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Background: Solar lentigines (SLs), serving as a prevalent characteristic of skin photoaging, present as cutaneous aberrant 
pigmentation. However, the underlying pathogenesis remains unclear and there is a dearth of reliable diagnostic biomarkers.
Objective: The aim of this study was to identify diagnostic biomarkers for SLs and reveal its immunological features.
Methods: In this study, gene expression profiling datasets (GSE192564 and GSE192565) of SLs were obtained from the GEO 
database. The GSE192564 was used as the training group for screening of differentially expressed genes (DEGs) and subsequent depth 
analysis. Gene set enrichment analysis (GSEA) was employed to explore the biological states associated with SLs. The weighted gene 
co-expression network analysis (WGCNA) was employed to identify the significant modules and hub genes. Then, the feature genes 
were further screened by the overlapping of hub genes and up-regulated differential genes. Subsequently, an artificial neural network 
was constructed for identifying SLs samples. The GSE192565 was used as the test group for validation of feature genes expression 
level and the model’s classification performance. Furthermore, we conducted immune cell infiltration analysis to reveal the immune 
infiltration landscape of SLs.
Results: The 9 feature genes were identified as diagnostic biomarkers for SLs in this study. And an artificial neural network based on 
diagnostic biomarkers was successfully constructed for identification of SLs. GSEA highlighted potential role of immune system in 
pathogenesis of SLs. SLs samples had a higher proportion of several immune cells, including activated CD8 T cell, dendritic cell, 
myeloid-derived suppressor cell and so on. And diagnostic biomarkers exhibited a strong relationship with the infiltration of most 
immune cells.
Conclusion: Our study identified diagnostic biomarkers for SLs and explored its immunological features, enhancing the comprehen
sion of its pathogenesis.
Keywords: solar lentigines, photoaging, diagnostic biomarkers, immune infiltration, artificial neural network

Introduction
Solar lentigines (SLs), one of the most common benign hyperpigmented lesions in dermatology, predominantly affect 
middle-aged and older individuals of Caucasian and Asian descent. They have always been considered a clinical 
hallmark of skin aging, specifically photoaging, resulting from cumulative ultraviolet radiation (UVR) and chronic 
hyperpigmentation.1 However, the pathogenesis of SLs has not been completely understood and objective biomarkers are 
insufficient in SLs.

In recent years, the rapid advancement of bioinformatics techniques has enabled the identification of potential 
biomarkers through comprehensive analysis of high-throughput data. Weighted co-expression network analysis 
(WGCNA) has been widely used to identify hub genes in clinically significant modules by constructing gene co- 
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expression network.2 Additionally, artificial neural network, a widely utilized diagnostic model based on machine 
learning techniques, has demonstrated substantial potential in medical research with its high diagnostic performance 
across various diseases.3,4 However, the multi-biomarker based diagnostic model has not been developed for the 
diagnosis of SLs to date.

In this study, integrated bioinformatic approaches were employed to identify promising diagnostic biomarkers, 
construct an artificial neural network (ANN) model with high diagnostic performance, and investigate the immune 
infiltration landscape in SLs. These findings offer novel insights into the biological mechanisms of SLs. The flowchart of 
this study is shown in Figure 1.

Material and Methods
Data Acquisition and Processing
Gene expression profile datasets of SLs (GSE192564, GSE192565) were downloaded from the GEO database (https:// 
www.ncbi.nlm.nih.gov/geo/). The training group for major analysis consisted of 26 SLs lesions and 26 normal samples 
from GSE192564. The test group for validation, GSE192565, comprised of 12 SLs lesions and 12 normal samples. The 
probe IDs were matched with gene symbols, and the arithmetic mean of the expression values was calculated for genes 
that were linked to multiple probe IDs. Subsequently, normalization and log2 transformation were applied to all the data 
for further analysis.

Identification of the Differentially Expressed Genes (DEGs)
The R package “limma” was employed to identify the DEGs between the control group and the SLs group. The cutoff 
criteria of |log2FC| ≥ 0.5 and adjusted p value < 0.05 was used. Then, the volcano plot and heatmap of DEGs were plotted 
by the R package “ggplot2”.

Gene Set Enrichment Analysis (GSEA)
Two pre-defined gene sets (“c2.cp.kegg.v7.5.1.symbols.gmt” and “c5.go.v7.5.1.symbols.gmt”) were downloaded from 
MSigDB database. GSEA was then conducted using the R package “clusterProfiler”. The biological functions or 
pathways with |Normalized Enrichment Score (NES)| > 1, adjusted p value < 0.05 and false discovery rate (FDR) < 
0.25 were considered to be significantly enriched.

Figure 1 Flowchart of the present research.
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Construction of Weighted Gene Co-Expression Network Analysis
According to descriptions by Zhu et al,2 the R package “WGCNA”was used to construct the gene co-expression network. 
Data cleaning was firstly performed in training group for removing outliers and genes that ranked in the top 25% of the 
median absolute deviation were further selected for constructing the correlation matrix. The adjacency matrix was then 
was converted from the correlation matrix via an appropriate soft threshold power β. Subsequently, the adjacency matrix 
was turned into a Topological Overlap Matrix (TOM). The genes were then clustered into different gene modules with 
different colors. Finally, the most significant module associated with SLs was identified through the Pearson’s correlation 
between modules and clinical traits. Modules exhibiting the highest gene significance (GS) levels were considered as the 
key module. Furthermore, hub genes were defined as those with Module Membership (MM) > 0.8 and GS > 0.5 in the 
key module.

Construction and Validation of Artificial Neural Network (ANN) Model
The feature genes for SLs were determined by the overlapping of up-regulated DEGs in the training group and hub genes 
in the key module. The “Gene Score” of feature genes were firstly evaluated using the R package “limma”. The ANN 
was then constructed using the R package “neuralnet”. Finally, the classification performance of ANN was evaluated 
using the R package “pROC”.

Immune Infiltration Analysis
The single-sample gene-set enrichment analysis (ssGSEA) was performed to reveal the difference of immune infiltration 
between SLs samples and control samples using the R package “GSVA”. Following that, we further evaluated the 
correlation between feature genes and immune cells by the R package “tidyverse”. P value < 0.05 was considered 
statistically significant.

Results
Identification of DEGs
A total of 200 DEGs were identified in the training group, including 86 up-regulated genes and 114 down-regulated 
genes (shown in Figure 2; seen in Supplementary Table 1).

Figure 2 Identification of differentially expressed genes following the cutoff criteria of |log2FC| ≥ 0.5 and adjusted p value < 0.05. (a) volcano plot. (b) Heatmap.
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Gene Set Enrichment Analysis
To explore the biological states of SLs, GSEA was conducted using pre-defined gene sets. We found that various cellular 
components involved in skin development and immune response were significantly enriched in SLs, including inter
mediate filament cytoskeleton, basement membrane and MHC protein complex. The biological processes and molecular 
functions related to immune regulation were significant enriched in SLs, involving the activation and migration of 
immune cells. Furthermore, the KEGG results in SLs group showed that chemokine signaling pathway, cytokine cytokine 
receptor interaction and leukocyte transendothelial migration were significant enriched pathways. These findings under
score the potential role of the immune system in the pathogenesis of SLs (shown in Figure 3; seen in Supplementary 
Tables 2 and 3).

Construction of Weighted Gene Co-Expression Network Analysis
In this study, β=8 was set as the optimal soft threshold for constructing the adjacent matrix. The fit index (R2) of scale- 
free topology was 0.83 when β=8, as well as the matrix exhibited better connectivity (shown in Figure 4a). The adjacent 
matrix was then transformed into the TOM and the dissTOM (dissTOM =1-TOM) in turn. The similarity genes were split 
up into various modules via hierarchical clustering (shown in Figure 4b and c). The module–trait relationship analysis 
showed that the ME pink module had the highest correlation with SLs (R = −0.9, p < 0.001) (shown in Figure 4d). And 
ME pink module had the highest gene significance (GS) levels among all modules (shown in Figure 4e). Additionally, 
a total of 36 driver genes with GS > 0.5 and MM > 0.8 were identified as hub genes highly associated with SLs in the ME 
pink module (shown in Figure 4f; seen in Supplementary Table 4).

Construction and Validation of ANN on 9 Feature Genes
A total of 9 feature genes (SLC1A3, PCDH7, HOXB7, BPGM, HOXD10, HOXD8, HOXD11, PITX2, ZIC2) for SLs were 
finally identified in this study (shown in Figure 5a). Subsequently, an ANN with 9 neurons in the input layer (9 feature 
genes) and 2 neurons in the output layer (Control samples and SLs samples) was successfully constructed (shown in 
Figure 5b). The ANN model demonstrated exceptional classification performance for SLs samples, as evidenced by an 
AUC score of 1 in the training group (shown in Figure 5d) and an AUC score of 0.976 in the test group (shown in Figure 5e). 
Significantly, the AUC values of feature genes remained significant (AUC > 0.9; shown in Figure 5c) in the training group, 
indicating that these 9 feature genes were promising diagnostic biomarkers for SLs. In addition, the significant up-regulated 
expression levels of all feature genes were also observed in SLs samples of the test group (shown in Figure 5f).

Figure 3 Gene set enrichment analysis (GSEA). (a) Top 5 significantly enriched GO terms in SLs. (b) TOP 5 significantly enriched KEGG pathways in SLs.
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Assessment of Immune Infiltration and Immune Correlation
The present study further investigated immune infiltration of the 28 types of immunocytes in SLs and control samples 
using ssGSEA. As shown in Figure 6a, in comparison with control samples, SLs samples had a higher proportion of 

Figure 4 Identification of hub genes in the module related to SLs. (a) Setting of soft threshold power (β=8). (b) Dynamic tree cut for module classification. (c) Consensus 
clustering of consensus module eigengenes. (d) Correlation of 8 modules with clinical features. (e) Gene significance across modules. (f) Identification of hub genes with GS 
> 0.5 and MM > 0.8 in the pink module.
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activated CD8 T cell, activated dendritic cell, Eosinophil, immature dendritic cell, MDSC, natural killer T cell, 
Neutrophil, T follicular helper cell, Effector memory CD4 T cell and Central memory CD4 T cell (all P < 0.05). 
However, monocyte and memory B cell in SLs were relatively lower than that in control (all P < 0.05). The correlation 

Figure 5 Construction and verification of ANN model. (a) Screening of feature genes involved in SLs. (b) Construction of ANN model based on 9 feature genes. (c) ROC 
curves of feature genes in the training group. (d) ROC curve of the ANN model in the training group. (e) ROC curve of the ANN model in the test group. (f) Differential 
expression of 9 feature genes in the test group. p-value: ***p < 0.001.
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analysis of the feature genes and immune cells was further investigated, in order to understand the role of feature genes in 
immune infiltration. The infiltration of most immune cells exhibited a strong relationship with feature genes, with most of 
these associations being negatively correlated (shown in Figure 6b).

Discussion
Photoaging refers to the cutaneous damage caused by light, particularly exposure to ultraviolet radiation. Clinical 
manifestations of photoaging encompass dermal thinning, diminished elasticity, and aberrant pigmentation (solar 
lentigines).5 It is worth noting that SLs are commonly observed on sun-exposed skin areas such as the face and arms, 
often resulting in a significant psychological impact for individuals, particularly among middle-aged women who 
prioritize skin aesthetics. However, limited research has been conducted on SLs, and its pathogenesis remains elusive. 
Recently, Warrick E and his team collected SLs lesions and control samples from Japanese and European volunteers and 
conducted gene expression analyses, subsequently depositing the datasets into GEO database.6 Based on the GO 
enrichment analysis of DEGs, they identified several biological functions closely related to SLs, prompting an in- 
depth discourse. However, their study still has certain limitations. For instance, the conventional GO enrichment analysis 
tends to overlook genes with minimal changes in expression levels but significant functional importance, and SLs- 
specific biomarkers have not been identified. Furthermore, the immune microenvironment plays a pivotal role in 
maintaining skin homeostasis, yet alterations within the immune microenvironment of SLs have not been reported. In 
order to uncover more potentially valuable information related to SLs, we conducted a comprehensive investigation into 
the gene expression profiles shared by Warrick et al6 using integrated bioinformatic approaches, including GSEA, 
WGCNA, ANN model based on machine learning and immune infiltration analysis. The implications of our findings 
are significant for identifying diagnostic biomarkers of SLs and shedding light on its underlying pathogenic mechanisms.

In this study, a total of 9 feature genes were determined as diagnostic biomarkers for SLs, and their reliability was 
confirmed by the ANN model and ROC curves. It’s worth noting that these feature genes are not pigmentation-related 
genes, suggesting that the presence of advanced SLs lesions may not be significantly influenced by an increase in 
epidermal melanin content and the number of melanocytes. Among the 9 feature genes, four genes belong to the HOX 
gene family (HOXB7, HOXD10, HOXD8 and HOXD11). HOX genes constitute a family of transcription factors which 
is part of a developmental regulatory system. Numerous studies have substantiated that hox proteins not only actively 
participate in modulating normal tissue development but also in the pathogenesis of diverse cancers.7,8 The over- 
expression of HOX genes, as reported by Warrick et al,6 has been implicated in the SLs morphological changes that 
can lead to significant deformation of the dermal-epidermal junction. Furthermore, recent research has revealed a novel 

Figure 6 Immune infiltration analysis in SLs patients. (a) Box plots depicting the infiltration levels of immune cells. (b) The correlations between immune cells and feature 
genes. p-value: *p < 0.05; **p < 0.01; ***p < 0.001.
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role of HOX gene family reactivation in the process of aging. For instance, over-expression of Hoxd8 could led to 
senescence-associated phenotypes in mouse embryonic fibroblasts.9 Thus, we speculated that the HOX genes may 
potentially involve in development of SLs by regulating the process of cellular senescence in skin cells. Although 
there is currently no direct evidence linking HOX genes to melanocytes or the production of melanin. However, it has 
been demonstrated in previous studies that the HOXA10 can induce up-regulation of the Dickkopf 1 gene, which plays 
a regulatory role in skin pigmentation.10,11 In addition, we identified two genes, PITX2 and SLC1A3 (glutamate 
transporter), whose potential regulatory effects on keratinocytes differentiation have been reported in previous 
studies.6,12 The keratinocytic malfunction is widely recognized as a key driver factor of SLs, providing a theoretical 
basis for PITX2 and SLC1A3 as biomarkers for SLs.13 Besides, Zic2 may involve in melanocyte stem cells (MCSCs) 
differentiation, based on the regulative role on Wnt signaling pathway.14 In a recent research, Yamada et al reported that 
the differentiation process of MCSCs into melanoblasts/melanocytes is most likely to be involved in the pathogenesis of 
SLs.15 However, the molecular function of BPGM gene involved in skin system has not yet been explored. The BPGM 
gene, encoding enzyme 2,3-bisphosphoglycerate mutase (BPGM), was widely reported in erythrocytosis.16 Further 
studies are needed to elucidate its potential association with SLs. PCDH7 belongs to protocadherin, which constitutes 
the largest subfamily of cadherin group. It has been discovered that protocadherin in human skin is intricately linked to 
the activity of cutaneous sensory neurons and may influence progression of psoriasis by regulating neuroimmune 
pathways and perception of external stimuli.17 However, further investigations are required to determine whether the up- 
regulation of PCDH7 expression may potentially enhance the skin’s sensitivity to ultraviolet radiation stimulation, 
thereby promoting the development of SLs.

In addition, we performed KEGG pathway analysis for 9 feature genes we identified. However, due to too few gene 
numbers, KEGG pathways containing two or more feature genes can not be significantly enriched (seen in 
Supplementary Table 5). The GSEA results in this study highlight the significance of immune system in the pathogenesis 
of SLs, distinguishing it from previous research. Subsequently, through immune infiltration analysis, we identified 
heterogeneous immune landscape between SLs lesions and normal skin. The proportion of T cells, neutrophils, and 
dendritic cells in SLs was found to be significantly higher compared to normal skin, indicating their potential role as 
major effector cells mediating the immune response in SLs. More recently, researchers observed significant increase in 
T cells contents in photoaged skin through immunohistochemical techniques, further supporting our findings.5 

Importantly, UVR may be the key factor resulting in immune homeostasis dysregulation in SLs.18 It has been reported 
that UVR can stimulate various skin cells, such as keratinocytes, fibroblasts and melanocytes, and promote the secretion 
of pro-inflammatory cytokines and chemokines, inducing chronic inflammation.19 It is well known that chronic 
inflammation is an effective inducer of immunosuppression. In this study, we found that immunosuppressive cells 
MDSC infiltrate significantly in SLs, which may be involved in immunosuppression and preventing excessive inflam
matory response. However, it should be noted that prolonged existence of immunosuppressive state could lead to immune 
senescence and may facilitate the progression of SLs.20 Furthermore, a significant correlation was observed between 
several feature genes and diverse immune cells, indicating potential influence of these genes on the immune micro
environment of SLs. Overall, these findings suggest that alterations in the immune microenvironment play a pivotal role 
in the pathogenesis of SLs, highlighting the significance of restoring skin immune homeostasis as a promising avenue for 
future therapeutic interventions against SLs.

Admittedly, these findings offer novel insights for investigating pathogenesis of SLs; however, there exists some 
limitations in this study that need to be addressed in future research. First, although an external dataset was used for 
validation ensuring the credibility of this study, their reproducibility and broad applicability still need further experi
mental validations. Second, the potential relevance of feature genes and immune cells in SLs remain to be further 
investigated. In addition, due to the current lack of available in vitro/in vivo models of SLs, it is crucial to procure 
enough clinical samples for subsequent studies.

Conclusion
In total, this study identified 9 feature genes, which might serve as potential diagnostic biomarkers for SLs. The ANN 
diagnostic model, developed based on feature genes, demonstrated excellent diagnostic performance for SLs patients. 
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Nevertheless, further investigations into the molecular mechanisms underlying the involvement of these feature genes in 
SLs are still warranted. Our findings also provide a better understanding of immunologic mechanisms involved in SLs.
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