models of 
depressive brains demonstrated increased percentages of 
Th17 cells and increased levels of IL-17 
interleukins.38,39 However, the exact role of IL-17 in 
depression is unclear, and levels of IL-17 do not always 
correlate with disease. A meta-analysis of peripheral 
cytokine and chemokine alterations in depression did 
not find a significant difference between levels of IL-17 

Table 1 IL-17 Cytokine-Mediated Downstream Effects Involved in Plaque Psoriasis

IL-17 
Isomer

Relevant 
Sources

Receptors Targets Effects Targeted 
Therapy

Ref

IL-17 A Th17 cells 

CD8+ T cells 

Neutrophils 
NK cells 

NKT cells

IL-17RA 

IL-17RC

Keratinocytes Induces keratinocyte proliferation 

Promotes production of psoriasis-related cytokines, 

chemokines, inflammatory mediators, and 
antimicrobial peptides (ie IL-6, IL-8, chemokine CC 

motif ligand 20, granulocyte colony-stimulating factor, 

and granulocyte-macrophage colony-stimulating 
factor)

Ixekizumab 

Secukinumab 

Bimekizumab 
Netakimab 

Brodalumab 

(anti-IL 
-17RA)

[7,18,21]

Endothelial 

cells

Stimulates the release of IL-16, IL-8, tissue factor, and 

intracellular adhesion molecule-1 → procoagulant 

activity and inflammation

Macrophages 
and dendritic 

cells

Stimulates the release of IL-16, IL-8, tissue factor, and 
intracellular adhesion molecule-1 → procoagulant 

activity and inflammation

IL-17 C Keratinocytes IL-17RA 

IL-17RE

Keratinocytes Stimulates induction of human β-defensin 2 and 

granulocyte colony-stimulating factor

Brodalumab 

(anti-IL 

-17RA)

[7,77]

IL-17 F Th17 cells 

CD8+ T cells 
Neutrophils 

NK cells 

NKT cells

IL-17RA 

IL-17RC

Keratinocytes Induces keratinocyte proliferation 

Promotes production of psoriasis-related cytokines, 
chemokines, inflammatory mediators, and 

antimicrobial peptides (ie IL-6, IL-8, chemokine CC 

motif ligand 20, granulocyte colony-stimulating factor, 
and granulocyte-macrophage colony-stimulating 

factor)

Bimekizumab 

Brodalumab 
(anti-IL 

-17RA)

[7,18,21]

IL-17 E T cells 

Intraepithelial 

lymphocytes 
Eosinophils 

Basophils 

Mast cells

IL-17RA 

IL-17RB

Keratinocytes Stimulates cellular proliferation, differentiation, and 

migration of keratinocytes. 

Also promotes release of pro-inflammatory cytokines/ 
chemokines through STAT3 transcription factor

Brodalumab 

(anti-IL 

-17RA)

[7,20,78,79]

Abbreviations: IL, interleukin; IL-17R, Interleukin-17 recepto; NK cells, natural killer cells; NKT, natural killer T cells; Th17 cells, T helper 17 cells; STAT3, signal transducer 
and activator of transcription 3; Ref, references.
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in patients with major depressive disorder and healthy 
controls.40 More research elucidating the connection 
between IL-17 and depression is needed.

In addition, IL-17 may mediate the feed-forward 
inflammatory cycle associated with obesity.33 Adipocytes 
and macrophages in visceral adipose tissue exacerbate the 
inflammatory state of psoriasis by promoting several pro- 
inflammatory cytokines, including IL-6, which mediates 
Th17 commitment by naïve T cells.41,42 IL-17 activates the 
positive feedback process by stimulating the production of 
IL-6.43 This process contributes to the elevated levels of 
plasma IL-17 observed in obese patients when compared 
to lean controls.44–46 Research hypothesizes that IL-17 
ultimately mediates the link between obesity and psoriasis 
through maintaining inflammation in adipose tissue and 
stimulating lipolysis of adipocytes.47

Targeted Therapies for the IL-17 
Pathway
Given the significant role of the IL-17 pathway in psoriasis, 
several targeted biologic therapies have emerged. Currently, 
three biologic therapies (ixekizumab, secukinumab, and bro-
dalumab) are FDA approved for the treatment of plaque 
psoriasis and two novel biologics (bimekizumab and neta-
kimab) are undergoing phase III clinical trial therapeutic 
evaluation. Network analyses with head-to-head compari-
sons demonstrate that agents targeting IL-17 and IL-23 
tend to be more efficacious when compared to older drugs 
targeting TNF-α and IL-12/23 at several endpoints.48 The 
robust clinical response and fast-onset of action of anti-IL 
-17 agents in clinical trials highlight the fundamental role 
that IL-17 plays in psoriasis pathogenesis.

Ixekizumab
Ixekizumab, a humanized IgG4 monoclonal antibody 
against IL-17A, is approved by the FDA for the treatment 
of moderate to severe plaque in patients ages 6 and older. 
For adults, ixekizumab is administered with a 160 mg 
loading dose at week 0 followed by 80mg at weeks 2, 4, 
6, 8, 10, and 12, and 80 mg every 4 weeks, thereafter.49 

Dosing for pediatric patients is weight-based. Patients 
weighing less than 25 kg are recommended to receive 
a loading dose of 40 mg at week 0, followed by 20 mg 
every 4 weeks. Patients weighing 25–50 kg receive 
a loading dose of 80 mg at week 0, followed by 40 mg 
every 4 weeks. Patients who weigh greater than 50 kg are 

recommended to receive a loading dose of 160 mg at week 
0, followed by 80 mg every 4 weeks.

The efficacy and safety of ixekizumab have been eval-
uated in three randomized, double-blind, placebo- 
controlled phase III trials: UNCOVER-1, UNCOVER-2, 
and UNCOVER-3.50,51 In UNCOVER-1, two dosing regi-
mens of ixekizumab (80 mg every 2 weeks versus every 4 
weeks) was compared to placebo and in UNCOVER-2/3 
etanercept was used as an active comparator. Ixekizumab 
was superior to placebo and etanercept in terms of the 
Psoriasis Area and Severity Index (PASI) 75 at week 12 
in all three studies. In UNCOVER-1, PASI 75 was 
achieved by 89.1% of patients on ixekizumab 80 mg 
every 2 weeks, 82.6% of patients on ixekizumab 80 mg 
every 4 weeks, and 3.9% of patients on placebo 
(p<0.001).50 In UNCOVER-2, PASI 75 was achieved by 
89.7%, 77.5%, 41.6%, and 2.4% of patients with ixekizu-
mab 80 mg every 2 weeks, ixekizumab 80 mg every 4 
weeks, etanercept, and placebo, respectively (p<0.0001). 
UNCOVER-3 supported these findings with 87.3%, 
84.2%, 53.4%, and 7.3% of patients achieving PASI 75 
with ixekizumab 80 mg every 2 weeks, ixekizumab 80 mg 
every 4 weeks, etanercept, and placebo, respectively 
(p<0.0001).51 A long-term extension of UNCOVER-3 
demonstrated that ixekizumab maintained high levels of 
efficacy through 4 years of treatment (PASI 75: 82.8% of 
patients, PASI 90: 66.4% of patients, and PASI 100: 48.3% 
of patients).52

Ixekizumab demonstrated superiority and noninferior-
ity when studied head-to-head against ustekinumab and 
guselkumab, respectively. The randomized, double-blind 
clinical trial, IXORA-S, demonstrated that ixekizumab 
was superior to ustekinumab at week 12 in PASI 75 
(88.2% vs 68.7% of patients, p<0.001), PASI 90 (72.8% 
vs 42.2% of patients, p< 0.001), and PASI 100 (36.0% vs 
14.5% of patients, p<0.01).53 The clinical superiority that 
ixekizumab demonstrated at week 12 was maintained 
through week 52.54 In the randomized, double-blind clin-
ical trial, IXORA-R, ixekizumab led to higher proportions 
of patients achieving PASI 100 when compared to guselk-
umab at week 12 (41% vs 25% of patients, respectively, 
p<0.01); however, by week 24 there was no statistically 
significant difference in PASI 100 between ixekizumab 
and guselkumab treatment (50% vs 52% of patients, 
respectively, p=0.41).55,56

In clinical trials, the most common adverse events for 
ixekizumab were nasopharyngitis, upper respiratory tract 
infection, and injection-site reactions. Ixekizumab 
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treatment was associated with more events of Candida 
infections and neutropenia than etanercept or 
placebo.50,51 Injection site reactions were also more com-
mon with ixekizumab when compared to guselkumab.56

Secukinumab
Secukinumab, a recombinant fully human IgG1κ mono-
clonal antibody against IL-17A, was approved by the FDA 
for the treatment of moderate to severe plaque psoriasis in 
patients ages 6 years and older.57 The dosing schedule of 
secukinumab for adults is 300 mg at weeks 0, 1, 2, 3, and 
4 followed by 300 mg every 4 weeks. The pediatric dosing 
is based on weight. Pediatric patients less than 50 kg are 
recommended 75 mg at weeks 0, 1, 2, 3, and 4, followed 
by every 4 weeks, thereafter. Pediatric patients greater than 
or equal to 50 kg are recommended 150 mg at weeks 0, 1, 
2, 3, and 4, followed by every 4 weeks.

Secukinumab has been evaluated in two, double-blind, 
placebo-controlled phase III clinical trials, ERASURE and 
FIXTURE.58 In the ERASURE study, secukinumab 
300 mg and 150 mg were compared to placebo, and in 
the FIXTURE study, etanercept was used as an active 
comparator. Secukinumab was superior to placebo and 
etanercept in terms of PASI 75 at week 12 in both studies. 
In ERASURE, PASI 75 was achieved by 81.6% of patients 
with 300 mg of secukinumab, 71.6% of patients with 
150 mg of secukinumab, and 4.5% of patients with pla-
cebo at week 12 (p<0.001). In FIXTURE, PASI 75 was 
achieved by 77.1% of patients with 300 mg of secukinu-
mab, 67.0% of patients with 150 mg of secukinumab, 
44.0% of patients with etanercept, and 4.9% of patients 
with placebo (p<0.001).

The administration of secukinumab via pre-filled syr-
inges and autoinjectors was also evaluated in FEATURE 
and JUNCTURE, respectively.59,60 Subject-rated accept-
ability of both methods of administration was high 
throughout the 12 weeks. In both studies, secukinumab 
was superior to placebo in PASI 75 results at week 12 
(p<0.0001).

CLEAR and CLARITY, two head-to-head phase III 
clinical trials, demonstrated the superiority of secukinu-
mab when compared to ustekinumab.61–64 Secukinumab 
was superior to ustekinumab as measured by PASI 90 
(CLEAR: 79.0% vs 57.6% of patients, CLARITY: 76.6% 
vs 54.2 of patients, respectively, p<0.0001) and PASI 100 
(CLEAR: 44.3% vs 28.4% of patients, CLARITY: 45.3% 
vs 26.7% of patients, p<0.0001) at week 16, which was 
maintained through week 52. Secukinumab has also been 

compared head-to-head with guselkumab in the rando-
mized, double-blind, phase III clinical trial, ECLIPSE.65 

Guselkumab was superior to secukinumab as measured by 
PASI 90 at week 48 (84.0% vs 70.0% of patients, respec-
tively p<0.0001). However, no significant difference 
between guselkumab and secukinumab treatment was 
established for PASI 75 response at weeks 12 or 48 
(85% and 80% of patients, responses at weeks 12 and 
48, respectively, p<0.0616). Secukinumab was also com-
pared to risankizumab in the clinical trial, IMMerge, but it 
resulted in less clinical clearance than its comparator.66 At 
week 16, no statistical difference was noted in PASI 90 
response between risankizumab and secukinumab (73.8% 
vs 65.6% of patients, respectively); however, risankizumab 
led to a superior PASI 90 response by week 52 (86.6% vs 
57.1% of patients, respectively, p<0.001)

A long-term extension study, SCULPTURE, showed 
that secukinumab maintains high efficacy and a good 
safety profile through five years of treatment.67 

A comparison of secukinumab efficacy responses demon-
strates that PASI 75/90/100 at year 1 (88.9%, 68.5%, and 
43.8% of patients, respectively) were maintained 
through year 5 (88.5%, 66.4%, and 41% of patients).

The most common adverse events during phase III 
clinical trials of secukinumab included nasopharyngitis, 
headache, and diarrhea.58 Overall rates of infection with 
secukinumab were higher than placebo but were similar to 
rates with etanercept and ustekinumab treatment. Candida 
infections also occurred more frequently with secukinu-
mab treatment compared to etanercept treatment.58,64

Brodalumab
Brodalumab, a human monoclonal IL-17 receptor antibody 
(RA) antibody, was approved by the FDA for the treatment 
of adults with moderate to severe plaque psoriasis.68 The 
recommended dosing schedule of brodalumab for adults is 
210 mg at weeks 0, 1, and 2, followed by 210 mg every 2 
weeks.

Brodalumab was evaluated in three randomized dou-
ble-blind, phase III clinical trials, AMAGINE-1, 
AMAGINE-2, and AMAGINE-3.69,70 Brodalumab (140 
and 210 mg) was compared to placebo in AMAGINE-1 
and in AMAGINE-2/3 ustekinumab was added as an 
active comparator. In AMAGINE-1, a significantly greater 
proportion of patients treated with brodalumab 210 mg and 
140 mg achieved PASI 75 (83.3% and 60.3% vs 2.7% of 
patients, respectively, p<0.001) PASI 90 (70% and 43% vs 
1% of patients, p<0.001), and PASI 100 (42% and 23% vs 
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1% of patients, p<0.001) compared to placebo at week 
12.69 Brodalumab 210 mg also resulted in significantly 
higher PASI 100 responses than ustekinumab and placebo 
in both AMAGINE-2 (44% vs 22% vs 1% of patients, 
respectively, p<0.001) and AMAGINE-3 (37% vs 19% vs 
0.3% of patients, p<0.001) at week 12. Treatment with 
brodalumab 210 mg showed robust efficacy with main-
tained skin clearance through 120 weeks in the long-term 
evaluation of AMAGINE-2.71

The most common adverse event noted in clinical trials 
were respiratory tract infections, headaches, and 
arthralgias.69,70 Candida infections were more frequently asso-
ciated with brodalumab than with ustekinumab or placebo.70 

Four completed suicides were reported across Phase II, Phase 
III, and long-term extension trials leading to a black box 
warning for suicidal ideation and behavior. Although, follow- 
up evaluation has suggested no causal relationship between 
brodalumab treatment and suicidal behavior.72

Bimekizumab
Bimekizumab is an investigational monoclonal humanized 
IgG1 antibody that simultaneously inhibits both IL-17A 
and IL-17F. Four phase III clinical trials, BE VIVID, BE 
READY, BE SURE, and BE RADIANT, have demon-
strated significant clinical improvements and a good safety 
profile associated with bimekizumab, but it is not currently 
approved by the FDA.73–76 A dosing schedule has not 
been provided by the FDA; however, clinical trials have 
demonstrated equivalent efficacy between bimekizumab 
320mg every 4 weeks and every 8 weeks.

BE READY, a multicenter, double-blind placebo- 
controlled phase III clinical trial, demonstrated that bimeki-
zumab was significantly more effective than placebo and 
maintained clinical response through week 56.73 Patients 
were randomized to receive either bimekizumab 320 mg 
every 4 weeks or placebo. At week 16, patients who 
achieved PASI 90 with bimekizumab were re-randomized 
to bimekizumab 320mg every 4 weeks or every 8 weeks, or 
placebo. Patients treated with bimekizumab were more 
likely to achieve PASI 90 at week 16 compared to placebo 
(91.0% vs 1.0% of patients, respectively, p<0.0001). By 
week 16, complete clearance (PASI 100) was also achieved 
by 68.2% of patients treated with bimekizumab compared 
to 1.2% of patients with placebo (p<0.0001). PASI 90 was 
also maintained through week 56 by 87.0% of patients 
randomized to bimekizumab 320mg every 4 weeks and 
91.0% of patients randomized to bimekizumab 320mg 
every 8 weeks (vs placebo: 16.0% of patients, p<0.0001).

Bimekizumab demonstrated superiority when com-
pared to ustekinumab, adalimumab, and secukinumab in 
the active comparator, randomized, double-blind phase III 
clinical trials: BE VIVID, BE SURE, and BE RADIANT, 
respectively.74–76 In the clinical trial, BE VIVID, patients 
were randomized to receive either bimekizumab 320 mg 
every 4 weeks, ustekinumab, or placebo. At week 16, 
bimekizumab was superior to ustekinumab and placebo 
in PASI 90 response (85.0% vs 50.0% vs 5.0% of patients, 
respectively, p<0.0001).74 PASI 90 results were also sus-
tained through week 52 (bimekizumab: 82.0% of patients 
vs ustekinumab: 56.0% of patients, p<0.0001). Participants 
in the BE SURE phase III clinical trial were randomized to 
receive bimekizumab 320 mg every 4 weeks for 56 weeks, 
bimekizumab every 4 weeks for 16 weeks, followed by 
every 8 weeks for 56 weeks, or adalimumab for 24 weeks 
followed by bimekizumab every 4 weeks.75 By week 16, 
bimekizumab was superior to adalimumab in PASI 90 
(86.2% vs 47.2% of patients, p<0.001) and PASI 100 
(60.8 vs 23.9% of patients, (p<0.001). In BE RADIANT, 
patients were randomized to either receive bimekizumab 
320mg every 4 weeks or secukinumab.76 At week 16 and 
week 48, bimekizumab resulted in a significantly greater 
percentage of patients achieving PASI 100 compared to 
secukinumab (week 16: 61.7% vs 48.9% of patients, week 
48: 67.0% vs 46.2% of patients, respectively, p<0.001).

The incidence of adverse events was similar between 
treatment groups in the bimekizumab clinical trials. Across 
all phase III clinical trials, nasopharyngitis, oral candidiasis, 
and upper respiratory tract infections were the most com-
mon adverse events in the bimekizumab treatment groups. 
Bimekizumab was associated with greater rates of oral 
candidiasis compared to secukinumab and greater rates of 
oral candidiasis and diarrhea compared to adalimumab.75,76

Netakimab
Netakimab is an investigational humanized monoclonal 
IgG1 antibody that inhibits IL-17A.6 It is currently being 
evaluated for the treatment of plaque psoriasis. While the 
FDA has not provided dosing, clinical trials have demon-
strated good efficacy with netakimab 120 mg every 4 weeks.

A recent phase III randomized double-blind placebo- 
controlled clinical trial, PLANETA, demonstrated that neta-
kimab was superior to placebo for the treatment of moder-
ate-to-severe plaque.6 Patients were randomized to receive 
netakimab 120mg every 2 weeks, netakimab 120mg every 4 
weeks, or placebo. Following week 12, all patients contin-
ued on netakimab every 4 weeks through week 54. 
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A significantly greater proportion of patients treated with 
netakimab every 2 and 4 weeks achieved PASI 75 at week 
12 compared to placebo (77.7% and 83.3% vs 0.0% of 
patients, respectively, p<0.0001). By week 52, both the 
group who switched to every 4 weeks dosing and continued 
on every 4 weeks dosing maintained a PASI 75 response 
(94.1% and 92.9% of patients, respectively).

Rates of treatment-related adverse events were similar 
between all treatment groups. The most common adverse 
events were hypercholesterolemia, neutropenia, and upper 
respiratory tract infections.

Conclusions
The IL-17 axis is a key pro-inflammatory mediator involved 
in immune dysregulation. Recent research details the wide-
spread pro-inflammatory impact of IL-17 cytokines, which 
further illuminates its role in psoriasis pathogenesis and 
psoriasis comorbidities. The significant cutaneous clearance 
seen by psoriasis patients treated with established and novel 
IL-17 inhibitors emphasizes the importance of the IL-17 
pathway in the immunologic origins of psoriasis. 
Furthermore, it is interesting to note the synergistic and 
cumulative effects of the IL-17 cytokines in psoriasis patho-
genesis, which supports the thought process behind therapies 
that inhibit multiple IL-17 isoforms. Brodalumab, a human 
monoclonal IL-17 RA antibody, is currently the only FDA- 
approved therapy that inhibits multiple IL-17 cytokines; 
however, bimekizumab, a monoclonal humanized IgG1 anti-
body against IL-17A and IL-17F, is also under investigation. 
While it is difficult to compare clinical response to therapies 
without head-to-head studies, PASI scores tended to be 
higher in bimekizumab treated patients. The increased effi-
cacy seen with dual inhibition therapy is one of the hypothe-
sized benefits behind neutralizing multiple IL-17 cytokines 
for the treatment of plaque psoriasis. In addition, future 
research should explore the potential benefits of directed 
therapies against IL-17C and IL-17E, given their role in 
amplifying the inflammatory feedback loop and innate 
immune cell recruitment. Overall, future studies may focus 
on the impact of IL-17 cytokines on psoriatic comorbidities, 
the psoriasis inflammatory cascade, and responses to targeted 
therapies.
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