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Purpose: Tumor-free surgical margin is crucial but challenging in breast-conserving surgery (BCS). Fluorescence imaging is a
promising strategy for surgical navigation that can reliably assist the surgeon with visualization Of the tumor in real-time. Notably,
finding an optimized fluorescent probe has been a challenging research topic. Herein, we developed a novel near-infrared (NIR)
fluorescent probe based on tailored Hepatitis B Core virus-like protein (HBc VLP) and presented the preclinical imaging-guided
surgery.
Methods: The RGD-HBc160 VLP was synthesized by genetic engineering followed encapsulation of ICG via disassembly-reassem-
bly. The applicability of the probe was tested for cell and tissue binding capacities through cell-based plate assays, xenograft mice
model, and MMTV-PyVT mammary tumor transgenic mice. Subsequently, the efficacy of RGD-HBc160/ICG-guided surgery was
evaluated in an infiltrative tumor-bearing mouse model. The protein-induced body’s immune response was further assessed.
Results: The prepared RGD-HBc160/ICG showed outstanding integrin αvβ3 targeting ability in vitro and in vivo. After
intravenous administration of probe, the fluorescence guidance facilitated more complete tumor resection and improved overall
survival Of the infiltrative tumor-bearing mice. The probe also showed the excellent capability to differentiate between benign
and malignant breast tissues in the mammary tumor transgenic mice. Interestingly, the ingenious tailoring of HBc VLP could not
only endow its tumor-targeting ability towards integrin αvβ3 but also significantly reduce the humoral and cellular immune
response.
Conclusion: The RGD-HBc160/ICG holds promise as an effective tool to delineate tumor margin. These results have translational
potential to achieve margin-negative resection and improve the stratification of patients for a potentially curative.
Keywords: breast Cancer, tumor margin, NIR fluorescence imaging, imaging-guided surgery, Hepatitis B core virus-like particles

Introduction
According to global cancer statistics, as of 2020, breast cancer was the most commonly diagnosed cancer and the leading
cause of cancer death in women.1 Breast-conserving surgery (BCS) plus adjuvant radiation therapy remains a standard
therapeutic modality for early-stage breast cancer.2 As incomplete resections are associated with higher recurrence rates
and shorter overall survival, tumor-free surgical margins are critical in BCS.3,4 However, intraoperative identification of
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tumor boundaries mainly relies on subjective visual inspection and palpation, and positive margins are found in 20 to
55% of cases.5 Intraoperative frozen-section analysis are time-consuming and low sensitivity,6 while other conventional
imaging techniques, such as computed tomography and magnetic resonance imaging, are generally difficult to integrate
into the operating room.7 Most importantly, these conventional imaging modalities cannot reliably communicate real-
time feedback to the surgeon and have limited tumor specificity. Thus, it is imperative to develop intraoperative imaging
techniques to accurately delineate tumor margin.

In response to this pressing clinical challenge, fluorescence imaging-guided surgery has emerged as a promising
strategy that uses fluorescence to highlight tumor tissue. More specifically, this modality allows for labeling at the
molecular-cellular level, thus achieving superior resolution and sensitivity compared to conventional anatomical
imaging.8–10 Furthermore, with the advantages of deep penetration and low background fluorescence, Near-infrared
(NIR) imaging (also called biological transparent window imaging11,12) is more suitable for in vivo imaging. Currently,
the FDA-approved NIR dye ICG is widely used in guiding resection of malignancies such as hepatobiliary cancer,13

detecting sentinel lymph nodes,14–16 and conserving organ function.17 However, in current fluorescence image-guided
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surgery practice, free ICG normally experienced short-time tumor retention because of their rapid clearance and shows
poor tumor-to-background ratio (TBR) in vivo. Furthermore, due to the lack of tumor targeting of ICG, the sensitivity
and specificity for delineating tumor margins are insufficient.18,19 Therefore, overcome the above shortcomings of ICG
are the prerequisite to intraoperatively precisely differentiate the tumor and normal tissue in real-time.

Organic nanoparticles, which can be adapted to have various biological properties for use in a range of settings, can
provide a safer and more effective delivery platform,20 and are gradually being applied in clinical practice.21,22 Notably,
natural protein subunits-based nanoparticles with the advantages of biocompatibility and biodegradation as compared to
synthetic nanoparticles.23,24 In particular, among numerous protein-based nanoparticles, Hepatitis B Core virus-like
particles (HBc VLPs) possess features of flexibility for tailoring and capacity of self-assemble, which attracted a great of
attention for the bioimaging.25 Unfortunately, natural HBc VLP lacks tumor-targeting properties and could induce the
strong in vivo immune responses.26

In the present study, we inserted RGD sequence into the main immune region (MIR) of HBc protein, and the amino
acids in B cell and Cytotoxic T lymphocyte (CTL) epitope were substituted by non-function ones. On the one hand, the
RGD peptide is an affinity ligand of integrin αvβ3, which is a Surface membrane protein involved in tumor angiogenesis
that is frequently overexpressed in breast cancer,27 and on the other hand, which can disrupt the immune region, thus
attenuate recognition by the immune system. Based on this innovative targeting platform, we encapsulated ICG within
the core of HBc VLP to develop a novel NIR fluorescent probe and evaluated specific targeting in breast cancer cells and
several breast cancer mouse models, including subcutaneous and transgenic mouse mammary tumors, aiming to further
expand the palette of NIR contrast agents available to guide the BCS. Finally, the clinical translation potential of RGD-
HBc160/ICG to provide surgical guidance, and thereby reduce the incidence of positive surgical margins, was evaluated.

Materials and Methods
Preparation of the RGD-HBc160 and Synthesis of the Probe
By means of gene design, we inserted glycine-rich RGD sequence on the surface (between residues 78 and 81) of the
HBc183, and the amino acids in B cell and CTL epitope were substituted by non-function ones, the redundant amino acids
on the C-terminus of the HBc monomer which is not related to the structure assembly were eliminated to constructed
RGD-HBc160. The peptide sequence of the HBc183 and RGD-HBc16 were presented in Data S1. Subsequently, the
plasmid pET43.1(a)-RGD-HBc160 was customized from Shanghai Generay Biotech Co. Ltd, and then transformed into
E. coli BL21 (DE3) for protein expression. The protocol of protein expression and purification was according to the
previous report.25 The recombinant RGD-HBc160 VLPs were reversibly disassembled with depolymerizing buffer. After
the disassembly, ICG was added into the protein solution with a mass ratio of 1:10 and the solution was intermittently
stirred at 4°C for 30 min. Reassembly of RGD-HBc160/ICG was then conducted by dialysis in an assembling buffer
overnight and free ICG was removed throughout this procedure.

Characterization of RGD-HBc160/ICG
The absorption spectra and fluorescence emission spectra of the RGD-HBc160/ICG were measured by full wavelength
multifunctional microplate reader (Varioskan Flash) and the fluorescence spectrometer (Varian Eclipse), respectively. The
morphology and diameter distribution of RGD-HBc160/ICG were observed by a JEM-1400 TEM (100 kV). A Horiba
instrument was used to measure the mean hydrodynamic diameter (HORIBA SZ-100, Japan). All measurements were
performed at 25°C. Moreover, to evaluate the RGD-HBc160/ICG stabilities in different medium (PBS, 10% fetal bovine
serum (FBS), water and DMEM Cell culture medium), samples were stored in the dark at 25 °C for 96 h. At selected
time points, hydrodynamic diameter and fluorescence emission spectra were measured, respectively, for the correspond-
ing solutions.

Cell Culture and Flow Cytometry
The human breast cancer cell line MDA-MB-231 and non-cancerous mammary epithelial cell line MCF-10A cells were
obtained from the American Type Culture Collection (Rockville, USA), MDA-MB-231-luc was obtained from the Hon
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sun Biological Technology Co, Ltd, China. MDA-MB-231 and MDA-MB-231-luc cells were maintained in DMEM
medium containing 10% FBS, 1% penicillin and streptomycin. MCF-10A cells were maintained in Mammary Epithelial
Cell Growth Medium Bullet Kit Clonetics™ (Lonza, CC-3150, Alpharetta, GA, USA). In the flow cytometry experi-
ments, the MDA-MB-231, and MCF-10A cells were placed in a 6-well chamber and further cultured for 24 h, then
detached with trypsin/EDTA. Subsequently, the cells were incubated with anti-αvβ3 rabbit mAb (bs-1310R, Bioss, 1:100)
for 2 hours. Whereafter, cells were washed thrice and incubated with the secondary antibody (ab150077, Abcam, 1:1000)
for 30 min. Lastly, the cells were washed thrice with the buffer, and then analyzed by the flow cytometer (CytoFlexS,
Beckman).

Cytotoxicity Assay
MDA-MB-231 and MCF-10A cells (5 * 103 cells/well) were seeded in 96-well plates and incubated for 12 h. Then, the
cell medium was replaced with fresh culture medium containing varying concentrations of RGD-HBc160/ICG (0, 25, 50,
100, and 200 μg/mL). After 48 h, determining the cell viability by CCK-8 assay (Beyotime Biotechnology).

Cellular Uptake Study
MDA-MB-231 and MCF-10A were placed in a 12-well chamber slide at 1 * 105 cells per well and maintained for 24 h.
Subsequently, the cells were treated with different concentrations of RGD-HBc160/ICG (0, 15, 30, and 60 μg/mL). In another
group, MDA-MB-231 cells were incubated with RGD-HBc160/ICG, HBc183/ICG, and free ICG, respectively, under the
equivalent ICG concentrations (4 μg/mL). After 8 h incubation, cells were stained with DAPI (Beyotime Biotechnology).
Finally, cellular uptake was observed by fluorescence microscopy (Leica DM2700 P, USA) with light cube ICG (excitation
780 to 790 nm, emission 790 to 840 nm), and light cube DAPI (excitation 357 to 344 nm, emission 447 to 460 nm). For
quantitative analysis, three 40X fields were randomly selected and ICG mean fluorescence intensity (MFI) of the cells was
calculated using a custom region of interest (ROI) generated for each slide by the imaging software ImageJ. Specificity of
RGD-HBc160/ICG binding to cells was further determined by a blocking experiment featuring treatment of MDA-MB-231
cells with c(RGDfK) (GL Biochem) (75 μg/mL) for 2 h, then added the RGD-HBc160/ICG (60 μg/mL) and continue to
incubate for 8 h. Subsequently, the samples were collected and analyzed as described above.

Subcutaneous Mouse Model
Animal experiments were performed in compliance with the guidelines approved by the Institutional Animal Care and
Use Committee of Xiamen University. BALB/c nude mice (aged 6 to 8 weeks, Charles River Labs, China) were injected
subcutaneously of the 2*106 MDA-MB-231 cells into the right side of the lower limbs. Bodyweight, appearance, and
tumor growth were monitored every other day. The standard formula (length × width2 × 0.52) was used to calculate the
tumor volume.

Infiltrative Tumor Mouse Model
Total 2*106 MDA-MB-231-luc cells were slowly injected into the subcutaneous and superficial muscle of the posterior
thigh in the right leg. Calipers were used to measure the tumor size and to monitor tumor growth.

NIR Fluorescence Imaging
The MDA-MB-231 tumor-bearing mice (volume ~300 to 400 mm3) were randomly divided into three groups (n = 4) and
injected intravenously with gradient doses of RGD-HBc160/ICG (12.25, 25, 50 mg/kg), respectively. Animals were given
isoflurane (RWD Life Science) for anesthesia, and the fluorescence signal was assessed by the IVIS-II imaging system
(PerkinElmer) at different time points. For quantitative analysis, tumor MFIs were calculated using a custom ROI
generated for the mice by the Living-Image software (PerkinElmer). The TBR was defined as the tumor MFI/MFI of
normal forearm tissue. For further verification, the MDA-MB-231 tumor-bearing mice were randomly divided into three
groups (n = 4) and intravenously injection of the RGD-HBc160/ICG (25 mg/kg), HBc183/ICG, and ICG, under the
equivalent ICG dose (1.72 mg/kg). Fluorescence imaging was performed and TBRs were assessed at different time
points.
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Bio-Distribution in vivo and Multilevel Framework Analysis of the Fluorescent Probe
Mice bearing subcutaneous breast tumors (volume ~300 to 400 mm3, n = 3) were injected intravenously with RGD-
HBc160/ICG (25 mg/kg), and mice were euthanized humanely at 36 h post-injection for collection and visualization of
tumors, major organs and muscle with the IVIS-II system. For further quantitative analysis, the fluorescence intensity
was calculated using the Living-Image software. Thereafter, the fresh tumors and part muscle tissues were processed
further for multilevel analyses. Firstly, the formalin-fixed paraffin-embedded (FFPE) blocks and 10-μm-thick sections of
both tissue samples were subjected to imaging by the fluorescence flatbed scanning system (LI-COR Biosciences Inc.).
Afterward, we performed hematoxylin/eosin (H/E) staining to enable the direct correlation between fluorescence signal
and histology on the same tissue slide. Lastly, 4-μm-thick adjacent sections from the same FFPE blocks were counter-
stained with DAPI for microscopic assessment of the NIR signal at a cellular level.

Fluorescence-Guided Survival Surgery
Twenty MDA-MB-231-luc infiltrative tumor-bearing mice (~500 to 600 mm3) were given isoflurane for anesthesia and
surgical removal of the tumors was performed by visualization under white light (WL). Subsequently, 10 randomly-
selected mice from the above were assessed for remaining fluorescence signals in the surgical cavity using the hand-held
fluorescence imaging system. If there was residual fluorescence, further excision was performed until no residual signal
remained. The residual fluorescent tissue was collected for ex-vivo fluorescence imaging and histologic analysis. The
bodyweight changes and tumor recurrence of mice were monitored every other day. Any mice with tumor recurrence
volume >1500 mm3 or loss of 25% of body weight were euthanized. Bioluminescence examination was performed 15
days later.

Transgenic Mouse Model of Breast Cancer
FVB/N-Tg(MMTV-PyVT) 634Mul/J mice (PyVT) were purchased from Jackson Laboratory (Bar Harbor, ME) and
crossed with wild-type FVB/N mice. Firstly, mice (n = 3, 8 weeks) with invasive mammary gland cancers and wild-type
mice of the same age were injected intravenously with RGD-HBc160/ICG (25 mg/kg). After 36 h, immediately before
imaging, the mice were humanely euthanized and 4–5th of the mammary glands were sequentially resected and imaging
was performed to simulate a step-wise surgical resection with imaging guidance. Fluorescence imaging were performed
before and after removal of each sequential quarter (n = 24) of the combined fourth and fifth mammary glands in each
group. Ex-vivo imaging of resected tissues was conducted via the IVIS-II imaging platform, and the tissues were
subsequently conducted histopathological analysis. Lastly, ex vivo fluorescence intensity of tumor specimens from two
groups was calculated.

To further assess the ability of the probe to identify malignant tissues, transgenic mice (n = 6) between the ages of 5
and 8 weeks with mammary disease stages ranging from normal to invasive cancers received intravenous injection of the
RGD-HBc160/ICG (25 mg/kg). After 36 h, the fourth and fifth mammary glands were divided into four segments (on
average) for fluorescence imaging on the IVIS imaging platform followed by histopathological assessment. All of the
tissues were embedded in paraffin blocks and sections (10-μm-thick) were then imaged using a fluorescence flatbed
scanning system (Odyssey® CLX). Then, adjacent 4-μm sections were made for H/E staining to evaluate the correlation
between fluorescence signal and histology in each section. All of the slides were reviewed by a pathologist who
specializes in breast cancer and a receiver operator characteristic (ROC) curve was fitted by the fluorescence intensity
and the pathological findings in fresh tissue specimens. In addition, microsegments of FFPE sections (10-μm-thick) were
made to determine the biodistribution of the RGD-HBc160/ICG in the transgenic mouse breast tissues. Tumor character-
istics (invasive tumor, tumor in situ) and components of healthy parenchymal tissue, including collagen, normal breast
ductal tissue, fat, and fat tissues, were identified and delineated manually on the digitalized H/E slides, and the delineated
tissue components were then examined by fluorescence quantitative analysis using the CLX fluorescence platform.
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Immunization Protocol
Female BALB/c mice (4–6 weeks) were randomly divided into three groups (n = 3) and 200 µg of HBc183, RGD-HBc160,
PBS were injected intravenously twice base with a one-week interval between injections, respectively. Mice were
euthanized humanely for the collection of spleen tissues and blood samples 7 days after the second immunization.
Lymphocytes from the spleen tissues were separated with kits (P8860, Solarbio Life Sciences), and then stained with
anti-CD3-APC, anti-CD4-FITC, and anti-CD8-PE antibodies according to the manufacturer’s protocols (Thermo Fisher
Scientific) for flow cytometric analysis. γ-IFN and TNF-α cytokine concentrations in the serum were analyzed with
Mouse ELISA Kits according to the manufacturer’s instructions (7324–88, 7064–88, Thermo Fisher Scientific). Lastly,
we performed the enzyme-linked immune sorbent assay (ELISA) to detection the serum specific antibody, as mentioned
elsewhere,28 the serum was diluted 1/105, the absorption at 450 nm was read on a spectrophotometer.

Safety Study
The biosafety of RGD-HBc160/ICG was assessed in healthy BALB/c mice. After injection with 25 mg/kg RGD-HBc160/
ICG, the weight and overall appearance of the mice were monitored for 3 weeks. Blood was collected at different time
(before, 1 h, 1 day, 1 week, and 3 weeks after injection) for testing of biochemical indexes including alanine
aminotransferase (ALT), aspartate aminotransferase (AST), creatinine (Cre), and blood urea nitrogen (Urea). In addition,
healthy BALB/c mice were injected intravenously with 25 mg/kg RGD-HBc160/ICG while mice received PBS treatment
as a control group. The mice were euthanized (n = 3/time point) at 1 day, 1 week, and 3 weeks post-injection and blood
was collected for testing of hemocytology indexes, major organs (heart, liver, spleen, lung, and kidney) were collected
for histological analysis.

Immunohistochemical Staining for αv Expression in Human Breast Tissues
According to a HIPPA compliant and IRB-approved protocol, resected cancer tissues from 40 breast cancers and
corresponding paratumor tissues (n = 40) were obtained from the patient’s resected tissue microarrays (obtained after
informed consent of patients). All tissues were identified by a dedicated breast pathologist. The paraffin-embedded
tissues were cut at 4 μm and immunohistochemical (IHC) staining was performed using Abcam ab179475 anti-human
integrin αv protein antibodies (1:500). All the stained sections were scored by a dedicated breast pathologist for staining
intensity and percentage of positive tumor tissue. Staining intensity for αv protein was scored as: 0 = no staining; 1 =
weak; 2 = moderate; and 3 = strong tissue staining; and the percentage of positive tumor tissue in the field of view,
including vessels, stroma, cytoplasm, and fibroblast like cells, was scored as: 0 = <5%; 1 = 5 to 25%; 2 = 26 to 50%; 3 =
51 to 75%; and 4 = 76 to 100%. A composite histology score was then calculated by multiplying the staining intensity
score by the area covered score, giving an IHC score range from 1 to 12.

Statistical Analysis
All data were presented as means with standard deviations (SDs). Means were compared using independent samples
t-test or with one-way ANOVA and survival was assessed by Kaplan-Meier analysis. All experiments were performed in
triplicate. A P-value of < 0.05 was considered to indicate a significant difference. Graphing and linear regression were
performed in GraphPad Prism 7.0 (IBM Corp).

Results
Synthesis and Characterization of the RGD-HBc160/ICG
Transmission electron microscope (TEM) images showed that the RGD-HBc160/ICG was monodispersed and spherical,
and DLS analysis indicated an average hydrate particle size of 30.8 ± 2.5 nm (Figure 1A and B). RGD-HBc160/ICG and
free ICG exhibited similar NIR absorption and emission (Figure 1C and D). Besides, to further verify the stability of the
probe in vitro, the probe was dissolved in different mediums (PBS, water and DMEM Cell culture medium) and the
particle size was measured at different times. We found that the particle size of the RGD-HBc160/ICG did not change
significantly at 0, 4, or 96 h (Figure S1A). Moreover, the results also showed that RGD-HBc160/ICG retained more than
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80% of its initial NIR fluorescence intensities in different mediums (PBS, 10% fetal bovine serum (FBS), water and
DMEM Cell culture medium) at 96 h (Figures S1B). These results suggested that the RGD-HBc160/ICG maintain the
nicely fluorescence stability of ICG, which will provide greater advantages for the application of long-time intraoperative
imaging. Moreover, we measured the mass ratio of protein to dyes was about 13.3:1.

Cytotoxicity Assay and αvβ3 Specificity in vitro
In cytotoxicity assay, the RGD-HBc160/ICG showed no obvious toxicity in both MDA-MB-231 and MCF-10A cells
(Figure S2). Flow cytometry analysis demonstrated that MDA-MB-231 cell lines showed higher αvβ3 expression than
MCF-10A cell lines (Figure S3). Furthermore, the retained αvβ3-specificity of RGD-HBc160/ICG was confirmed using

Figure 1 Characterization and cellular uptake of RGD-HBc160/ICG. (A) Transmission electron microscopy images of RGD-HBc160/ICG. (B) Diameter distribution of RGD-
HBc160/ICG. Representation of absorption spectra (C), and fluorescence emission spectra (D), of free ICG and RGD-HBc160/ICG. (E) Representation of MFI at fluorescence
microscopy in MDA-MB-231 and MCF-10A cells following incubation with different RGD-HBc160/ICG concentrations (left), and comparison of MFI (right) at the selected
concentration. (F) Representative fluorescence microscopy of MDA-MB-231 and MCF-10A treated with RGD-HBc160/ICG. Representative fluorescence microscopy images
from MDA-MB-231 cells after treated with RGD-HBc160/ICG, HBc183/ICG, and ICG (G), and comparison of MFI (H). (I) Comparison of MFI in MDA-MB-231 cells after
incubation with RGD-HBc160/ICG and blocking with c(RGDfK) peptides. **P<0.01, ***P<0.001.
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chamber slide assays in MDA-MB-231 and MCF-10A cell lines. As shown in Figure 1E, increasing concentrations of the
RGD-HBc160/ICG resulted in a linear increase in fluorescence intensity in the MDA-MB-231 cells while showing limited
signal intensity change in the MCF-10A cells. Probe uptake was significantly higher in MDA-MB-231 than in MCF-10A
after incubation with RGD-HBc160/ICG at the same concentration (60 μg/mL) (P<0.01). To further verify the probe
targeting specificity, the MDA-MB-231 cells were treated with RGD-HBc160/ICG, HBc183/ICG, and free ICG, respec-
tively, MFI in the RGD-HBc160/ICG group was higher than in the HBc183/ICG and free ICG groups (P<0.05) (Figure 1G
and H). Besides, blocking of RGD-HBc160/ICG with c(RGDfK) peptides resulted in about 50% decrease of the
fluorescence intensity, further supporting the αvβ3-specific target specialty of RGD-HBc160/ICG (Figure 1I).

Specificity and Biodistribution of RGD-HBc160/ICG in Subcutaneous Mouse Tumor
Models
Firstly, we used three different doses to validate the performance of the RGD-HBc160/ICG in vivo. Fluorescence imaging
showed tumor fluorescent signal at different time points (Figure S4). At 36 h, higher TBRs were observed at the 25 mg/
kg (TBR 5.3 ± 0.3) and 50 mg/kg (TBR 6.0 ± 0.7) doses (Figure 2A). This difference did not reach statistical
significance, but the 12.25 mg/kg dose was associated with a significantly lower TBR than both the 25 mg/kg and 50
mg/kg doses at 36 h (P<0.01) (Figure 2B). Therefore, we adopted the 25 mg/kg dose for the subsequent experiments, and
at 36 h prior to surgery, the optimal time window. To further verify the specificity of the probe in vivo, nude mice were
injected with RGD-HBc160/ICG (25 mg/kg), HBc183/ICG, and free ICG respectively, NIR fluorescence imaging showed
that in free ICG group, the fluorescence signal primarily accumulated in the liver, while only weak signal could be
observed in the tumor over the prolongation of time. In contrast, the RGD-HBc160/ICG group shown a strong
fluorescence signal in tumor and retained up to 72 h post-injection (Figure 2C and D) and the TBR was significantly
higher in the RGD-HBc160/ICG group compared to the others (P<0.05; 5.8 ± 0.4 vs 3.1 ± 0.8 vs 2.2 ± 0.2), suggesting
specific targeting of αvβ3 by RGD-HBc160/ICG (Figure 2E).

Next, the bio-distribution of the probe was evaluated by posthumous examination of major organs and tumor with ex
vivo fluorescence imaging, the mouse organs were dissected at 36 h post injection for fluorescence imaging, as shown in
Figure 2F, the ex vivo liver showed the highest total fluorescent signals, while the tumor and kidney emitted medium
fluorescent signals and other organs and tissues showed weak fluorescence. To further evaluate the correlation between
the fluorescence signal with histopathology information from macroscopic to microscopic levels, we used a multilevel
analytical framework. The tumor and adjacent muscle tissues were fixed in formaldehyde, embedded in paraffin blocks,
and sectioned into 10-µm and 4-µm slices, and we found strong fluorescence signals in the tumor tissues but not the
muscle tissues (Figure S5A). The MFI ratio of tumor to muscle was 4.8 ± 0.86 (1.8 ± 0.1 au vs 0.4 ± 0.07 au) at the
microscopic level (Figure S5B). These results illustrate the consistency between fluorescence imaging and both macro
and micro tumor imaging.

Surgical Resection of Infiltrative Tumor Under Real-Time Fluorescence Guidance
Firstly, we engrafted MDA-MB-231-luc cells part-intramuscularly into BALB/c nu mice, which produced an infiltrative
tumor mouse model wherein tumor tissue was difficult to distinguish from muscle tissue. As shown in Figure 3A, no
residual tumor was visible to the naked eye after a first excision under white light. However, fluorescence imaging
indicated the presence of residual fluorescence in the tumor cavity, which was subsequently excised under imaging
guidance until no further fluorescence was observed. Ex vivo fluorescence imaging of the excised tissue was consistent
with the intraoperative imaging findings (Figure 3B), and the presence of tumor in the residual fluorescent tissues was
confirmed by subsequent histopathology analysis (Figure 3C). At 15 days after the surgery, mice were assessed for local
tumor residual by bioluminescence imaging. Bioluminescence was detected in 80% (8/10) mice in the white light-guided
only surgery group, whereas only 20% (2/10) mice in the fluorescence-guided surgery group showed residual tumor
(Figure 3D). The Kaplan-Meier survival curve (Figure 3E) indicates that the lower residual was associated with better
overall survival (P<0.05).
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Figure 2 Validation of the target specificity of RGD-HBc160/ICG in subcutaneous breast cancer tumor models. (A) Representative quantification of TBR in MDA-MAB-231
tumor mice as a function of time after intravenous injection with different doses of RGD-HBc160/ICG and comparison of TBR at 36 h time points (B). (C) Representative
quantification of TBR in MDA-MAB-231 tumor mice as a function of time after intravenous injection with RGD-HBc160/ICG, HBc183/ICG, ICG, and the Fluorescence images
of mice (D). (E) Comparison of specific binding with RGD-HBc160/ICG compared with HBc183/ICG and the free ICG at maximum TBR (right). (F) Fluorescence images from
organs and tumors excised at 36 h after injection of RGD-HBc160/ICG, and semi-quantitative analysis of total fluorescence intensity from the samples (G). *P<0.05, **P<0.01.
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Figure 3 Fluorescent imaging-guided surgical resections of infiltrative MDA-MB-231-luc tumors. (A) The procedure of tumor resection in represented mice guided by white
light (WL) plus fluorescence imaging (FL) (blue arrow, residual fluorescence signal in the surgery bed). (B) Ex-vivo fluorescence imaging of excised tissue (red arrow, primary
tumor excised under white light only; blue arrow, residual tumor tissue; green arrow, negative surgical margins). (C) Fluorescence image, upper, and H/E stain, lower, for
residual tumor tissue and negative margins. (D) Representative preoperative and postoperative bioluminescence images following white light surgery only (n = 10) and white
light plus fluorescence-guided surgery (n = 10) with Kaplan-Meier survival analysis of two groups (E).
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Fluorescence Guided Surgical Resection in Mammary Tumor Transgenic Mice
To assess the feasibility of RGD-HBc160/ICG based fluorescence imaging-guided tumor resection in a transgenic mouse
model, breast tumors were sequentially resected from MMTV-PyVT mice after injection of RGD-HBc160/ICG. The
MMTV-PyVT model provided representative examples of breast cancers with positive resection margins (Figure 4A),
while the wild type models provided examples of negative resection margins (Figure 4B). In both groups, intraoperative
imaging-guided with step-wise resection was successfully performed. Quantitatively, the in vivo MFI was 10.6 ± 6.9 in
MMTV-PyVT tissue segments and was significantly higher than the MFI in the wild-type mouse tissues (3.9 ± 2.0)
(P<0.05) (Figure 4C). The αv expression in the MMTV-PyVT breast tumor segments was also higher than that of the
wild-type breast segments (IHC score 6.7 ± 0.7 vs 2.7 ± 0.9, P<0.05) (Figure 4D).

Subsequently, due to transgenic mice at different pathological stages, fluorescence intensity in the tissues was
compared with pathological diagnosis and the ROC curves were plotted to evaluate the diagnostic accuracy of
fluorescence imaging at various imaging signal thresholds. The area under the curve (AUC) for differentiation between
malignant and benign tissues by fluorescence was 0.846 (95% confidence interval [CI]: 0.74, 0.96) (Figure 5A). At the
same time, quantitative fluorescence analysis comparing different pathological tissue types in the microscopic sections
showed that the fluorescence signal in invasive carcinoma tissues was the strongest. Carcinoma in situ had a medium
signal, and fat and normal breast tissues had low signals (Figure 5B), again suggesting the ability of the RGD-HBc160/
ICG probe to aggregate specifically in breast cancer tissues. To highlight the potential for clinical translation, signaling
provided by the RGD-HBc160/ICG probe permitted successful distinction between invasive ductal carcinoma and normal
mammary duct tissue at the microscopic level, and signal intensity and tumor status corresponded well to αv expression
(Figure 5C).

Immunogenic Response of RGD-HBc160 in Mice
As shown in Figure 6A and B, mice in RGD-HBc160 group showed significantly decreased CD3+ CD8+ T cells in spleen
tissues than the HBc183 group (P<0.01), there was no significant difference in CD3+ CD4+ T cells between the two
groups. To further checked the cytokine levels in serum after the treatments, the ELISA results showed that serum
obtained from the immunized mice induced a higher concentration of the γ-IFN and TNF-α in HBc183 than RGD-HBc160
group (P<0.01), whereas these was low level in the non-immunized group (Figure 6C and D). To assess the humoral
immune response induced by RGD-HBc160, we performed the semi-quantitative ELISA assays to compare the relative
concentration of anti-RGD-HBc160 and anti-HBc183 antibodies in the serum. As shown in Figure 6E, the concentration of
antibody in RGD-HBc160-immunized mice lower than HBc183-immunized mice (1.1 ± 0.1 vs 0.63 ± 0.2, P<0.01).

In-Vivo Safety Evaluation
The biosafety of the probe was checked in immunocompetent BALB/c mice. Body weights over the course of the study
remained normal growth trend (Figure S6A), suggesting that RGD-HBc160/ICG was not toxic to the mice. The ALT,
AST, Cre, and Urea levels increased at 1 h after injection of the probe and returned to normal after 7 days (Figure S6B).
In addition, hemocytology indexes (RBC, WBC, PLT, lymphocyte) conducted on day 1, day 7, and day 21 post-injection
changes within the normal range (Figure S6C). Histopathologic analysis of major organs with H/E stain showed no
obvious pathologic changes (Figure S6D).

Expression of αv in Human Breast Tissues
αv expression was measured in breast cancer neovasculature, epithelium, and stroma in human breast cancer (n = 40) and
in the corresponding paracancerous tissues (n = 40). αv was expressed in 85% of the cancers (34/40) and 60% of the
paracancerous tissues (24/40) (Table S1). Among all the breast cancer tissues, 9 cancer tissues were Luminal A type, 18
cancer tissues were Luminal B type, 9 cancer tissues were HER2 positive type, 4 cancer tissues were triple negative
breast cancer (TNBC) type. Overall, αv expression was higher in breast cancer tissues compared to paracancerous tissues,
and the IHC score of the cancer tissues was about 2-fold higher than the IHC score of the paracancerous tissues
(P<0.001) (Figure S7A and B).
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Figure 4 Fluorescence imaging-guided surgical resection in a mammary tumor transgenic model. (A) Simulated negative surgical margins in fluorescence images of combined
fourth and fifth mammary glands from an 8-week-old wild-type female mouse. The tissue to be resected is highlighted with a dashed circle. The second row shows
representative histological staining of resected portions (P1-4). (B) Simulated positive surgical margins in fluorescence images of combined fourth and fifth mammary glands
from an 8-week-old MMTV-PyVT female mouse following the same excision sequence as above. (C) Representative mean fluorescence intensity of tissues with positive and
negative surgical margins pooled from the 6 mice. (D) Representation of immunohistochemistry scores for αv-stained breast tissues from MMTV-PyVT and wild-type mice.
*P<0.05, ****P<0.0001.
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Figure 5 Distribution of the fluorescent probe in the transgenic mouse mammary gland. (A) Schematic illustration of the performance evaluation (left) and the receiver
operating characteristic (ROC) curve of fluorescence imaging to differentiate between normal tissues and cancer (right). (B) Microscopic bio-distribution of RGD-HBc160/
ICG in breast tissues based on micro-segmentation analyses (left). The upper row shows a representative example of the fluorescence ROI per tissue type based on H/E
staining. The lower row shows the corresponding H/E staining image. MFI of all per-tissue type ROIs are shown in the right panel. (C) Ex vivo fluorescent imaging of breast
tissue showing corresponding fluorescence intensity (upper), H/E sections (middle), and immunohistochemical stain of αv expression (lower).
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Discussion
Fluorescence-guided surgery has been shown to increase the tumor-detection rate, reduce the rate of positive margins,
and improve outcomes by enhancing intraoperative tumor visualization in a variety of cases.11,29,30 Several previous
studies have reported that HBc VLP can play an excellent role in tumor delivery, such as loading with the chemotherapy
drugs for melanoma treatment,31 loading with photosensitizer for photoacoustic imaging in glioma mouse model.25,32

Herein, we demonstrated the novel use of the HBc VLPs-based NIR probe as a tool to delineate tumor margin in
fluorescence-guided surgery. In comparison with the free ICG, RGD-HBc160/ICG achieved a longer tumor retention time

Figure 6 RGD-HBc160 induced immune responses in BALB/c mice. (A) Flow cytometry determination of Ths (CD3+ CD4+) and CTLs (CD3+ CD8+) in the spleen tissue
from each group, (B) Quantitative analysis of the means between the different groups. Comparison of the level of serum γ-IFN(C) and TNF-α (D) from RGD-HBc160-
immunized, HBc183-immunized, and non-immunized mice. (E) Comparison of the corresponding serum antibody levels from each group on 7 days after the second
immunization. **P<0.01.
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and TBR was significantly enhanced (~5.8) with background signals reduced in this special time window, resulting in the
discrimination between cancer and normal tissue which avoids incomplete resections.

Among the various targeted NIR probes with potential for clinical translation, most delivery systems have been based
on commercial monoclonal antibodies.33,34 For example, the VEGF-A targeting bio-conjugate bevacizumab-
IRDye800CW has progressed into clinical trials (Phase II) for guiding breast-conserving surgery.35 However, it should
be noted that monoclonal antibodies are less efficient at loading drugs, with an antibody/dye ratio of <1:10. Furthermore,
monoclonal antibodies and the corresponding covalently bonded fluorescent dyes, such as IRDye800CW-NHS, ICG-
NHS, are relatively expensive to prepare and not approved by the FDA. In this study, we adopted a natural protein-based
nanoparticle, the structure of which can be tailored to obtain targeting capacity. Such a nanoparticle can have multiple
binding sites on its surface and can load much more fluorescent dyes (antibody/dye mole ratio >1:300). What’s more,
RGD-HBc160 VLPs can be produced by various prokaryotic expression systems, and ICG can be encapsulated into the
VLPs through disassembly/reassembly rather than covalent binding, both of which can significantly reduce costs. Tumor-
targeted peptides, aptamers, or small molecule-drugs have also been adopted as carriers for the delivery of dyes.
However, these small molecule ligands can be metabolized rapidly, resulting in a short time window for imaging (<12
h).36,37 In our study, RGD-HBc160 monomers could self-assemble as VLP nanoparticles that were generally stable over a
wide range of the in vivo environment38 and could achieve the long-time tumor retention in-vivo (imaging time window
>24 h). Moreover, the RGD peptide sequence was integrated into the surface of HBc protein through genetic engineering
technology, which could further overcome the shortcomings of the traditional polypeptide surface modification, such as
easy hydrolysis and instability.

The subcutaneous xenograft mouse model has often been the sole model used in preclinical studies on fluorescence-
guided tumor resection. However, this model cannot fully simulate the intraoperative condition. To more accurately
simulate the intraoperative situation, the establishment of an infiltrative-tumor model can be better used to evaluate
molecular probes.39 In the present study, the infiltrative tumor model was used to replicate the difficulty of margin
visualization under white light, and 80% (8/10) of the mice had residual tumor after white-light only surgery, while
fluorescence imaging-guided surgery reduced the margin positive rate to 20% (2/10). In addition, as a perfect analog of
human breast cancer, a well-characterized transgenic mouse model of breast cancer development, was used in this study,
which can spontaneously progress to breast cancer through distinct pathological stages: normal breast tissue, hyperplasia,
DCIS, and invasive breast cancer.40 Based on this particular animal model, we designed ingenious experiments that
showed the excellent NIR fluorescence imaging capability to differentiate between benign and malignant breast tissues,
and the multi-level framework analysis also showed that the fluorescence signal, histological diagnosis, and integrin
expression had strong correlation.

Some inorganic or synthetic nano-carriers have caused concern because of retention and accumulation in the body
post-imaging, due to potential toxic responses and immunogenicity. HBc VLPs contains natural protein, with the
advantages of good biodegradability and compatibility, and have been applied in the development of vaccines, showing
good safety.41,42 However, there are multiple immune epitopes in HBc VLP, which can easily stimulate the immune
response of the body. In the present study, MIR of HBc protein was mutated by the RGD sequence. And compared with
previously reported RGD-HBc183 VLP,25 the amino acids in B cell and CTL epitope of RGD-HBc160 were partial
substituted, and the redundant amino acids on the C-terminus which is not related to the structure assembly were
eliminated. We further investigated the immunology of the protein in vivo, the results showed that the cellular and
humoral responses induced by RGD-HBc160 were decreased than those induced by wild-type HBc183. Furthermore, a
pilot toxicology study was performed and result showed that the probe was well tolerated. Although there were
insignificantly changes in blood bioChemistry panels immediately after injection, and these levels were back within
the normal range after one week, larger toxicology studies experiment need to be performed to determine the meaning of
these changes before conclusions can be drawn.

There are some limitations to this study. First, in this study, 2 mice in the fluorescent imaging-guided resection group
still had a residual tumor, which might be explained by the poor penetration that is an inherent defect of traditional NIR
fluorescent imaging (<1000 nm). Thus, in the future, fluorescence imaging combined with photoacoustic imaging or
extended to the NIR-II window (1000 to 1700 nm) may achieve even greater penetration and sensitivity.43,44 Secord, the
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feasibility and safety of RGD-HBc160/ICG were evaluated only at the small animal level in this study. To accelerate
clinical transformation, further studies in large animals are necessary.

The results of our study suggest that the RGD-HBc160/ICG fluorescent probe allows specific targeting of breast
cancers. The probe performed well in delineating tumor boundaries and assessing the pathological status of tissues in
mouse models. Add its biocompatibility, biodegradation, low toxicity, and low immunogenicity, and the RGD-HBc160/
ICG has clinical translation potential as an effective tool to aid surgeons in real-time tumor resection during BCS.
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